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Cloaking-based location privacy preserving mechanisms have been widely proposed to pro- 

tect users’ location privacy when using location-based services. A fundamental limitation of 

such mechanisms is that users and their location information in the system are inherently 

trusted by the Anonymization Server without any verification. In this paper, we show that 

such an issue could lead to a new class of attacks called location injection attacks which can 

successfully violate users’ in-distinguishability among a set of users. We propose and char- 

acterize location injection attacks by presenting a set of attack models and quantifying the 

costs associated with them. We present and evaluate k-Trustee , a trust-aware location cloak- 

ing mechanism that is resilient to location injection attacks and guarantees a lower bound 

on the user’s in-distinguishability. k-Trustee guarantees that each user in a given cloaked 

region can achieve the required k-Anonymity by including at least k-1 other trusted users in 

the cloaked region. We demonstrate the effectiveness of k-Trustee through extensive experi- 

ments in a real-world geographic map and our experimental results show that the proposed 

cloaking algorithm guaranteeing k-Trustee is effective against various location injection at- 

tacks. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

he rapid development of high-speed mobile networks and 

he growing usage of advanced mobile devices have made 
ocation-based services to be indispensable in people’s lives.
sers’ location privacy threats refer to the risks that an 

ttacker can obtain unauthorized access to raw location data 
y locating a transmitting device and identifying the subject 
person) using it. Examples of such risks include spamming 
sers with unwanted advertisements, drawing sensitive in- 
erences from victims’ visits to various locations (e.g., clinics 
nd doctors’ offices) and learning sensitive information about 
hem (e.g., diseases, religious and political affiliations, etc.).
ence, preserving location privacy is a critical problem. 
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Various cloaking-based location privacy-preserving mech- 
nisms (CLPMs) have been proposed for protecting users’ lo- 
ation privacy from location-based service providers ( Bamba 
t al., 2008; Gruteser and Grunwald, 2003; Mokbel et al.,
006 ). As shown in Fig. 1 , CLPMs are usually implemented 

hrough a trusted third party called Anonymization Server 
AS) that collects users’ location information and performs 
n anonymization prior to releasing the sensitive location in- 
ormation to location-based service providers (LBSPs), which 

re assumed to be either curious-but-honest or malicious. In 

ome cases, the location-based service providers (LBSPs) are 
lso vulnerable to insider threats. When a user u with a mo- 
ile device requests a location-based service (e.g. searching 
or the nearest coffee shop) from an LBSP, the mobile user first 
ends the request including his exact location (e.g., longitude 
nd latitude values) to AS. AS then runs a location cloaking 
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Fig. 1 – Architecture of a cloaking-based location privacy preserving mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

algorithm to reduce the precision of u ’s location to satisfy the
required privacy level (e.g., k-Anonymity ). After that, AS sends
the cloaked region associated with u to the LBSP which finally
generates the answer to u ’s request based on the information
from AS. This answer is sent back to u either directly, or
through AS as an intermediate tier that delivers the answer
to u later. 

One way to protect the location privacy of u is to enhance
the in-distinguishability of u among a group of users, which
is defined as k-Anonymity ( Bamba et al., 2008; Gruteser and
Grunwald, 2003 ). Specifically, k-Anonymity guarantees that the
location of a given user is indistinguishable from those of
at least k − 1 other users. In addition to k-Anonymity , several
extended CLPMs have been proposed, such as POI ( points of
interest ) l-Diversity ( Bamba et al., 2008 ), which ensures the
in-distinguishability of a user’s location from a set of POIs,
and road segment s-Diversity ( Wang and Liu, 2009 ), which
guarantees the in-distinguishability of a user’s location from
a set of road segments. However, one fundamental limitation
of these CLPMs is that all users and their location information
have to be trusted by AS, which makes the CLPMs vulnerable
in practice. Specifically, by exploiting this implicit assumption,
an attacker can create fake users with carefully manipulated
location information to forcibly reduce the privacy level
guaranteed by CLPMs and significantly increase the chance
of identifying a targeted user’s location. Due to the limitation
mentioned above, AS is unaware of the privacy level reduction
caused by the injected fake users and therefore no precau-
tionary measure or remedial measure can be implemented. In
this paper, we first show that such vulnerability can lead to a
new class of attacks called location injection attacks, which can
successfully compromise privacy of the users’ location and
trajectory information. After characterizing the location injec-
tion attacks, we present various attack models and discuss the
cost associated with them. Then, to mitigate the location in-
jection attacks, we further propose a trust based mechanism
called k-Trustee , which combines trust management with
k -anonymity to distinguish fake users (untrusted users) from
real users (trusted users) to make it resilient to location injec-
tion attacks. The resilience of the proposed k-Trustee approach
is theoretically analyzed and experimentally evaluated. In
summary, the contributions of this paper are as follows: 

• We first propose and characterize location injection attacks
that can compromise users’ privacy setting of k-Anonymity
in an existing CLPM. We experimentally demonstrate the
effectiveness of such attacks through simulations. 

• Second, we propose the notion of trust in CLPMs and de-
sign a suite of trust-based location cloaking algorithms
that can mitigate the impact of location injection attacks. 
• Finally, we present the theoretical and experimental anal-

yses of the proposed approaches to demonstrate and vali-
date their effectiveness and resilience against location in-
jection attacks. 

The rest of the paper is organized as follows. In Section 2 ,
we review the basic concepts of CLPMs. We then define the
notion of location injection attacks in CLPMs and introduce
the attack models. In Section 3 , we define the concept of
trust between users and introduce the notion of k-Trustee
and design a cloaking algorithm that guarantees the k-Trustee
property. In Section 4 , we demonstrate the effectiveness
of location injection attacks and experimentally evaluate
the resilience of our proposed cloaking algorithms against
location injection attacks. Finally, we summarize the related
work in Section 5 and conclude the paper in Section 6 . 

2. Location injection attacks 

In this section, we first model the road network and present
the location cloaking techniques based on it. We then propose
the location injection attacks and attack models. 

2.1. Road network model 

In various cloaking approaches, users are assumed to travel
in a road network ( Wang and Liu, 2009 ) which is modeled as a
graph G ( J, S ), where J represents the set of road junctions and
S represents the set of road segments. A junction is defined as
the crossover point of any two roads or the end of a road seg-
ment. A road segment is defined as the direct road connecting
any two adjacent junctions, which may include several
point-of-interest (POI) venues. Each segment is uniquely
determined by the two junctions associated with it while
each junction is associated with one or more adjacent road
segments. A road segment s i that connects two road junctions
j p , j q can be denoted by s i = ( j p , j q ) . An example road network
is shown in Fig. 2 where there are 24 road junctions and
37 road segments. 

In particular, for each road segment s i = ( j p , j q ) in the road
network, we define the set of segments sharing either junc-
tion j p or junction j q with s i to be the neighbor set of s i , which
is denoted by NS s i . For example, in Fig. 2 , NS s 1 = { s 2 , s 4 , s 5 } .
Similarly, given a region R including several road segments,
NS R indicates the neighbor set of R , which consists of seg-
ments sharing at least one junction with the segments in R . In
Fig. 2 , assuming that R = { s 1 , s 2 } , we have NS R = { s 3 , s 4 , s 5 , s 6 } . 
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Fig. 2 – A road network example with 24 junctions and 37 road segments. 
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1 In this paper, a compromised user refers to an authentic user 
whose location information can be arbitrarily manipulated by an 

attacker. In the rest of this paper, we simply use the notion of fake 
users to indicate the set of fake as well as compromised users uti- 
lized in location injection attacks. 
.2. Location cloaking models 

n a road network, the objective of cloaking-based location 

rivacy protection mechanisms (CLPM) is to preserve users’ 
ocation privacy during their travels in the road network. The 
undamental privacy notion behind conventional location 

loaking models is location k-Anonymity ( Gedik and Liu, 2005; 
hinita et al., 2007; Gruteser and Grunwald, 2003 ), which 

uarantees the in-distinguishability of a user among a set of 
sers. In other words, a user’s location information exposed 

fter the location cloaking process is indistinguishable from 

hat of at least k − 1 other users. Several extensions have also 
een proposed to enhance the privacy protection offered by 
loaking based solutions, such as POI l-Diversity ( Bamba et al.,
008 ) which additionally ensures the in-distinguishability 
f a user’s location from a set of POIs and road segment 
-Diversity ( Wang and Liu, 2009 ) which additionally guaran- 
ees the in-distinguishability of a user’s location from a set 
f road segments. In this paper, we focus on the location 

loaking models guaranteeing k-Anonymity and/or s-Diversity .
e present the basic definitions below. 

efinition 1. k-Anonymity ( Gedik and Liu, 2005; Ghinita et al.,
007; Gruteser and Grunwald, 2003 ). A user u ’s location is said 

o satisfy the k-Anonymity at time t , if there are at least k − 1
ther users present at the same cloaked region at t . 

efinition 2. s-Diversity ( Wang and Liu, 2009 ). A user u ’s loca-
ion satisfies s-Diversity at time t , if there are at least k −1 other
sers at the same cloaked region at t and there are at least s 
oad segments in the cloaked region. 

Note that in this paper we set the atomic element of a 
loaked region as a road segment in a road network ( Wang 
nd Liu, 2009 ); i.e., a cloaked region consists of only road 

egments. For example, in Fig. 2 , we assume that there are 
 users, u 1 , u 2 , u 3 , u 4 , u 5 and u 6 , in the road network. We
lso assume that both the k-Anonymity and the s-Diversity 
equirements are 4 ( k = s = 4 ) for u 1 and 3 ( k = s = 3 ) for other
sers. In a CLPM that only guarantees the k-Anonymity , the 
loaked region for u 1 can be the area consisting of s 12 , s 15 and
 16 . When the s-Diversity is supported by a CLPM, the cloaked 

egion for u 1 can be the area composed of s 12 , s 15 , s 16 and s 17 

s it ensures at least 4 segments in the cloaked region. 
In the next section, we define the location injection at- 

acks aiming to compromise the location privacy of mobile 
sers, which work by manipulating locations of fake and/or 
ompromised users.1 We consider a user’s location privacy 
s compromised when an attacker can either identify the 
oad segment where the user is (e.g. find s 16 from s 12 , s 15 ,
 16 for u 1 in Fig. 2 ) or shrink the cloaked region to a smaller
ize (e.g. shrink s 12 , s 15 , s 16 to s 12 , s 16 for u 1 in Fig. 2 ), which
reaches the user’s privacy requirements ( k-Anonymity and/or 
-Diversity ). We also refer to the violation of a user’s trajectory 
rivacy as the case where an attacker can identify a series of 
onsecutive road segments a user visits. 

.3. Attack definition 

o define the location injection attack, we assume, without 
oss of generality, that there is a road network G ( J, S ), an
ttacker, a trusted user u who travels in G and requests a 
ocation-based service from an LBSP through an Anonymiza- 
ion Server (AS). The user u has a privacy setting k u for 
-Anonymity and AS guarantees the privacy requirement in 

he generated cloaked region using a cloaking-based location 

rivacy preserving algorithm (e.g., PrivacyGrid Bamba et al.,
008 , Casper Mokbel et al., 2006 , XStar Wang and Liu, 2009 ). We
lso assume that the attacker is the LBSP or a part of the LBSP
hat tries to compromise u ’s privacy requirement of k u , indi- 
ating a form of insider attack. The attacker (LBSP) knows the 
nitial cloaked region including u before launching the attacks 
rom u ’s recent location requests sent to the LBSP. Let a fake
ser be a user that does not physically exist but the attacker 
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Fig. 3 – An instance of a location injection attack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

has created an account for him in the system, or an authentic
user whose location can be manipulated by the attacker. 

Adversary’s Action: Let u i be a targeted user. An adver-
sary’s attack involves intelligently manipulating a number of
fake users’ locations using various schemes to identify u i ’s
location. Let R 

u i be the cloaked region created in response to
a request from u i . Let U( R 

u i ) be the set containing all the users
including u i in R 

u i and U f ( R 

u i ) be the set of fake users in R 

u i . 
Location injection attack: We say that u i is a victim of a

location injection attack, when 

∣∣U( R 

u i ) 
∣∣ −

∣∣∣U f ( R 

u i ) 
∣∣∣ < k u i . Here

| U | indicates the number of users in a user set U . 
In a location injection attack, an attacker can distinguish

the fake users since these users are either created or con-
trolled by the attacker. As a result, the number of remaining
users in the cloaked region, namely 

∣∣U( R 

u i ) 
∣∣ −

∣∣∣U f ( R 

u i ) 
∣∣∣, be-

comes less than the user’s privacy requirement of k u i . When
this happens, a user’s privacy requirement is compromised.
In addition, the size of the cloaked region constructed for u i
or the number of POIs in the cloaked region may also be con-
trolled (e.g., decrease its size) by placing fake users in strategic
locations. For example, as shown in Fig. 3 , there are six trusted
users u 1 , u 2 , u 3 , u 4 , u 5 and u 6 traveling in a road network. An
attacker can utilize six fake users fu 1 , fu 2 , fu 3 , fu 4 , fu 5 and fu 6
and report their locations in the road segments around the
road junction, Jun 1. We assume that u 1 has the k-Anonymity re-
quirement of k u 1 = 6 and let the k-Anonymity requirements of
other users be less than or equal to 6. Without the presence of
fake users, AS may generate a cloaked region containing users
u 1 , u 2 , u 3 , u 4 , u 5 and u 6 . The probability of inferring u 1 from
that of others in the cloaked region is 1/6. However, when the
attacker launches a location injection attack, AS may generate
a cloaked region including segments Seg 1 and Seg 3 where
there are only two authentic users { u 1 , u 2 } and four fake users
{ fu 2 , fu 4 , fu 5 , fu 6 }. Since the attacker can distinguish fake users
in the constructed cloaked region, the probability of identify-
ing u 1 from others is now reduced to 1/2, which compromises
u 1 ’s privacy requirement of k-Anonymity . Hence, the attacker
now has a higher probability of identifying u 1 ’s exact location;
i.e., u 1 could be traveling in Seg 1, Seg 2, Seg 3, Seg 4 or Seg 11
without the attack but when the location injection attack is
launched, u 1 would be associated with either Seg 1 or Seg 3. 

Note that a location injection attack is successful only
when the number of trusted users is less than that required
to support a user’s k-Anonymity requirements. For example, in
Fig. 3 , if k u 1 = 2, then u 1 ’s privacy requirement is not violated
even under the location injection attack. Detailed analysis
of this attack model is provided in Section 3.4. In addition,
a location injection attack can be targeted at multiple users
simultaneously. It can be also used to infer a targeted user’s
trajectory when a sequence of location injection attacks for
the targeted user are successful. 

In our previous work ( Jin et al., 2014 ), we simply defined
the location injection attack where attackers can arbitrarily
set their locations and thus their trajectories appear suspi-
cious. In addition, we assume that fake users have the lowest
k-Anonymity requirement supported by AS. This is because an
attacker does not expect to trigger the expansion of a cloaked
region and aims to induce the CLPM to construct a cloaked
region as small as possible. In the next section, we model the
location injection attacks. 

2.4. Attack models 

We present the following three different location privacy
attacks: stalking attack, fixed-location attack and fixed-trajectory
attack . Generally speaking, location privacy attacks involve in-
ferring a relationship between a user and his private location
information based on the locations he has visited. Depending
on the motive, an adversary may want to find out either ‘ the
locations that have been visited by a targeted user ’ or ‘ the users
who have visited a chosen location of interest ’. In the first case,
an adversary is more interested in learning private informa-
tion about the user, so he can launch the stalking attack to
continuously stalk the locations of that user and infer private
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nformation from collected locations. In the second case, an 

dversary may target a specific kind of private information 

e.g., health information, political inclination) and be more 
nterested in learning about the users associated with this 
rivate information. Here, the adversary can launch the fixed- 

ocation attack to continuously monitor the users visiting 
 specific location (e.g., a hospital) or the fixed-trajectory 
ttack using a specific trajectory (e.g., a parade route) to 
onitor the users following that trajectory. These will help 

nfer the relationship between the users and some private 
nformation. The main difference between the fixed-location 

ttack and the fixed-trajectory attack is that in the first case 
rivate/sensitive information is implied by a visit to a specific 

ocation while in the second case private information is 
mplied by a user’s movement along a specific trajectory. 

.4.1. Stalking attack 
hen a location injection attack targets a specific user u , its 
ain purpose is to compromise u ’s privacy requirement for 

-Anonymity and identify/infer more accurately his location 

t a specific time; e.g., the road segment where u is located at 
ime t . When the attacker has obtained a series of more accu- 
ate locations of u , he can infer or even identify the detailed 

rajectory of u . We call such an attack scenario stalking attack 
nd we define it as follows. 

ssumption. We assume that the attacker is the LBSP or a 
art of the LBSP that tries to compromise u ’s privacy require- 
ent of k u , indicating a form of insider attack. Like many pre- 

ious work ( Gedik and Liu, 2005; Kido et al., 2005; Mokbel et al.,
006 ), we assume that each LBS query contains a user ID (or 
seudonym), so the attacker (LBSP) has the ability to track 
 ’s cloaked regions. In addition, we assume that u sends LBS 
ueries with a high frequency, so that the attacker (LBSP) can 

requently receive u ’s cloaked regions and use them to stalk 
 . Finally, we assume the attacker (LBSP) can generate an ar- 
itrary number of fake users to be located at any segment. 

Identifying Initial Road Segment of the Target : To explain the 
dentification of initial position of a user, we assume a user 
 keeps sending LBS queries (with cloaked regions) to the 
ttacker (LBSP) at t = −1 , 0 , 1 , 2 ... At t = −1 , the attacker (LBSP)
eceived u ’s cloaked region R 

u 
−1 , which contains no fake users.

hen, between t = −1 and t = 0 , the attacker (LBSP) decides 
o stalk u . For each road segment in R 

u 
−1 and its neighbor 

et NS R 
u 
−1 , the attacker places a number of fake users (e.g.,

he number of fake users deployed to each segment could 

e equal to the maximum value of k that AS allows a user 
o declare, so k ≥ k u ). All these fake users should periodically 
uery the attacker (LBSP) through the anonymization server 
o be involved in u ’s future cloaked regions. Later, when t = 0 ,
 sends the next LBS query to the attacker (LBSP) through the 
nonymization server, which will generate the next cloaked 

egion containing u , denoted by R 

u 
0 . We define the segment 

ontaining u in R 

u 
0 as u ’s initial segment, denoted by s u init . Since

egment s u init contains k fake users and k ≥ k u , R 

u 
0 will be { s u init } ,

o s u init can be identified. 
Stalking Attack : After s u init has been identified, the attacker 

tarts to stalk u . Specifically, the attacker makes the fake 
sers move only within NS s 

u 
init . Later, when u moves to a new 

egment from s u init and queries AS at t = i ( i > 0) to generate
he cloaked region R 

u 
i , which is different from R 

u 
0 , the attacker

akes the fake users move into R 

u 
i as soon as possible to 

dentity u ’s new position s u i inside R 

u 
i . Similarly, when u moves

o another segment from s u i and queries AS at t = j ( j > i ) to
enerate the cloaked region R 

u 
j , the attacker tries to manip- 

late the trajectories of the fake users to identity u ’s new 

osition s u j inside R 

u 
j . By repeating these steps, the attacker 

an keep stalking u . 

xample. We show a comprehensive example of location in- 
ection attack in Fig. 4 , a part of the road network in Fig. 2 .

e assume the target user u 1 moves along the trajectory 
 16 → s 12 → s 9 . We assume u 1 sends three queries to AS at
 = −1 , 0 , 1 when it moves along s 16 , three queries to AS at
 = 2 , 3 , 4 when it moves along s 12 and finally three queries to
S at t = 5 , 6 , 7 when it moves along s 9 . We also assume the
loaked region at t = −1 is R 

u 1 
−1 = { s 16 , s 21 } . At time t = −1 ,

 

u 1 
−1 = { s 16 , s 21 } is known by the attacker, so the attacker can

lace 5 fake users at each road segment within R 

u 1 
−1 and NS R 

u 1 
−1 .

hen, at t = 0 , since R 

u 1 
0 = { s 16 } , the initial segment is identi-

ed. Please notice that we only show the 5 fake users ( fu 1 , fu 2 ,
u 3 , fu 4 and fu 5 ) assigned to segment s 16 and omit other fake
sers. After that, to stalk the user u 1 , the attacker can dynam-

cally create trajectories for the deployed fake users to make 
hem always run after u 1 . That is, given that the cloaked re- 
ions of u 1 at time t = 2 and t = 5 are R 

u 1 
2 = { s 8 , s 11 , s 12 , s 15 } and

 

u 1 
5 = { s 9 , s 13 } , respectively, the attacker can control the de-
loyed fakes users to enter the two regions to shrink them to 
 s 12 } and { s 9 }, respectively, so that the trajectory s 16 → s 12 → s 9 
an be disclosed. 

.4.2. Fixed-location attack 
s another class of location injection attacks, an attacker may 
ast anchor at a specific location and aim to identify users 
ho visit the targeted location, thus compromising the loca- 

ion privacy of the visitors. That is, instead of stalking a user 
o incrementally collect his sensitive locations, the attacker 
an select a fixed sensitive place (e.g., a hospital) and wait for 
he victims to fall into a snare. An attacker can manipulate 
he locations of the fake users to the targeted sensitive 
ocations that are close to the targeted location. When users 
isit the targeted location, users’ privacy requirements for 
he k-Anonymity are compromised with a higher probability.
his is because the cloaked region has fake users who are 
ontrolled by the attacker. The probability of identifying a 
ser is determined by the ratio of real users to fake users.
o obtain a probability close to 100%, the adversary should 

stimate the number of real users and adjust the number of 
ake users based on that. We call such an attack fixed-location 
ttack and it works as follows. 

ssumptions. The assumptions are same as the ones pre- 
ented in Section 2.4.1 . 

Fixed-location Attack : The attacker places m fake users at 
he targeted road segment s and makes these fake users stay 
t s ( e.g., visiting POIs at s ) during the attack. 

xample. In Fig. 4 , an attacker targets the road segment s 16 

nd tries to identify users who are traveling in s 16 by injecting 
u 1 , fu 2 , fu 3 , fu 4 and fu 5 . We assume that a user u 1 is traveling in
 16 and she has a privacy setting k u 1 = 4 . When u 1 requests a
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Fig. 4 – An example of the stalking attack. In the example, an adversity keeps using fakes users ( fu 1 , fu 2 , fu 3 , fu 4 and fu 5 ) to 

stalk the target user u 1 and successfully shrinks the cloaked regions R 1 and R 2 to smaller regions R 

′ 
1 and R 

′ 
2 . Please notice 

that we only show the 5 fake users ( fu 1 , fu 2 , fu 3 , fu 4 and fu 5 ) assigned to segment s 16 and omit other fake users assigned to 

other segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

location-based service, AS selects s 16 as a cloaked region such
that it satisfies u 1 ’s privacy requirement k u 1 . Since there is only
u 1 in the cloaked region besides fake users, the attacker can
determine u 1 is at s 16 . Without launching such an attack, the
cloaked region constructed for u 1 may consist of s 12 , s 15 and
s 16 which includes other three users who are not created by
the attacker. In this case, the attacker cannot identify exactly
where u 1 is located. It could be s 12 , s 15 or s 16 . 

2.4.3. Fixed-trajectory attack 
In certain situations, an attacker may be interested to identify
users who travel at a specific trajectory consisting of a set
of connected road segments. We call such an attack fixed-
trajectory attack and it works as follows. ( e.g., s 16 → s 12 → s 9 in
Fig. 4 ). 

Assumptions. The assumptions are same as the ones pre-
sented in Section 2.4.1 . 

Fixed-trajectory attack . The attacker can first identify the
smallest circular region that includes each road segment
in the targeted trajectory in the road network. Then, the
attacker can simulate the trajectories of fake users contin-
uously traveling in this circle. Note that the attacker has
to create an adequate number of fake users at each road
segment in the circle continuously in order to best induce AS
to construct the cloaked regions that include only one road
segment. 
Example. In Fig. 4 , to identify the users travelling along the
trajectory s 16 → s 12 → s 9 , the attacker can simulate the tra-
jectories of fake users continuously traveling in this circle
s 16 → s 12 → s 9 → s 13 → s 18 → s 16 . 

In summary, we can see that the stalking attack and the
fixed-location attack mainly compromise users’ location
privacy while the fixed-trajectory attack can compromise
users’ trajectory privacy. In Section 4 , we experimentally
simulate these three attacks and demonstrate their effec-
tiveness in successfully invading the location privacy of
users. Next, we present the ways to mitigate these location
injection attacks. 

3. Mitigating location injection attacks 

In this section, we first discuss potential solutions to defend
against location injection attacks. We then introduce various
definitions related to trust computations and propose the
trust based cloaking-based mechanism against location in-
jection attacks, k-Trustee . Notations that will be used in this
section are summarized in Table 1 . 

3.1. Discussions of potential solutions 

An intuitive approach to defend against location injection at-
tacks is to design a detection mechanism for AS to detect fake
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Table 1 – Summary of notations. 

Notations Descriptions 

u Real user. 
fu Fake user. 
s Road segment. 
NS s Neighbor Set of s . 
R u t Cloaked region of u at t . 
t ; τ Time point; time duration. 
d u t ( u i , u j ) Coarse distance between u i and u j at t . 
d s t ( u i , s j ) Coarse distance between u i and s j at t . ∑ 

t∈ τ cut u t ( u i , u j ) Coarse-grained user-user trust during τ . ∑ 

t∈ τ cl t s t ( u i , s j ) Coarse-grained user-location trust during τ . ∑ 

t∈ τ fut u t ( u i , u j ) Fine-grained user-user trust during τ . ∑ 

t∈ τ f l t s t ( u i , s j ) Fine-grained user-location trust during τ . 
e u e-stalker parameter of u . 
f u f-stationary parameter u . 
( e u l , f 

u 
l ) Local trust parameters of u . 

( e u g , f 
u 
g ) Global trust parameters of u . 

U 

u 
lt (t) Local trustees of u . 

U 

u 
gt (t) Global trustees of u . 

U 

u 
T (t) Trustees of u . 

U 

u 
T (R 

u 
t ) Trustees of u in cloaked region R u t . 

k u k -Anonymity parameter of u . 
R u M Maximum acceptable cloaked region size of u . 
T u M Maximum acceptable response time of u . 
p u Privacy parameters of u . 
U 

u 
l t −e (t) Potential e-stalkers of u . 
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sers. When users are identified as fake by the detection pro- 
ess, their location-based requests can be rejected by AS. Such 

 detection approach can be based on the characteristics of a 
ser (e.g., IP address) or the user’s trajectory ( e.g ., suspicious 
r abnormal trajectories). However, it has the following issues: 

• It needs a verification process to validate the identified fake 
users, which incurs additional cost. It is also difficult to de- 
sign such a process because of users’ privacy preferences. 

• There will always be false-positives and false-negatives in 

a detection approach. Trusted users will not be able to re- 
quest any location-based service when they are identified 

as false-positives. For example, a trusted user may have a 
suspicious trajectory around a stadium while trying to find 

a parking slot (similar to the trajectories of fake users in 

the fixed-trajectory attack). A detection approach may mis- 
takenly flag the trusted user as a fake user because of her 
suspicious trajectory. In addition, when the fake users are 
flagged as false-negatives, they can still be used in location 

injection attacks. 
• It is also very difficult to completely characterize fake users 

and their suspicious trajectories. 

We also note that the encryption-based approaches ( Chow 

nd Mokbel, 2007 ) to encrypt users’ information and dis- 
onnect their identities with their locations are also feasible 
pproaches to defend against the location injection attack.
owever, the cost of the encryption and decryption for each 

equest of the location-based service from each user may be 
igh, which makes such an approach less practical. 

In this paper, we propose a trust based mitigation ap- 
roach, named k-Trustee , that aims to reduce the impact of the 
ocation injection attacks through trust computations. Such a 
rust based mitigation approach has the following advantages: 

• It does not detect nor validate fake users but it will mit- 
igate the impact of suspicious users who could be either 
trusted users or fake users. Compared with detection ap- 
proaches where false-positives and/or false-negatives are 
usually inevitable, the proposed mitigation approach will 
never forbid real users to request services. 

• Users including fake users are always able to request ser- 
vices from AS and LBSPs. However, anonymity service is 
not free lunch. Users including attackers have to pay for 
that service. In this case, the attacker has to pay for a cost to
conduct location injection attacks irrespective of whether 
the attacks are successful or not. Such a mechanism can 

significantly increase the attack cost for the attacker. 

.2. Trust computations 

n this subsection, we first introduce the computations of the 
ser-user trust and the user-location trust and then apply 
hese trust computations to define k-Trustee . 

.2.1. Trust functions 
he principle behind the computation of trust is that a user 
 j is more trusted by another user u i or a road segment s i if
 j is always further away from u i or s i . When u j follows u i ( u j 

s always close to u i ) or u j is always traveling around s i , we
ay that u j has a probability to be a fake/compromised user 
argeting u i or s i in the attack. Thus, u j may not be trusted by
 i or s i . We first define two types of distances. 

efinition 3. User-User Distance . Given a road network G ( J, S )
nd two users u i and u j , we use d u t ( u i , u j ) to represent the
oarse distance between u i and u j at time t . When u i and u j 
ppear together in a same cloaked region R , d u t ( u i , u j ) = 0 . In
ther cases, d u t ( u i , u j ) = SJ( u i , u j ) . Here, SJ ( u i , u j ) is equal to the
umber of the junctions in the shortest path between the lo- 
ations of u i and u j in a road network. 

efinition 4. User-location distance . Given a road network G ( J, S ),
 user u i located at a road segment s i , and a road segment s j ,
e use d s t to represent the coarse distance between u i and s j at

ime t . When u i is in a cloaked region R including s j , d 
s 
t ( u i , s j ) =

 . Otherwise, d s t ( u i , s j ) = SS ( s i , s j ) , where SS ( s i , s j ) is equal to
he number of junctions in the shortest path between s i and 

 j . 

For example, in Fig. 3 , d u t ( u 1 , f u 4 ) = 0 since u 1 and fu 4 are
n the same cloaked region. d u t ( u 1 , u 9 ) = 3 as there are three
unctions in the shortest path between u 1 and u 9 . Similarly,
 

s 
t ( u 1 , Se g 3 ) = 0 since the cloaked region includes both u 1 and
eg 3 ; d s t ( u 1 , Se g 9 ) = 1 because there is one junction in the
hortest path between u 1 and Seg 9 . 

Based on the Definitions 3 and 4 , we then present two types
f user-user trust functions and two types of user-location 

rust functions. The user-user trust functions present the 
rust between users while the user-location trust functions 
ndicate the trust values from locations to users. 

efinition 5. Coarse-grained User-User Trust Function . Given a 
oad network G ( J, S ), two users u i and u j traveling in G and a
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time interval τ , the coarse-grained user trust between u i and
u j is 

∑ 

t∈ τ cut u t ( u i , u j ) . Here, 

cut u t ( u i , u j ) = 

⎧ ⎨ 

⎩ 

1 , d u t ( u i , u j ) = 0 

0 , d u t ( u i , u j ) > 0 

Definition 6. Coarse-grained User-Location Trust Function . Given
a road network G ( J, S ), a user u i traveling in G , a road segment s j
( s j ∈ J ) and a time interval τ , the coarse-grained location trust
function between u i and s j is 

∑ 

t∈ τ cl t s t ( u i , s j ) . Here, 

cl t s t ( u i , s j ) = 

⎧ ⎨ 

⎩ 

1 , d s t ( u i , s j ) = 0 

0 , d s t ( u i , s j ) > 0 

Definition 7. Fine-grained User-User Trust Function . Given a road
network G ( J, S ), two users u i and u j traveling in G and a time
interval τ , the fine-grained user trust between u i and u j is∑ 

t∈ τ fut u t ( u i , u j ) , where 

fut u t ( u i , u j ) = 

⎧ ⎨ 

⎩ 

1 , d u t ( u i , u j ) = 0 

xd u t ( u i , u j ) 
−y 

, d u t ( u i , u j ) > 0 

Here, x ≥ 0 , y ≥ 0 , 0 < xd u t ( u i , s j ) 
−y 

< 1 . 

Definition 8. Fine-grained User-Location Trust Function . Given a
road network G ( J, S ), a user u i traveling in G , and a road seg-
ment s j ( s j ∈ J ) and a time interval τ , the coarse-grained loca-
tion trust function between u i and s j is 

∑ 

t∈ τ f l t s t ( u i , s j ) , where 

f l t s t ( u i , s j ) = 

⎧ ⎨ 

⎩ 

1 , d s t ( u i , s j ) = 0 

xd s t ( u i , s j ) 
−y 

, d s t ( u i , s j ) > 0 

Here, x ≥ 0 , y ≥ 0 , 0 < xd s t ( u i , s j ) 
−y 

< 1 . 

In both Definitions 7 and 8 , users outside the cloaked re-
gions are not simply considered to be innocent. Their degree
of suspicion can be controlled by adjusting the parameters
x and y . Specifically, by choosing a larger x while a smaller
y , the user u i outside the cloaked region containing u j or s j
obtains higher fut u t ( u i , u j ) or f l t s t ( u i , s j ) , thus becoming more
suspicious. In contrast, by choosing a smaller x while a larger
y , users outside the cloaked regions become less suspicious. In
this paper, we set x = 1 and y = 2 , which considers users closer
to the cloaked regions to be suspicious but their degree of sus-
picion is much lower than that of the users inside the cloaked
region. Note that the time window τ in the Definitions 5 –8 is
generally defined by AS. The value is same for all users. An
example of such a time window could be 24 hours. 

Based on Definitions 5 and 7 , when u i and u j are included
in the same cloaked region or they are close to each other,
the values of 

∑ 

t∈ τ cut u t ( u i , u j ) and 

∑ 

t∈ τ fut u t ( u i , u j ) are higher.
The smaller distance between u i and u j also implies that
u i may stalk u j or vice versa. Hence, the higher values of∑ 

t∈ τ cut u t ( u i , u j ) and 

∑ 

t∈ τ fut u t ( u i , u j ) refer to the lower trust
between u i and u j . Similarly, in the Definitions 6 and 8 , the
higher values of 

∑ 

t∈ τ cl t s t ( u i , s j ) and 

∑ 

t∈ τ f l t s t ( u i , s j ) refer to the
smaller distance between u i and s j and this suggests the lower
trust from s j to u i . In addition, compared to the coarse-grained
trust functions ( Definitions 5 and 6 ), the fine-grained trust
functions ( Definitions 7 and 8 ) are more restricted; users are
probably regarded as potential attacker nodes even when
they are just a bit close to a target but they are not included
in the same cloaked region with the target. Instinctively,
these fine-grained trust functions would be more effective
to defend against the attacks, and they are more useful for
handling the attack scenarios where fake users are placed
a bit far away from a target for the attacks. However, the
potential issue with the fine-grained trust functions is that
they may consider more trusted users as suspicious users
than the coarse-grained trust functions. Such an issue may
make AS construct a larger size of a cloaked region and it may
lower the quality of the location based services for users. We
compare these two types of trust functions in Section 4 . 

Next, based on the above trust functions, we introduce the
definitions of the local trust and the global trust which are
used to capture the trust values between users and between
users and road segments in a more comprehensive way.
Based on these, we define the k-Trustee . 

3.2.2. k-trustee 
In order to define the local trust and the global trust, we first
define the notions of e-stalker and f-stationary based on the
proposed trust functions. 

Definition 9. e-stalker . Given a road network G ( J, S ), two users u i
and u j traveling in G and a time interval τ , we say that u j is an
e-stalker for u i when 

∑ 

t∈ τ cut u t ( u i , u j ) ≥ e u i l or 
∑ 

t∈ τ fut u t ( u i , u j ) ≥
e u i l . Here, e u i l is a parameter defined by u i indicating his privacy
setting for e-stalker . 

Definition 10. f-stationary . Given a road network G ( J, S ), a user
u i located at a road segment s i , another user u j located at a
road segment s j , and a time interval τ , we say that u j is an f-
stationary of u i when 

∑ 

t∈ τ cl t s t ( u j , s i ) ≥ f u i l or 
∑ 

t∈ τ f l t s t ( u j , s i ) ≥
f u i l . Here, f u i l is defined by u i specifying the privacy setting for
f-stationary . 

From these two definitions, we can see that e-stalker char-
acterizes users who may be utilized by an attacker to identify
and/or infer a specific user’s location while f-stationary charac-
terizes users who may be employed by the attacker to identify
users who are visiting a specific location. Next, we define the
Local Trust specifying whether a user trusts another locally. 

Definition 11. Local trust . Given two users u i and u j traveling
in a road network G ( J, S ), a time window τ , u i ’s location s i at
time t ( t ∈ τ ), and u i ’s local trust parameters e u i l and f u i l , we say
that u j is currently a local trusted user of u i , denoted as u j ∈
 

u i 
lt (t) , only when u j is neither an e-stalker nor an f-stationary of

u i . That is, 
∑ 

t∈ τ cut u t ( u i , u j ) < e u i l and 

∑ 

t∈ τ cl t s t ( u j , s i ) < f u i l , or∑ 

t∈ τ fut u t ( u i , u j ) < e u i l and 

∑ 

t∈ τ f l t s t ( u j , s i ) < f u i l . 

Fake users used for a particular target can be reused by
an attacker to attack a new target; these fake users may be
initially trusted by the new target. To limit re-usability of fake
users, we present the notion of global trust as follows. 

Definition 12. Global Trust . Given two users u i and u j travel-
ing in a road network G ( J, S ), a time window τ , u i ’s location
s i at time t ( t ∈ τ ), and u i ’s global trust parameters e u i g and f u i g ,

we say that u j is globally trusted by u i , denoted as u j ∈ U 

u i 
gt (t) ,

only when there are less than e u i g users who regard u j as the
e-stalker , and less than f u i g users who regard u j as the the f-
stationary . 
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Now, when a fake user has been adopted for attacking 
nough users and/or road segments in the past, he is un- 
ikely to be globally trusted by many other users. Hence, the 
e-usability of this fake user for a new target will be restricted.

We define a trusted user of a specific user by considering 
oth local and global trust as follows. 

efinition 13. A Trustee of a Specific User . Given two users u i 
nd u j traveling in a road network G ( J, S ), a time window τ , u i ’s
ocation s i at time t ( t ∈ τ ), u i ’s local trust parameters e u i l and
f u i l , and u i ’s global trust parameters e u i g and f u i g , we say that u j 
s a trustee of u i , denoted as u j ∈ U 

u i 
T (t) , only when u j ∈ U 

u i 
lt (t)

nd u j ∈ U 

u i 
gt (t) . 

In the rest of the paper, when we say u j is trusted by u i , it
ill refer to local and global trust. We next present the notion 

f k-Trustee for a user as follows. 

efinition 14. k-Trustee of a User . Given a road network G ( J, S ),
n Anonymization Server (AS) and a time window τ , a user u i 
ravels in G while requesting a location-based service. u i has a 
rivacy setting k u i for k-Anonymity and AS constructs a cloaked 

egion R 

u i 
t for u i at time t ( t ∈ τ ). U 

u i 
T (R 

u i 
t ) represents the trusted

sers of u i in the cloaked region R 

u i 
t at t . We say that k-Trustee

s guaranteed for u i if and only if there are at least k u i users in
 

u i 
T (R 

u i 
t ) ; i.e., 

∣∣∣U 

u i 
T (R 

u i 
t ) 

∣∣∣ ≥ k u i . 

Note that we assume that u i always trusts himself (i.e.,
 i ∈ U 

u i 
T (R 

u i 
t ) ). 

The trustees of a specific user u i are the least likely to 
e fake users since these users have the lowest probability 
f either stalking u i or attacking the location where u i is 
urrently is. When there are at least k trustees in a cloaked 

egion for user u i , the probability of distinguishing u i in the 
loaked region is at most 1 / k u i . Thus, u i ’s privacy requirement 
or k-Anonymity is guaranteed. Note that it is possible that 
ake users may be identified as trustees of a specific user u i in 

he initial stages. However, when these fake users continue to 
talk u i or attack road segments including u i , their trust values 
ith respect to u i will keep decreasing, as per the proposed 

efinitions. Eventually, they will not become the trustees of u i 
ny more in the time window τ . In this case, an attacker has 
o use new fake users to launch the location injection attacks 
n u i . In addition, it is also possible that an authentic and not 
ompromised user may not be always identified as a trustee 
f any user in terms of his trajectory. It is a false-negative 
ut there is no impact for this authentic user to request 
nonymity service from AS and various location-based ser- 
ices from LBSPs. The only potential issue is that AS may 
onstruct a larger cloaked region for the authentic user and 

ence the quality of the location-based service may decrease.
Based on the definition of k-Trustee of a user, we define the 

otion of guarantee of k-Trustee as follows. 

efinition 15. Guarantee of k-Trustee in a Cloaked Region . Given a 
loaked region R and a time instant t , a user set U ( R ) indicates
 set of users in R . We say that k-Trustee is guaranteed in R at t
f and only if k-Trustee is guaranteed for each user in R at t; i.e.,
 u i ∈ U (R ) , 

∣∣∣U 

u i 
T (R 

u i 
t , t) 

∣∣∣ ≥ k u i . 

Next, we present the cloaking-based location privacy 
echanism that guarantees k-Trustee in any cloaked region 

onstructed by AS. 
.3. Cloaking-based location privacy mechanism 

uaranteeing k-trustee 

ere, we first present the proposed k-Trustee cloaking based 

rivacy framework. We then discuss and compare several 
xpansion schemes and finally show the k-Trustee cloaking 
lgorithm. 

.3.1. k-trustee framework 
he key idea of our proposed cloaking-based location privacy 

ramework is to adopt the notion of k-Trustee instead of the 
-Anonymity to enhance a user’s location privacy and mitigate 
he location injection attacks. 

In this framework, a user u first needs to specify his 
rivacy requirement as a 7-tuple p u ( k u , e u l , f 

u 
l , e 

u 
g , f 

u 
g , R 

u 
M 

, T u M 

) .
ere, R 

u 
M 

denotes the maximum size of a constructed cloaked 

egion accepted by u ; and T u M 

indicates the maximum wait 
ime accepted by u for the response for his location request.
 

u 
M 

and T u M 

are usually used by u to specify the quality of
ervice. In this paper, R 

u 
M 

refers to the maximum number of 
oad segments in a road network. When the number of road 

egments in the cloaked region is larger than R 

u 
M 

, u ’s location
equest will be ignored. p u needs to be sent to AS before the
nonymous service is provided. 

The process to compute trustees involves the following 
teps. First, both e-stalkers and f-stationary values are com- 
uted and labeled by the users through cloaked regions previ- 
usly received from AS within the past time period τ . Specifi- 
ally, to compute e-stalkers , for a user u j that appeared at least
nce in these recent cloaked regions, user u i should count the 
umber of the recent cloaked regions that contains u j . If the 
esult is not less than e u i l , u j will be labeled as a e-stalker of u i by
 i . Similarly, f-stationary values can be computed by counting 
he number of times that other users have appeared in recent 
loaked regions and comparing the results with the threshold.
hen, to query AS for a cloaked region, u i should send both 

-stalkers and f-stationary values to AS along with his current 
ocation s u i t and privacy parameters p u i . With the knowledge 
f both e-stalker and f-stationary , AS can label a user u j to be

ocally trusted by another user u i if u j is neither an e-stalker 
or a f-stationary of u i . In addition, with the global knowledge 
bout the number of times that u j has been labeled as e-stalker 
nd/or f-stationary by other users, AS can compare the results 
ith parameters e u i g and f u i g declared by u i to determine 
hether u j can be globally trusted by u i or not. Finally, if u j can
e both locally and globally trusted by u i , AS will label u j to be a
rustee of u i . 

An essential issue in this framework is the strategies for 
xpanding a cloaked region where k-Trustee is guaranteed for 
ach user. Generally, there are two approaches for expanding 
he cloaked region ( Bamba et al., 2008 ) in the literature: the
ottom-Up cloaking and the Top-Down cloaking. The Bottom-Up 
loaking approach starts the cloaking process by taking a road 

egment as a candidate cloaked region. If it cannot satisfy 
sers’ privacy requirements, the Bottom-Up cloaking approach 

ill start the expansion process to enlarge it by including 
ore neighboring road segments till all the users’ privacy 

equirements in the cloaked region are satisfied. On the other 
and, the Top-Down cloaking approach first selects the entire 
raph as an initial candidate cloaked region and it aims to 
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Fig. 5 – An example of the greedy expansion. In this 
example, u 1 requires a cloaked region that should satisfy 

k u 1 = 4. Initially, the candidate cloaked region R 

u 1 = { s 16 } 
and N S R 

u 1 = { s 12 , s 15 , s 17 , s 18 , s 21 , s 22 } . To expand the 
cloaked region to satisfy k u 1 = 4, the greedy expansion 

computes the difference between profit and cost when each 

segment in N S R 
u 1 is added into R 

u 1 and selects the segment 
s 22 with the largest difference. 
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partition it to various smaller cloaked regions where none of
the users’ privacy requirements is violated. In this paper, we
focus on the Bottom-Up cloaking approach since we feel that
it is more straightforward and easier to be utilized in a road
network. 

3.3.2. Expansion Schemes 
We proposed the following three cloaked region expansion
schemes in the proposed k-Trustee framework: random expan-
sion, greedy expansion and hybrid expansion. Note that these
are deployed in AS. 

Random expansion . Given a cloaked region R , the random
expansion approach randomly picks a road segment from the
neighbor set NS R and adds it to R . This process is repeated
until the expanded R guarantees the k-Trustee requirement
for each user in R . 

Greedy expansion . The greedy expansion focuses on con-
structing a smaller size of the cloaked region at each ex-
pansion step. Given a cloaked region R , it first computes
the neighbor set NS R when R does not satisfy the k-Trustee
requirement of each and every user. After that,in each expan-
sion step, it tries to find the best road segment in NS R that can
satisfy the users’ privacy requirements as soon as possible.
It then adds the road segment to R . It keeps adding the best
road segment to R until every user’s requirement of k-Trustee
is guaranteed. Below, we define the approach to identify the
best road segment to add at each step, as follows: 

Definition 16. “Best First”. Given a road network G ( J, S ) and a
cloaked region R where not all users’ k-Trustee privacy require-
ments are satisfied, let NS R be the neighbor set at time t . For
each road segment s i ∈ NS R , let p ( s i ) be a profit function and
let c ( s i ) be a cost function. p ( s i ) denotes the number of pairs
of trusted users between a user in s i and another user in R . It
can be calculated as p( s i ) = 

∑ 

Tr ( u i , u j ) , u i ∈ U( s i ) , u j ∈ U(R ) ,
where 

Tr ( u i , u j ) = 

⎧ ⎨ 

⎩ 

1 / ( k u j − 1) , u i ∈ U 

u j 
T (R ∪ s i , t) 

0 , otherwise 

c ( s i ) indicates the number of additional trusted users required
for users at s i when s i is added to R. c ( s i ) can be computed

as c ( s i ) = 

∑ 

u i ∈ U( s i ) 
( k u i −1) −

∣∣∣U u i T (R ∪ s i ) 
∣∣∣

k u i −1 
. We say that s i is the best

road segment to add to R when the value of p( s i ) − c ( s i ) is the
largest, compared to other road segments in NS R . When there
are more than one best road segments, we randomly pick one
of them and add it to R . 

Example. We illustrate the working of the above expansion
scheme as follows. Fig. 5 shows the steps of a greedy expan-
sion for u 1 . fu 1 , fu 2 and fu 3 in the figure are fake users. We
first assume that every fake user has a very low privacy re-
quirement ( k f u 1 = k f u 2 = k f u 3 = 2 ) and trust any other user
locally and globally in order to achieve the best attack re-
sults. Authentic users ( u i , i ∈ [1, 12]) do not trust these fake
users globally but they trust any other authentic user glob-
ally; i.e ., U 

u i 
gt = { u 1 , u 2 , u 3 , u 4 , u 5 , u 6 , u 7 , u 8 , u 9 , u 10 , u 11 , u 12 } , i ∈

[ 1 , 12 ] . Authentic users have privacy settings for the k-Trustee
as: k u 3 = k u 4 = k u 6 = k u 7 = k u 9 = k u 10 = k u 11 = 3 ,
k u 1 = k u 2 = k u 5 = 4 , k u 8 = k u 12 = 5 . Their current trustees
are: U 

u 1 = U 

u 9 = U 

u 10 = { u 4 , u 5 , u 6 , u 7 , u 8 } , U 

u 2 = { u 6 , u 7 , u 10 } ,
lt lt lt lt 
 

u 3 
lt = { u 5 , u 7 , u 12 } , U 

u 4 
lt = { u 5 , u 6 } , U 

u 5 
lt = { u 1 , u 4 , u 6 } , U 

u 6 
lt =

{ u 1 , u 4 , u 5 , u 7 , u 9 } , U 

u 7 
lt = { u 4 , u 6 , u 8 } , U 

u 8 
lt = { u 1 , u 2 , u 4 , u 5 , u 6 } ,

 

u 11 
lt = { u 2 , u 5 , u 6 , u 7 , u 8 } , U 

u 12 
lt = { u 2 , u 5 , u 6 , u 7 , u 9 } . 

To construct a cloaked region for u 1 , initially, in Fig. 5 ,
AS sets the candidate cloaked region R 

u 1 = { s 16 } and
N S R 

u 1 = { s 12 , s 15 , s 17 , s 18 , s 21 , s 22 } . Since k u 1 = 4 and there are
less than 4 trustees in R 

u 1 , AS needs to expand R 

u 1 by adding
the best road segment in N S R 

u 1 . Given s 12 , U( s 12 ) = { u 8 , u 9 } ,
p( s 1 ) = 1 / 3 since only u 8 is one of the trusted users of u 1 .
c ( s 1 ) = 3 / 4 + 1 / 2 = 5 / 4 as u 8 needs 3 more trusted users and u 9
needs 1 more trusted user. p( s 12 ) − c ( s 12 ) = −11 / 12 . Similarly,
p( s 15 ) − c ( s 15 ) = 0 − 2 = −2 , p( s 17 ) − c ( s 17 ) = 0 − 1 = −1 ,
p( s 18 ) − c ( s 18 ) = 0 − 2 = −2 , p( s 21 ) − c ( s 21 ) = 1 / 3 − 1 = −2 / 3 ,
p( s 22 ) − c ( s 22 ) = 1 − 0 = 1 . Hence, s 22 is selected according
to Definition 16 and C R 

u 1 = { s 16 , s 22 } . We also find that every
user’s privacy requirement is satisfied in R 

u 1 now and hence
R 

u 1 = { s 16 , s 22 } is selected as the cloaked region for u 1 . 
We can see that the greedy expansion tends to minimize

the size of a cloaked region while the random expansion
may generate a cloaked region with a larger size that can
decrease the quality of the location-based services (QoS).
However, the greedy expansion may be more vulnerable to
the replay attack ( Wang and Liu, 2009 ) where an attacker
knows the preference of the expansion process and he can
possibly replay the anonymization process to identify a
user’s exact location. To balance the QoS and the resilience
against the replay attack, we further propose a hybrid expan-
sion that combines the random expansion and the greedy
expansion. 

Hybrid expansion . When a cloaked region R needs to be
expanded, AS randomly adopts either the random expansion
or the greedy one to add a road segment to R in the hybrid
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Fig. 6 – An example of the hybrid expansion. In this 
example, to expand the cloaked region R 

u 1 = { s 16 } to satisfy 

k u 1 = 4, in the first step, the hybrid expansion randomly 

selects the random expansion and therefore randomly 

selecting s 21 from N S R 
u 1 . Then, since k u 1 = 4 is still not met, 

in the second step, the hybrid expansion randomly selects 
the greedy expansion and therefore selecting s 22 according 
to the ‘best first’ computation. 
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Algorithm 1: Cloaking Algorithm Guaranteeing k-Trustee . 

Input: A road network G (J, S ) , active users in a user set U 

traveling in G , a time instant t, and a privacy 
setting p u i ( k u i , e u i l , f u i l , e u i g , f 

u i 
g , R 

u i 
M 

, T u i M 

) of each user 
u i ∈ U 

Output: An anonymized set RS 
〈 
u i , R 

u i 
t 

〉 

1 CU ← ∅ ; 
2 RS ← ∅ ; 
3 es ← getExpansionScheme(); 
4 foreach u i ∈ U do 
5 getTrustees( u i , p 

u i , t); 

6 while CU 
 = U do 
7 u i = pickAnUnprocessedUser( U , CU ); 
8 CR 

u i 
t ← s u i t ; 

9 while !PrivacyMet( CR 

u i 
t ) do 

10 s j ← getExpanded( CR 

u i 
t , es ); 

11 C R 

u i 
t ← C R 

u i 
t + s j ; 

12 R 

u i 
t ← CR 

u i 
t ; 

13 foreach u j ∈ R 

u i 
t do 

14 CU ← u j ; 

15 if Size (R 

u j 
t ) > Size (R 

u j 
M 

) then 

16 R 

u j 
t = unaval iabl e ; 

17 else 

18 RS ← ( u j , R 

u j 
t ) ; 

t  
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xpansion scheme. AS continues to do the same expansions 
ntil every user’s privacy requirement is satisfied in R . 

For example, in Fig. 6 , every user’s privacy setting 
s same as the one in Fig. 5 . Initially, R 

u 1 = { s 16 } and 

 S R 
u 1 = { s 12 , s 15 , s 17 , s 18 , s 21 , s 22 } . In the first expansion,

e assume that the random expansion is employed and s 21 

s added into R 

u 1 , so R 

u 1 = { s 16 , s 21 } . In the second expansion,
he greedy expansion is adopted. s 22 is chosen based on 

efinition 16 and it is added to R 

u 1 . Now, we can see that 
-Trustee is guaranteed for every user in R 

u 1 = { s 16 , s 21 , s 22 } . 

.3.3. k-trustee cloaking algorithm 

he cloaking algorithm that guarantees k-Trustee is shown in 

lgorithm 1 . In this algorithm, the cloaking process, run by AS,
rst initializes a user set CU indicating users who have been 

rocessed by the algorithm, the output set and the expansion 

cheme adopted by the algorithm (line 1–3). It then computes 
he trusted users for each user at t based on the user’s privacy 
etting p u i (line 4–5). After that, it randomly selects one user 
ho has not been processed and starts to construct a cloaked 

egion where each user’s privacy requirement is satisfied 

sing the selected expansion scheme (line 6–12). If the size of 
he cloaked region is larger than the required one for a user 
n the constructed cloaked region, the anonymity service is 
ot available for that user (line 13–16). However, the AS will 
ontinuously include that user into future cloaked regions 
ntil the maximum response time R 

u 
M 

of that user has passed.
n that case, the query of that user is rejected (i.e., if its 
-trustee requirement is not met). Since only the query of 
hat user fails, we believe its influence to other users is not 
ig. Lastly, the cloaking process stops when all the users have 
een processed. Note that, to simplify, the restriction of the 
ime T u i M 

defined by a user u i are not involved in this algorithm.
e recommend that it be handled by a user’s mobile device. 
Note that the guarantees of POI l-Diversity ( Bamba et al.,

008 ) and road segment s-Diversity ( Wang and Liu, 2009 ) can
e additionally ensured by the k-Trustee cloaking-based lo- 
ation privacy preserving mechanism. The k-Trustee cloaking 
rocess can first satisfy l-Diversity or s-Diversity requirement 
or every users in the region and then it satisfies the k-Trustee 
equirement. It can also first satisfy every user’s k-Trustee re- 
uirement and then it guarantees the l-Diversity or s-Diversity 
equirement. We argue that the latter approach may be more 
ppropriate when most of the users are strict to their trusted 

sers by setting high values for k-Trustee requirements. It 
s because the guarantee of k-Trustee usually also ensures 
-Diversity and s-Diversity . On the other hand, the former 
robably works more efficiently when there are fewer fake 
sers in the road network and users are less strict in defining 
heir trusted users. 

. Simulations 

n this section, we first present the results of location injection 

ttacks in the cloaking mechanism (called the general cloak- 
ng) guaranteeing only k-Anonymity and the one supporting 
oth k-Anonymity and s-Diversity (referred as XStar Wang and 

iu, 2009 ). We choose the general cloaking algorithm as the 
aseline approach and the XStar algorithm as the advanced 

pproach. We want to demonstrate that the location injection 

ttack is effective for both k -anonymity and s -diversity. We 
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also want to compare the performance of a location injection
attack when it is launched over a cloaking algorithm purely
designed for k -anonymity and a cloaking algorithm designed
for both k -anonymity and s -diversity. After evaluating the
location injection attacks, we simulate the proposed k-Trustee
cloaking algorithm and demonstrate its effectiveness against
the location injection attacks. 

4.1. Experiment setup 

In our experiments, we use the GT Mobile simulator ( Pesti
et al., 2009 ) to generate trajectories of 30,000 users moving
in the DeKalb County in Atlanta regions of Georgia, which
contains 37,996 segments and 27,647 junctions. We assume
that each user is active during the travel in this road network
and he has a location-based request from a specific location
service provider every second. The simulator runs for 10
minutes and each user has 600 location-based requests in
total. Note that we assume that all of these 30,000 users are
authentic users. 

4.1.1. Privacy settings 
Given any authentic user u in the road network, we first
set k u for k-Anonymity and k-Trustee as a randomly chosen
value from 2 to 10. We also set r u (used by XStar to support
s-Diversity ) as randomly chosen values between 2 and 5. The
maximum size R 

u 
M 

(the number of the road segments) of the
cloaked region accepted by u is a random value chosen from
the set {20 r u , 30 r u , 40 r u , 50 r u }. We then set e u l and f u l as random
values between 20 and 40, respectively. The global privacy
requirements, e u g and f u g are both set as 5 for u . Note that,
in the simulations, we assume that each user can get the
cloaked results from AS immediately and we do not set the
maximum waiting time ( T u M 

) for u . 
Regarding each fake user fu created by the attacker, we

choose the least privacy restrictions for him; i.e ., we set
k fu = r fu = 2 , R 

fu 
M 

= 250 , e fu 
l = f fu 

l = 40 , e fu 
g = f fu 

g = 5 . 

4.1.2. Target Selection 

As shown in Section 2.4 , the location injection attack has
two types of targets: user targets and location targets. In the
simulation, we randomly select 1000 out of 30,000 authentic
users as the user targets. Regarding location targets, we focus
on the road segments which have at least one user during
the simulation, i.e., the average traffic of the road segment
(the number of users visiting a road segment) is no less than
1. There are 9033 such road segments in the dataset and we
randomly select 1000 of them as location targets. In addition,
we choose 10 trajectories as the targets for the fixed-trajectory
attack. These selected one consist of 10 connected road seg-
ments and there are total of 95 authentic users traveling on
them. 

4.1.3. Fake user creations 
We simulate fake users according to the proposed three
attack models (refer to Section 2.4 ) as follows: 
Stalking Attack . We assume that an attacker initially knows
the initial location (a road segment) of the targeted user
by injecting enough fake users into the road network (refer
to Section 2.4.1 ). We then generate 6, 8 and 10 fake users,
respectively, for a targeted user when the general cloaking is
adopted. We also create 10, 15 and 20 fake users, respectively,
for a targeted user when the XStar is applied. These fake users
travel either in the same segment with the targeted user or
few segment-based distant away from the targeted user as
described in Section 2.4.1 . 

Fixed-location attack . At a targeted road segment, we gen-
erate 2, 4 and 6 fake users, respectively, when the general
cloaking is adopted. We also create 6, 8 and 10 fake users
placed at a targeted road segment, respectively, when the
XStar is applied. The location injection attack needs more
fake users to compromise the XStar algorithm successfully.
Unlike the general cloaking algorithm that only guarantee
k -Anonymity, the XStar algorithm is designed for both k -
Anonymity and s -Diversity. It is the s -Diversity that makes
the XStar algorithm harder to be compromised. These fake
users travel at the trajectory described in Section 2.4.2 . 

Fixed-trajectory attack . Given a targeted trajectory, we put 4,
6 and 8 fake users traveling at every road segment in the tra-
jectory, respectively, in this attack. The goal of such an attack
is to identify users who travel exactly on these trajectories. 

Note that the times of the attacks conducted for each
target is 600 in our simulation since each user has a total
of 600 location-based requests during his travel in the road
network (refer to 4.1 ). 

4.1.4. Measurements 
In the simulations, we adopt the following measurements to
evaluate the location injection attacks and the cloaking-based
mechanism guaranteeing k-Trustee : 

In-distinguishability D R : It indicates the in-distin-
guishability of a user (the number of trusted users) in a
cloaked region. Each user has specified its required value ( k )
in the k-Anonymity and in the k-Trustee cloaking mechanisms.
The location injection attack aims to compromise it by low-
ering its value. Note that fake users do not contribute to D R

for an attacker since they are distinguishable for the attacker.
A lower value of D R indicates the lower location privacy
protection. Thus, the lower value of D R a location injection
attack can achieve the more successful the attack is. 

Size of a cloaked region S R : It represents the in-
distinguishability of a road segment in a cloaked region.
In the XStar , each user specifies the privacy requirement for
S R . The location injection attacks may be able to lower its
value. In addition, we use it to demonstrate the quality of
service for the k-trustee cloaking-based mechanism. 

Cloaking failure rate F R : In the XStar and the k-Trustee
cloaking mechanisms, a user usually needs to define the
maximum size of the cloaked region, i.e., the maximum
number of road segments in a cloaked region. Given a user,
we say the anonymity service is failed when the size of the
cloaked region for a user is larger than the defined maximum
size by the user. Then, R R generally indicates how practical
the cloaking-based mechanism is. 

Attack successful rate A R : In an attack, given a user and a
cloaked region, when the number of the trusted users in the
cloaked region is smaller than a specified k by the user, we
say the attack is successful. The A R for a user indicates how
successful the location injection attacks work for that user in
general. 
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Fig. 7 – Stalking Attacks on the General Cloaking Algorithm. 

Fig. 8 – Stalking Attacks on the XStar Algorithm. 
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.2. Attack results of location injection attacks 

n the subsection, we present the results of the location injec- 
ion attacks on two road network-aware cloaking algorithms 
uaranteeing k-Anonymity : (1) the general cloaking algorithm 

ith a random expansion; (2) XStar cloaking algorithm ( Wang 
nd Liu, 2009 ) which preserves users’ location privacy with 

he additional guarantee of s-Diversity . 
Stalking Attacks on a General Cloaking Algorithm . The attack 

esults of the stalking attacks on the general cloaking algo- 
ithm are shown in Fig. 7 . It demonstrates the average D R 

 Fig. 7 .a) and the average A R ( Fig. 7 .b) for targeted users with
heir diverse k-Anonymity requirements. From Fig. 7 .a, we 
an see that the stalking attacks can significantly downgrade 
he D R for targeted users. When the stalking attacks are not 
aunched, the range of the D R for targeted users is between 12 
nd 13 with the guarantee of k-Anonymity for each user. How- 
ver, when the attacks are launched, D R decreases to the range 
f 3 and 6. When the required k in the k-Anonymity specified by 
argeted users is larger than 6, we even find that the average D R 

or these users is even lower than 6. Such a result suggests the 
uccesses of the attacks. Fig. 7 .b also confirms the successes of 
he attacks by showing that the average A R is more than 50% 

hen the required k of k-Anonymity is larger than 6. We also 
nd that A R increases with the increase of the required k . Such 

 result reflects that the stalking attacks are more successful 
or users with the more restricted k-Anonymity requirements. 
Stalking Attacks on the XStar Algorithm . Fig. 8 shows the 
talking attack results on the XStar cloaking algorithm.
ig. 8 .a demonstrates the average A R for targeted users with 

heir various k-Anonymity requirements while Fig. 8 .b indi- 
ates the average S R with users’ s-Diversity requirements.
rom Fig. 8 .a, we can see that A R has a significant increase
rom 5% to 80% with the increased value of the required k in
he k-Anonymity . Such a result shows that most attacks are 
uccessful. From Fig. 8 .b, we find that the attacks can dramat- 
cally decrease values of S R from 10 to 5 causing the targeted 

sers easier to be distinguishable. However, since the required 

 of s-Diversity defined by targeted users are between 2 and 5,
he stalking attacks cannot actually compromise the guaran- 
ee of s-Diversity . Lastly, we also find that the number of fake
sers used in the attacks for the XStar cloaking algorithm may 
ot be able to significantly promote the attack results from 

oth graphs. 
Fixed-location attacks . The results of the fixed-location 

ttacks on the general cloaking algorithm are shown in Fig. 9 .
t shows that the average D R of users visiting every targeted 

oad segment. We can see that D R significantly decreases 
ith the increasing number of injected fake users. When 2 

ake users are injected at a targeted segment, it seems that 
he k-Anonymity requirements for users visiting the targeted 

egment are still satisfied in most attack instances. However,
hen 4 or 6 fake users are placed at a targeted segment, D R 

eceases significantly than the required value and users’ 



c o m p u t e r s  &  s e c u r i t y  7 8  ( 2 0 1 8 )  2 1 2 – 2 3 0  225 

Fig. 9 – Fixed-location Attacks on the General Cloaking 
Algorithm. 

Fig. 10 – Results of fixed-trajectory attacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k-Anonymity requirements are compromised. In our simula-
tion, we also find that A R is between 20% and 40% when 2
fake users are placed. When 4 or 6 fake users are injected,
the range of A R has a remarkable increase and it is between
60% and 90%. These results also confirm the successes of the
fixed-location attacks on the general cloaking algorithm. In
addition, we simulated the fixed-location attacks on the XStar
cloaking algorithm. However, such attacks are less successful
and the average A R is below 20%. We believe that the enforce-
ment of the s-Diversity can mitigate the fixed-location attacks
to some extent. 

Fixed-trajectory attacks . We also performed the fixed-
trajectory attacks for the chosen trajectories in order to
identify users who follow these trajectories. The results of
the attacks on a general cloaking algorithm are shown in
Fig. 10 . Among the 95 targets in the fixed-trajectory attacks,
the percentage of compromised users rises from 0.52 to 0.96
when the number of placed fake users are increased from 4 to
8. These numbers reflect the successes of the fixed-trajectory
attacks. We also simulated the fixed-trajectory attacks under
the XStar clocking algorithm. However, the attacks are not
successful and we cannot identify the trajectory of any user
in terms of the requirements of s-Diversity defined by users. To
have a successful fixed-trajectory attack, all the constructed
cloaked regions from AS for a user should have only one
road segment in order to determine the user’s trajectory. The
cloaked region from the XStar includes more than one road
segment and hence the attack cannot be successful. 
4.3. Location injection attacks on k-trustee cloaking 
algorithm 

In this subsection, we utilize the same fake users for the same
targeted users and locations as those used in the Section 4.2 .
We simulate various location injection attacks on the k-Trustee
cloaking mechanism. Note that, in these simulations, when
users additionally specify requirements for the diversity of
the road segments, we first guarantee their k-Trustee require-
ments and then meet those for the diversity of road segments.

4.3.1. General attack results 
We first perform location injections for targets on the k-
Trustee cloaking mechanism adopting the coarse-grained
trust functions and the random expansion scheme. 

Fig. 11 shows the results of the stalking attacks on the
k-Trustee cloaking mechanism. Fig. 11 .a indicates the average
A R for targeted users who has different k-Anonymity require-
ments and do not specify the diversity of road segments.
Fig. 11 .b demonstrates the average A R for targeted users who
do specify the diversity of road segments. From this figure, we
can see that less than 5% of the stalking attack instances on
the k-Trustee cloaking mechanism are successful. Compared
to those successful rates shown in Figs. 7 and 8 , we can con-
clude that the k-Trustee cloaking mechanism can significantly
defend against the stalking attacks. 

In addition, our simulation results for the fixed-location
attacks on the k-Trustee cloaking mechanism demonstrate
that less than 4% of the attack instances on average are
successful for targeted road segments when users do not
specify the diversity of road segments. When users do specify
this requirement, our results show that the average A R is less
than 1.5%. Compared to the corresponding results of the same
attacks on the general cloaking algorithm in Section 4.2 , we
can say that the fixed-location attacks become significantly
less successful when the k-Trustee cloaking mechanism is
applied. Furthermore, we performed the fixed-trajectory
attacks on the k-Trustee cloaking mechanism. However, we
cannot identify any user’s trajectory in this case. 

Based on the above results, we can conclude that the
k-Trustee cloaking mechanism is indeed effective to mitigate
the location injection attacks. 

4.3.2. k-trustee cloaking mechanism with different trust func-
tions 
We next compare the effectiveness of the k-Trustee cloaking
mechanisms using different trust functions (coarse-grained
trust and fine-grained trust functions) as discussed in
Section 3.2 . We focus on the stalking attacks using 8 fake
users for each targeted users. We also assume that a random
expansion is adopted in these k-Trustee cloaking mechanisms
and users do not specify the diversity of road segments. We
then perform the stalking attacks for the targeted users using
different trust functions in the k-Trustee cloaking mechanism
and the results are shown in Fig. 12 . It shows the average A R

for each targeted users. We can see that both of the coarse-
grained and fine-grained trust functions adopted by the
k-Trustee cloaking mechanisms are effective to mitigate the
location injection attacks. As expected, the fine-grained trust
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Fig. 11 – Results of the Attacks on the k-Trustee Cloaking Mechanism. 

Fig. 12 – Coarse-grained Trust Functions vs . Fine-grained 

Trust Functions. 
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unctions can achieve a better resilience by approximately 
ecreasing 1% of A R by average. 

.3.3. k-trustee cloaking mechanism with different expansion 

chemes 
n Section 3.3.2 , we discussed three different expansion 

chemes for the k-Trustee cloaking mechanism and we com- 
are them in this subsection. We first focus on the stalking 
ttacks using 10 fake users for each targeted user who also 
pecifies the diversity of road segments. We then adopt the 
oarse-grained trust functions for the k-Trustee cloaking 
echanisms using the random expansion, the greedy ex- 

ansion and the hybrid expansion. Our results are shown 

n Fig. 13 . Fig. 13 .a demonstrates the average A R for targeted 

sers with different k-Anonymity requirements. We can see 
hat attacks on the the k-Trustee cloaking mechanism using 
he greedy expansion can achieve the lowest A R while those 
n the k-Trustee cloaking mechanism adopting the random 

xpansion have the highest A R . Fig. 13 .b indicates the average 
ize of cloaked regions, S R , for targeted users with different 
equirements for the diversity of road segments. We can 

nd that the random expansion induces AS to construct 
he largest cloaked regions while the greedy expansion in- 
uces AS to construct the smallest cloaked regions. Based 

n these results, we can say that the greedy expansion 

as the best resilience against location injection attacks 
nd it can achieve the best quality of the location-based 

ervices. 
. Related work 

ocation privacy has been an active area of research for 
ecades. To protect users’ location privacy during usage of 

ocation based services (LBS), various location privacy pro- 
ection mechanisms have been proposed. Based on their core 
deas, these mechanisms can be broadly categorized into ap- 
roaches that use dummies ( Kido et al., 2005; Liu et al., 2017 ),
pace transformation ( Ghinita et al., 2008; Khoshgozaran 

nd Shahabi, 2007 ), mix-zone ( Beresford and Stajano, 2004; 
alanisamy and Liu, 2015 ), encryption ( Li and Jung, 2013 ),
patial cloaking ( Beresford and Stajano, 2003; Cho et al., 2015; 
edik and Liu, 2005; Gruteser and Grunwald, 2003; Hoh et al.,
007; Kalnis et al., 2007; Li and Palanisamy, 2015; Mokbel et al.,
006; Wang and Liu, 2009; Ying and Makrakis, 2014 ) and differ- 
ntial privacy ( Andrés et al., 2013; Hua et al., 2017; Xiao et al.,
017 ). The basic ideas behind these techniques are briefly dis- 
ussed as follows. The dummy-based approaches replace real 
ser locations with fake locations that are related to the real 
nes. The schemes based on spatial transformation transform 

ata to another space to encode relationship between data 
nd queries. The mix-zone solutions change pseudonyms of 
sers who enter the zones so that adversaries are unable to 

ink leaving users with entering users. The encryption-based 

chemes use cryptographic techniques to protect privacy of 
ocation data. For instance, in Li and Jung (2013) , Li et al. applied
P-ABE ( Bethencourt et al., 2007 ) to extend binary access to lo-
ation data to a fine-grained access control model. The spatial 
loaking mechanisms, as the most widely studied category,
sually generate cloaked regions that satisfy privacy require- 
ents such as k -anonymity ( Gruteser and Grunwald, 2003 ) for 

sers and send such cloaked regions to LBS providers. More 
ecent work have introduced the newer privacy paradigm of 
ifferential privacy ( Dwork et al., 2006 ), to location privacy 
rotection ( Andrés et al., 2013; Hua et al., 2017; Xiao et al.,
017 ). By carefully applying differential privacy protection 

echanisms (e.g. Laplace Mechanism ( Dwork et al., 2006 ), Ex- 
onential Mechanism ( McSherry and Talwar, 2007 )) to the lo- 
ation data, the personal location information in the disclosed 

tatistical output can be protected. Among these techniques,
e have focused on studying the spatial cloaking technique 

n this work because it is the one that has been widely stud-
ed with respect to various settings (e.g., centralized ( Gedik 
nd Liu, 2005; Mokbel et al., 2006 ), P2P ( Chow et al., 2006;
011 )) as well as various problem statements (e.g., snapshot 
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Fig. 13 – Results of the Attacks using Different Expansion Schemes in the k-Trustee Cloaking Mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

queries Gedik and Liu, 2005 , trajectories Chow and Mokbel,
2011 ). While differential privacy provides a more formal and
rigorous privacy guarantee against background knowledge
attacks, it can result in a higher perturbation and may provide
a lower data utility compared to spatial cloaking techniques.
Thus, in cases where there is a lack of background knowledge
and when the risks of such attacks are minimal, the spatial
cloaking techniques are likely to provide a higher data utility
compared to differential privacy. A unified framework for lo-
cation privacy that offers a systematic view by formalizing the
problem, adversaries, mechanisms and metrics can be found
in Shokri et al. (2010) . 

The notion of spatial cloaking was first introduced by
Beresford and Stajano (2003) . From then on, many centralized
approaches have been proposed, which essentially leverage
a centralized anonymization server to deploy the spatial
cloaking algorithms. Among these approaches, Gruteser and
Grunwald (2003) presented the Interval Cloak that guaran-
tees k-Anonymity in the cloaked region to preserve users’
location privacy from LBS providers. Gedik and Liu (2005)
introduced the CliqueCloak where users’ personalized privacy
requirements for k-Anonymity are satisfied. Mokbel et al.
(2006) designed Casper that extended the Interval Cloak to the
grid network with the privacy-aware query processor. Hoh
et al. (2007) developed a time-to-confusion criterion as the
duration over which an attacker could track a target. Based
on it, they designed an uncertainty-aware path cloaking
mechanism that guarantee k-Anonymity for all users and hide
users’ trajectories. Kalnis et al. (2007) improved the previous
cloaking algorithms by introducing the Hilbert Cloak . The
Hilbert Cloak satisfies reciprocity that is sufficient for users to
achieve the spatial k-Anonymity for their location requests.
Cui et al. (2016) extended the Hilbert Cloak by considering
average query density to make anonymity set satisfy both
reciprocity and uniformity. Zheng et al. (2014) proposed an
approach that selects a sub-area from the clocked region that
may or may not include the real user location to prevent side
information attacks launched by adversaries. 

However, centralized approaches usually suffer from a
single point of trust, which motivates the research of decen-
tralized solutions that do not need the anonymization server.
As the representative solution, Chow et al. (2006) proposed a
peer-to-peer (P2P) spatial cloaking algorithm that leverages
single-hop communication and/or multihop routing among
peers to generate cloaked region without help from a central-
ized anonymization server. The algorithm offers two modes.
The candidate searching step is triggered by queries in the
demand mode, whereas it is periodically executed in the proac-
tive mode. Later, Chow et al. (2011) improved their scheme
with information sharing scheme, historical location scheme
and cloaked region adjustment scheme. After that, Che et al.
(2012) proposed the dual-active mode that allows peers both
actively collect location data and actively disseminate col-
lected data to others, which offers better performance than
the previous two modes. However, the above P2P approaches
are not reliable when there are malicious peers in the net-
work. To secure the P2P scheme, Jin and Papadimitratos
(2015, 2017) introduced the pseudonymous authentication
technique to provide message authentication and integrity
for peer communication, thus significantly suppressing the
impact of malicious peers. 

Recent work has considered the location cloaking problem
under a constrained road network model ( Cho et al., 2015; Li
and Palanisamy, 2015; Wang and Liu, 2009; Ying and Makrakis,
2014 ). Wang and Liu (2009) implemented XStar which sup-
ports the k-Anonymity and the road segment diversity in
a road network. Li and Palanisamy (2015) further made the
k -anonymity reversible. However, all of these algorithms guar-
antee k-Anonymity but they are vulnerable to the proposed
location injection attacks as shown in Section 2.3 . 

The fake users/accounts/identities have become a well-
known security and privacy issue ( Rowaihy et al., 2007 ). This
problem can also pose a threat to data aggregation systems,
voting systems, peer-to-peer systems, social networks and
misbehavior detection mechanisms. For example, in the peer-
to-peer systems, such a problem can lead to the Sybil attacks
where an attacker forges multiple identities to compromise
the network to arbitrarily subvert content storage and acqui-
sition ( Rowaihy et al., 2007 ). In social networks, an attacker
can create fake accounts to impersonate victims, deceive the
victim’s friends and destroy the victims’ reputations ( Jin et al.,
2011 ). In the literature, the defense approaches against these
attacks are usually based on trust among users, position
verification, game theory and access control mechanisms. For
instance, Yu et al. proposed a Sysbil defense approach based
on the trust in the social networks ( Yu et al., 2006 ). Chen et al.
(2010) proposed a generalized attack-detection model using
the spatial correlation of RSS inherited from wireless nodes
to detect Sybil nodes. In this paper, we identify that fake users
can also be utilized in the cloaking-based privacy preserving
mechanisms to compromise the guarantee k-Anonymity via
the proposed location injection attacks. We then design the k-
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rustee cloaking-based mechanisms to mitigate such attacks.
o the best of our knowledge, our proposed approach is the 
rst work to address this kind of attacks in the cloaking-based 

rivacy preserving mechanisms. 

. Conclusion and future work 

n this paper, we identified the vulnerability of location 

njection attacks in existing cloaking-based location privacy 
reserving mechanisms. We presented various attack models 
nd demonstrated the effectiveness of these attacks through 

imulations. We developed cloaking-based mechanisms that 
uarantee the notion of k-Trustee by employing different 
rust functions and expansion schemes to mitigate the lo- 
ation injection attacks. We demonstrated that the k-Trustee 
loaking-based privacy preserving mechanisms are effective 
gainst these attacks. As future work, we plan to study how 

o achieve k-Trustee in a peer-to-peer (P2P) environment that 
as no centralized anonymization server. Since P2P spatial 
loaking algorithms usually leverage P2P communication to 
uild the cloaked region, the generation of fake users become 
arder. However, similar attacks can still be launched by 
alicious users. For example, a fixed-location attack can be 

aunched by malicious users that stay in a particular location,
.g., a hospital. Such an adversary can communicate with 

earby peers to form cloaked regions and learn about the 
eers who are visiting the hospital. Because of the lack of a 
lobal view, computing global trustees in the P2P environment 
ecomes a challenging problem. A promising solution to the 

ack of a global view is to leverage the blockchain ( Nakamoto,
008 ) technique to build global trust. We believe that it can 

e adopted as a digital ledger to record the e-stalker and 

-stationary to offer a trusted global view in the P2P environ- 
ent. A blockchain insures credibility so that all the users are 

uaranteed that they all see the same e-stalker and f-stationary 
hen they participate in the location anonymization process.
hese values, once submitted to the blockchain, become 
early tamper-proof unless someone controls a majority of 
omputation power of the distributed network ( Eth, 0000 ).
ne potential way to implement this process is to develop 

 decentralized application over the Ethereum smart con- 
ract platform ( Wood, 2014 ), which can collect e-stalker and 

-stationary from mobile users, compute the global e-stalker 
nd f-stationary values and show these global values to all the 
obile users through Ethereum mobile browsers (e.g., Tos,

000 ). Another potential future direction of work is to enable 
ur system to distinguish intentional stalking behavior from 

nintentional stalking. A group of people who travel together 
ithin a period of time may label each other as e-stalkers . As 
 result, each of them may be globally labeled as e-stalker by 
any, and thus, it becomes hard to add them into a cloaked 

egion that require members with lower count of being an 

-stalker. A potential solution requires each user to maintain 

 list of trusted user IDs, such as a friend list or family group in
any kinds of applications. Then, after receiving the cloaked 

egions from AS, this list can be used as a filter so that the 
-stalker values are only computed for the unknown users.
ere, it is important that the metadata used should not create 
dditional privacy risks. In order to control and mitigate such 
otential risks, one approach is to avoid the creation of new 

etadata each time for the location anonymization process 
nd instead we can leverage existing user relationship in- 
ormation such as a friend list on social networks as the 
ource of metadata. Such an approach significantly reduces 
he amount of newly generated metadata and mitigates any 
otential risks associated with the use of metadata. 
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