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ABSTRACT
The past few years have witnessed an increasing demand for the next
generation health information networks (e.g., NHIN[1]), which hold
the promise of supporting large-scale information sharing across a
network formed by autonomous healthcare providers. One funda-
mental capability of such information network is to support efficient,
privacy-preserving (for both users and providers) search overthe dis-
tributed, access controlled healthcare documents. In this paper we
focus on addressing the privacy concerns of content providers; that
is, the search should not reveal the specific association between con-
tents and providers (a.k.a. content privacy). We propose SS-PPI, a
novel privacy-preserving index abstraction, which, in conjunction of
distributed access control-enforced search protocols, provides theo-
retically guaranteed protection of content privacy. Compared with ex-
isting proposals (e.g., flipping privacy-preserving index[2]), oursolu-
tion highlights with a series of distinct features: (a) it incorporates ac-
cess control policies in the privacy-preserving index, which improves
both search efficiency and attack resilience; (b) it employs a fast index
construction protocol via a novel use of the secrete-sharing scheme
in a fully distributed manner (without trusted third party), requiring
only constant (typically two) round of communication; (c) it provides
information-theoretic security against colluding adversaries during
index construction as well as query answering. We conduct both for-
mal analysis and experimental evaluation of SS-PPI and show that
it outperforms the state-of-the-art solutions in terms of both privacy
protection and execution efficiency.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; H.3.1 [Content
Analysis and Indexing]: Indexing methods; H.3.3 [Information Search
and Retriveal]: Search process

General Terms
Security Algorithm

Keywords
Privacy preserving protocol, keyword search, distributed indexing

1. INTRODUCTION
Many healthcare providers, payers, and pharmaceutical compa-

nies have increased their use of eHealth solutions to manage health-
related information and to automate administrative and clinical func-
tions. We are witnessing an increasing demand for the next genera-
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tion health information networks, which hold the promise of provid-
ing large-scale information sharing over distributed, access controlled
content across a network of healthcare providers. A representative
example is the work currently under way to construct the Nationwide
Health Information Network (NHIN) [1] that supports information
sharing among more than 20 federal agencies, along with numerous
private hospitals and doctors’ offices. A fundamental capability of
such information network is to provide efficient, privacy-preserving
search over distributed, access controlled content.

More specifically, individual healthcare providers typically enforce
strict regulations over the healthcare information for a number of rea-
sons, such as patients’ privacy requirements, conflicting economic
interests, and federal administration; meanwhile, the capability of
efficiently identifying and retrieving relevant content across health-
care administrative boundaries is crucial for the healthcare informa-
tion network to improve care quality, emergency response, and diag-
nosis accuracy. This poses the question of how to facilitate effective
search while minimally revealing which providers possess which con-
tent (i.e., content privacy).

A naive approach to achieve privacy-aware search is query broad-
casting: each query is forwarded to all the participating providers;
those providers with matched content may then contact the querier
directly. Content privacy is best preserved in this manner, since no
sensitive information is required to route the query. However, such
global-scale probing is not scalable with respect to the number of
providers, in terms of both communication bandwidth and query la-
tency. In the case of selective queries that most providers do not have
matched content, broadcasting results in huge waste of communica-
tion and computation resources.

Alternative is to use a centralized index server (in implementation
which can be readily replicated) that holds an indexing structure to fa-
cilitate the query routing. Query efficiency and scalability is attained
for each query is only re-directed to providers which are bound to
have matched contents. However, to construct the indexing structure,
which is publicly accessible, typically requires providers to fully ex-
pose their content possession information. In this sense, the central-
ized index server must be trusted by all participating providers in its
behavior. In healthcare applications, however, not only the enormous
trust would be impractical for providers with conflicting interests, but
also the centralized architecture is vulnerable to security attacks and
suffers from single point of failure.

The first Privacy Preserving Index (PPI) was proposed in [2] to
strike a balance between privacy preservation and search efficiency.
We refer to this approach as flipping PPI. It leverages an abstraction
of group-wise index, by which providers are organized into a set of
disjoint privacy groups.1 Content privacy is preserved in the sense
that providers in the same group are indistinguishable. Query dis-
semination is performed at the granularity of privacy group. Within
a privacy group, a given query is forwarded either to all providers
or to none of them, depending on whether there exists (at least) one
provider with matched content. Flipping PPI is known to suffer from

1We use “privacy group” and “group” interchangeably when no con-
fusion occurs.



index construction inefficiency, due to the large number of rounds of
PPI computation, and is vulnerable to colluding attacks. In sum, we
argue that existing privacy preserving index and search protocols suf-
fer from the following drawbacks:

• Ineffectiveness: Flipping PPI is ineffective on making trade-
off between privacy preservation and search efficiency. In the
case that a considerable number of providers possess content
matching the query, the flipping PPI approach essentially de-
grades to query broadcasting which as aforementioned suffers
from scalability in terms of search performance. We elaborate
on this in the start of Section 3.1.

• Inefficient index construction: Efficient construction of group-
wise index is crucial for indexing frequently updated content.
Existing schemes suffer from either complexity of computa-
tion by using secure multiparty computation [3], or excessive
privacy leakage by using tailored algorithms. Flipping PPI [2]
employs a randomized and iterative algorithm that is neither
time-efficient nor privacy preserving. To build index, flipping
PPI needs to run multiple rounds (typically above20 rounds);
in each round a sequential scan (O(n) time complexity where
n is group size) is required. Flipping PPI’s index construction
protocol also features weak privacy preservation, since it is vul-
nerable to colluding attacks with even two collaborators.

• Role-insensitivity: Existing PPI approaches are either role in-
sensitive or preserve no privacy in terms of provider’s access
control policy. Typically, a fully trusted index server is required
to conduct user authentication, which is not scalable or prac-
tical [4]. Queries are redirected to the same set of providers
regardless of the role of the querier in the access control pol-
icy. We argue that this role insensitivity may lead to both query
routing inefficiency and privacy leakage. Consider a querier
having access rights to a very limited set of providers poses a
query for a common term. PPI returns a large set of providers
that possess this term, yet a handful of which are accessible to
the querier, yielding unnecessary query overhead. In contrast,
a querier is directed to a group from which she gets negative
results fromn − 1 providers but does not have access to the
remaining one. The querier can then ensure the last provider
must hold the term in question, leading to privacy leakage.

In this paper, we propose the concept ofrole-sensitive PPIand a
secure protocol for fast construction of PPI based on the primitives of
secret sharing. We entitle this concrete implementation of our role-
sensitive PPI as SS-PPI. Given a query in conjunction with the role
of the querier, ourrole-sensitive PPIreturns the groups of providers
that potentially hold the content that matches the search term for this
role. Both privacy preserving and search efficiency are attained on a
finer-granularity level. Since our PPI abstraction is defined on fine
granularity (role sensitive), we preserve content privacy as well asac-
cess policy privacyat the same time. This new type of privacy pro-
tects the sensitive information in provider-defined access rules, such
as to which role providerp has granted access. To the best of our
knowledge, this paper is the first one addressing the privacy of ac-
cess policy in the PPI framework. Technically, our index construc-
tion protocol (SS-PPI) makes a novel use of secret sharing without
requiring third party involved, which comparing to existing secret-
sharing schemes sees better scalability. It is efficient in the sense that
all “secret shares2” are constructed in a distributed, parallel manner
with constant complexity of computation and communication. In par-
ticular, it finishes in2 stages, each expected to take1 time unit (for
reasonable setting of group sizen, like 1k). More importantly, our
SS-PPI protocol achieves information-theoretic security against col-
luding attacks. For less than2c − 2 adversaries in the network, any
provider’s privacy is not leaked , wherec is a system parameter.

2Packets and shares are used interchangeably in the following paper.
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Figure 1: Multi-source information search and retrieval.

The remaining of this paper is organized as follows. Section 2
presents the overview of our system, and Section 3 elaborates privacy-
aware index construction protocol. Security analysis is given in Sec-
tion 4. Experimental results are shown in Section 5. Finally, Section
6 surveys related work and Section 7 concludes this paper.

2. OVERVIEW
In this section, we formally describe the system architecture, our

role-sensitive PPI and then overview the secret-sharing based proto-
col for index construction.

2.1 Architecture of Role-sensitive PPI
We first give an overview of our targeted multi-source informa-

tion sharing infrastructure, as shown in Figure 1. The infrastructure
mainly involves three entities, including a set of autonomous infor-
mation providers, an index server, and a set of queriers (or users who
consume the information)3.

Each provider holds at its depository a set of documents and has
self-specified privacy requirements and regulations. The set of infor-
mation providers jointly provide information search for users. And
each provider itself is responsible for search processing (at a finer
granularity) and data retrieval. This way, each provider is able to de-
termine the disclosure of information to the corresponding querier at
its discretion. Specifically, providerp possesses a depository of pri-
vate documents,D(p), on which a role-based access control policy
is enforced. We assume that each documentd can be described by a
set of content descriptors (CD), denoted byT (d) [5] (e.g., keywords),
from a finite set of CDsT . Providerp can summarizes its local data
and access policy by bitmapb(p), where each column is associated
with a roleo and each row with a content descriptor or termt. The
cell at columno and rowt is a bit, with1 meaning providerp has one
or more documents matched to termt and accessible to subject role
with o, and0 otherwise. The bitmapb(p) is intended for being pub-
lished to the index server. Also, each provider optionally maintains a
local indexing structureI regarding its documents to facilitate local
search and access enforcement.

A querier searches information by issuing queries and presenting
her roles. A queryq is represented by a set of CDs, denoted byT (q)
and querier’s rolesO(q). Documentd satisfies queryq if T (q) ⊆
T (d) and d is accessible to certain role inO(q). From the local
bitmap’s point of view, providerp can answer queryq if for every
row in T (q), there are at least one cell that is1 for all columns in
O(q). In the framework, a query is successfully answered ifall the
information providers that possess documents satisfying the query re-
ceive the query. It is at the discretion of the corresponding informa-
tion providers to enforce access to the relevant documents (retrieval),
which may involve further steps such as charge negotiation. In this
paper, we focus on the phase of information search.

Overall, a queryq can be answered in the following steps, as shown
in Figure 1. The querier sends queryq consisting ofT (q) andO(q)
to the index server, (step (1)), which by looking up the public pri-
vacy preserving indexIp returns the identity information of the cor-
responding providersG (step (2)). The querier then issuesq to these
providers (step (3)), who at their discretion contact the querier and
provide access of documentsd that satisfyq (step (4)).

2.2 Privacy Goal in Role-sensitive PPI
3Following, we use “querier” and “user” interchangeably.



In a typical PPI system, there are privacy of various information
needed to be protected, including content privacy,policy privacyand
query privacy, among many others. While query privacy, which in-
volves with searcher’s identity being kept from disclosure, can be pro-
tected by anonymity protocols (e.g. [6, 7, 8]), content privacy and pol-
icy privacy are the ones we primarily address in this paper. Following
flipping PPI [2], we define content privacy as below,

Definition Given providerp and termt, content privacy is defined
to be information about providerp’s possession of certain document
containing sensitve termt. Content privacy is leaked when one party
without access to privoderp can claim with certainty if providerp
possesses termt.

In addition to content privacy, we identify the access policy privacy
in generic PPI systems, since our published index is fine-grained and
incorporates the access policy information in it. The formal definition
is introduced as follows,

Definition Given providerp and roleo, access policy privacy is de-
fined to be the information aboutp has granted access too on certain
document that providerp holds. Policy privacy is leaked when one
party without access to privoderp can claim with certainty if provider
p grants access to users with roleo.

In our architecture, a querier is expected to report her true role, but
also allowed for falsely reported roles, namely the one she is not as-
sociated with. No authentication or access control are enforced, on
our public, untrusted index server. Our role-sensitive PPI is well-
designed that querier reporting true role obtains a list of providers
that cover full set of query answers, and that querier falsely report-
ing her roles receives a somewhat meaningless list of providers from
which she can’t deduce any sensitive knowledge in terms of content
privacy and policy privacy.

2.3 Index Construction Protocol
Motivated by the deficits of existing solutions in facing large-scale

multi-source information sharing infrastructures, we propose SS-PPI,
a novel indexing scheme that supports information network compris-
ing thousands of content providers, and provides theoretical guaran-
tees on both possession privacy protection and execution efficiency.

The framework of SS-PPI mainly consists of two phases, index
construction and query answering. The former further processes in
three major components, group formation, group aggregation and
global index construction.

• Grouping. SS-PPI organizes providers into privacy groups. In
this paper, we adopt the strategy of random grouping based on
universal hashing [2].

• Secure group aggregation. Within each privacy group, a sum-
marization structure is built in a privacy-preserving manner that
indexes the content possession by group members. Instead of
using the generic circuit computing [3], SS-PPI constructs this
aggregation by an extended secrete sharing scheme [9], which
endows our solution with both scalability and attack-resilience.
Our analysis and experiments show that the scheme can achieve
information-theoretic privacy of a provider even when multiple
providers within the group are compromised.

• Privacy-aware global index construction. The global index is
constructed efficiently by merging the set of group aggrega-
tions. SS-PPI adopts a distributed scheme that not only amor-
tizes the trust on a single third party, but also supports localized,
incremental index update.

3. PRIVACY-PRESERVING INDEX CONSTRUC-
TION

In this section, we present in detail the phase of privacy-preserving
index construction in SS-PPI. It entails three main components; group
formation, secure group aggregation, and global index construction.

3.1 Random Group Formation
Group formation is the process that organizes providers into dif-

ferent privacy groups. In the design of a good formation strategy
that strike a balance between search efficiency and privacy preserv-
ing, group term selectivity is critical. Group term selectivity refers to
the ratios of providers in a group that possesses the term to the group
size. The less group-wise selective a term is, the harder an adver-
sary can pinpoint a provider that possesses a specific term, thus better
privacy preserving. On the other hand, less group term selectivity im-
plies queries are forwarded to more providers with no answer, thus
more bandwidth overheads. For a given group size, the goal of group
formation is to make all indexed terms reach an expected values in
group selectivity.

We follow in this paper the conventional approach, that is, ran-
dom grouping (e.g. [2]), which randomly assigns providers to groups.
Group size is a critical factor to utility and privacy preserving of pub-
lished index. When group size is configured to be too big, it could eas-
ily make the group-wise index degrade to query broadcasting. Con-
sider a group of sizen and a term with global selectivityq, the prob-
ability for a group to be negative (i.e., no providers in it having the
term) is(1 − q)n. This value quickly approaches0 asn grows, re-
gardless of value ofq. For example, whenq = 0.5, n = 10, the
value is0.1%, and whenn = 20, the negative probability becomes
10−6, implying all groups are positive ones and query broadcasting is
thus required. On the other hand, when group sizen is configured to
be too small, privacy could easily be leaked since the possibiblity for
providers in one group to all be positive isqn which is fairly large for
smalln. As shown in experiment part, we empirically set the value
of group size and show its effectiveness.

3.2 Secure Group Aggregation: Design Ratio-
nale

After the privacy groups are formed, one needs to aggregate the
group-wise term-possession index. The technical goal is to protect
individuals’ privacy during the process in which group-wise index
is formed. That is, one can not guess with confidence higher than
what final aggregated index discloses. In particular, we address two
technical goals,

• We firstly address privacy preserving in the presence of collud-
ing attacks. Our privacy goal can be guaranteed, if the total
number of colluders is bounded below a certain threshold.

• We secondly address performance in terms of both bandwidth
and time. Our designs aims at best performance as long as
privacy is not sacrificed.

With regards to the above goals, existing protocols show flaws in
a way or two. One conventional scheme is flipping PPI’s iterative
randomized algorithm. However, it is time-inefficient; it requires to
run multiple iterations before the final group index reaches certain
level of accuracy. This problem is compounded when group-wise
index is frequently updated, resulting in prohibitively high cost for
re-constructing the indexing structure. More importantly, its publish-
ing process is vulnerable to colluding attacks, specially in the case
of an innocent provider ending up with its predecessor and successor
both being malicious. Another possible technique can be used is the
generic secure multi-party computation [5] which consumes consid-
erable computation overheads.

3.3 Secure Group Aggregation: The Algorithms
Inspired by the observation above, we propose a secret-sharing

based scheme for fast and secure index construction. Our novel se-
cure group aggregation scheme is based on an extended secrete shar-
ing protocol [9], which achieves constant communication cost in group
aggregation and provides strong privacy protection. Within each group,
group aggregation collects the statistics of the possession of providers
in the group with respect to each query term and access role. We as-
sume that the providers have already been grouped and placed into in



group-wise overlay. Without loss of generality, we consider a specific
group comprising a set of providersp0, p1, . . . , pn−1, each holding a
private valuevi ∈ {0, 1} = Z2, calledsub-secret, corresponding to
a specific term and access role4. The output, calledsuper-valuev, is
the number of providers withvi = 1, that is,

v =

n−1
∑

i=0

vi (1)

where the super-valuev can span from0 to n. Our protocol com-
putes the super-value accurately and securely. Each involved provider
works in four stages: generates sub-packets for sub-secret, distributes
sub-packets, computes super-packets from received sub-packets, and
aggregates the super-packets to form super-value. Next, we discuss
the four stages in details.

3.3.1 Generating sub-packets
In this stage, each providerpi splits its sub-secretvi into c sub-

packetsui,j , such that their modulo sum equalsvi, formally,

vi = f(ui,0, ui,1, . . . , ui,c−1) =

c−1
∑

j=0

ui,j mod q (2)

whereq is the modulus withq ≫ n, and each sub-packetui,j is de-
fined on the packet domainZq. The packet-generating process gener-
ates a(c, c)-secret packets; that is, given any less thanc sub-packets,
the sub-secretvi is still completely undeterminable. A set of imple-
mentations are available to generate the sub-packets5. In this paper,
we select the simplest one: randomly and independently pick the first
c− 1 sub-packetsui,j ’s (for j = {0, . . . , c− 2}), and let the last one
beui,c = (vi −

∑c−1
j=1 ui,j) mod q. In Appendix, we prove this is

a (c, c)-secret sharing in Theorem A.1.

3.3.2 Distributing sub-packets
We assume that the providers in a group are structured into a ring-

like overlay, as illustrated in Fig. 2. In the overlay, each providerpi
hasc−1 neighbors in the clockwise direction,ph(i,1), . . . , ph(i,j), . . . , ph(i,c−1),
whereh(i, j) denotes the index of thej-th neighbor ofpi. A bi-
directional secure channel is set up on each neighboring connection.
Providerpi also hasc − 1 neighbors in the counter-clockwise direc-
tion, ph′(i,1), . . . , ph′(i,j), . . . , ph′(i,c−1), whereh′(i, j) denotes the
index of the provider whosej-th clockwise neighbor ispi, that is,
h(h′(i, j), j) = i. In total, each provider knows2c − 2 neighbors
in the group, and unaware of the rest’s positions. In particular, the
0-th neighbor ofpi is itself, i.e.,h(i, 0) = i. A variety of instantia-
tions ofh(·, ·) are possible. At this point, for simplicity, we assume
h1(i, j) = i+j mod n, that is,pi take the nearest-(c−1) providers
to be its neighbors. For instance, in Fig. 2,p0 knowsp1, p2, p6, p7
and no more;p0 knowsp6 because mutual communications are re-
quired whenp6 is to set up a secure channel withp0.

Providerpi proceeds to distributing the sub-packets to its neigh-
bors:ui,j will be sent toph(i,j). In particular, sinceh(i, 0) = i, the
first sub-packetui,0 is always kept locally onpi. During this stage,
all communication are through the secure channels; that is, they are
encrypted and authenticated. Messages from different providers are
sent asynchronously and in parallel, and thus consumingO(1) time-
unit.

4As will be discussed later, the aggregation process ofvi for different
terms and roles can be combined together and related messages can
be piggybacked.
5For example, Shamir’s secret sharing[9] is a possible way to gen-
erateui,j in the form of Equation 2. Specifically, for sub-secretvi,
we randomly generate a polynomialgi(x), s.t. gi(0) = vi. Also
there arec input valuesxj ’s (j ∈ {0, 1, . . . , c−1}) that are globally-
agreed on. Applyingxj on gi, we haveyi,j = gi(xj). Applying La-
grange Interpolation,vi = gi(0) =

∑c−1
j=0 Li,j(0) · yi,j . By picking

ui,j = Li,j(0) · yi,j , we get equation 2 (without modulo operation,
though).
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Figure 2: Overlay of secret packet distribution (withc = 3, n = 8)
3.3.3 Computing super-packets

While sending out sub-packets, providers also receive sub-packets
from other providers. Specifically,pi receives from its previous neigh-
borpi−j sub-packetui−j,j , where1 ≤ j ≤ c− 1. pi then sum them
up, together with its local sub-packetui,0, to get the super-packetui,

ui =

c−1
∑

j=0

ui−j,j mod q (3)

Thus,ui,0 = (ui−
∑c−1

j=1 ui,j) mod q. Combining it with Equation
2, we get,

vi = (ui −

c−1
∑

j=1

ui−j,j +

c−1
∑

j=1

ui,j) mod q (4)

= f ′(ui, ui−c+1,c−1, . . . , ui−1,1, ui,1, . . . , ui,c−2, ui,c−1)

Interestingly, Equation 4 defines a(2c − 1, 2c − 1) secret sharing
scheme, as will be proved in Theorem 4.1. It implies that even with
2c− 2 packets, the secret valuevi is still completely undeterminable.
Note that each input sub-packet in Equation 4 corresponds to a dis-
tinct remote provider, e.g.,ui−c+1,c−1 is received frompi−c+1, ui+1

is sent topi+1, and so on. When the group sizen is large, e.g., con-
taining at least2c − 1 or 2c − 2 providers (depending on howui is
aggregated, as below), our protocol is resilient to collusion attacks of
up to2c− 2 or 2c− 3 malicious providers in the group.

3.3.4 Aggregating super-packets
In the last stage, super-packets from all providers are aggregated

to form super-valueu = (u0 + u1 + · · · + un−1) mod q. In our
implementation, we adopt the most time-efficient one: every provider
pi sendsui to a special provider, sayp0 which is then responsible for
summing up allui’s. The final resultsu will be sent to index server as
part of the privacy preserving index. The whole process is sketched
in Algorithm 1.

Algorithm 1 index-construction(providerpi, sub-secretvi)

1: {Generating sub-packets}
2: for all j ∈ [0, c− 2] do
3: ui,j ← random number inZq

4: ui,c−1 ← (vi −
∑c−1

j=1 ui,j) mod q
5: {Distributing sub-packets}
6: for all j ∈ [1, c− 1] do
7: pi sendsui,j to providerpi+j

8: {Computing super-packets}
9: for all j ∈ [1, c− 1] do

10: pi receivesui−j,j from providerpi−j

11: ui ← (ui−c+1,c−1 + ui−c+2,c−2 + · · ·+ ui−1,1 + ui,0) mod q
12: {Aggregating super-packets}
13: pi sendui to p0 (p0 will then sum up all received super-packets)

Example. Consider four providers with security parameterq = 5, c =
3. In the first round, every providerpi starts with splitting her sub-



secretvi into c = 3 sub-packets. For instance, onp1, v1 = 0 =
(2 + 3 + 0) mod 5, where the first two numbers are randomly dis-
tributed in domainZq = {0, 1, 2, 3, 4}. Then,p1 sends out the sub-
packets, e.g.,0 to p3, 3 to p2, but2 kept locally. At the same time,p1
receives sub-packets from other providers, e.g.,0 from p3 and1 from
p4. Thenp1 sums up all these sub-packets to get the super-packet
u1 = (0 + 1 + 2) mod 5 = 3. Other providers work in a similar
manner, and they further send all super-packets top1. At the end,p1
sums up all super-packets(3 + 0 + 2 + 2) mod 5 = 2.

(q=5,c=3) p1 p2 p3 p4

vi

ui,3

ui,2

ui,1

ui-2,3

ui-1,2

ui,1

ui= ui-j+1,j

v

0 1 1 0

0 4 0 3

3 3 2 1

2 4 4 1

0 3 0 4

1 3 3 2

2 4 4 1

3 0 2 2

2

Figure 3: Secret Sharing-based Index Construction Example

3.4 Analysis of Protocol Correctness and Com-
plexity

Our protocol outputs the correct value ofv, namely,u = v, as
below,

u =

n−1
∑

l=0

ul mod q = (

n−1
∑

l=0

c−1
∑

j=0

ul−j,j mod q) mod q

= (

c−1
∑

j=0

n−1
∑

l=0

ul−j,j) mod q = (

c−1
∑

j=0

n−1−j
∑

i=−j

ui,j) mod q

= (

c−1
∑

j=0

n−1
∑

i=0

ui,j)modq = (

n−1
∑

i=0

c−1
∑

j=0

ui,j mod q) mod q

=

n−1
∑

i=0

vi mod q =

n−1
∑

i=0

vi = v (5)

The last step is due to thatq ≫ n, andv ∈ {0, 1, . . . , n}. Hence, in
the final public index, for each provider havingvi = 1, the group will
have aggregated sumv ≥ 1, thus being present in the posting list.
Completeness can be attained. Besides, we use posting-list intersec-
tion for multi-keyword query processing, thus query consistency is
achieved; that is, the results of multiple-keyword query equals the in-
tersection of all results of multiple single-keyword queries. In short,
our protocol is correct.

Efficiency of our protocol can be analyzed in two aspects: the time
latency and bandwidth overhead. Stage 1 of our protocol requires
n · c messages to be sent, and can finish within O(1) time-unit due to
parallelism. The actual latency depends on the slowest provider in the
network. In this stage, the bandwidth overhead also implies the costs
of setting up secure channels. For second stage, the basic aggregation
protocol can finish withinO(1) time and withn messages.

Overall, the above protocol runs for one single term and one access
role. To build PPI for multiple terms and access roles, it runs multiple
single-term protocols, independently with each other. Specifically,
the aggregation process carries a set of bitmaps or vectors, each vector
corresponding to a role and each vector bit summarizing the posses-
sion information regarding to an indexed term. Sending and merging
different bits or vectors can be piggybacked in the same messages
and packets the same secure channel. By this way, time latency stays
unchanged with growing number of indexed terms and roles.

3.5 Global Index Construction

The group-wise indices are not ready for direct use by the index
server to route queries, since they may, to some extent, violate the
content privacy of participating providers. It happens when a major-
ity number of providers in a group hold a (set of) specific term(s),
which makes it possible for the adversary to identify the content pos-
session of these providers with high confidence. Therefore, we need
enforce another layer of protection before the global index is pub-
lished. We achieve this by adjusting and merging group-wise indices
to quantitatively meet providers’ privacy needs. In the following, we
will introduce a group merging process. This process is optional in
our system, because it may requires a partially trusted coordinator.
However, after merging, privacy preserving can attain certain quality
as system/providers want. It is noteworthy here that security of the co-
ordinator can be strengthened by making it periodically offline [10].

3.5.1 Group-wise Index Adjustment
The goal of our adjusting/merging process is to guarantee each

groupg has positive providers with respect to each term lower than a
thresholdq ·n(g), wheren(g) is group size andq is a predefined pri-
vacy parameter. We consider a centralized coordinator which collects
the group-wise indices and merges them to address the participating
providers’ privacy in a best-effort manner. For example, for termt,
coordinator will find the group with the most positive providersg
and the one with the least positive providersg′6. If g contains more
positive providers than the threshold, the coordinator mergesg with

g′ such that the percentage of positive providersv(t,g)+v(t,g′)
n(g)+n(g′)

drops
in the merged group, wherev(t, g) denotes the percentage of positive
providers regarding to termt. If the merged percentage is still too big,
that is, bigger thanq, the merging process continues to merge with the
group currently with smallestv(t,g)

n(g)
. The whole process stops when

the merged percentage drops belowq.7. For multiple terms, we define
a metricα(g) for groupg,

α(g) =
∑

t∈ST

v(t, g)− q · n(g) (6)

whereST is the subset of terms that are privacy-sensitive, defined
by providers. For multiple terms, in each iteration, we try to merge
groupg with lowestα(g), and the rest similarly runs. In practice, in
case that there is no trusted coordinator, one can omit this process and
privacy preseving is attained in a best effort way.

3.5.2 Global Rank-aware Index Construction
The group-wise index of each group is combined into a single

global index. A naïve way is to let each group send her index to
the centralized index server and to combine locally there. In this
scheme, the percentage of positive providers in each group is then
known by the index server, which however is sensitive information.
In order to avoid this privacy breach, we adopt the privacy-preserving
protocol [11] to output posting index ordered by positive percentage
but without publishing the percentages. To further save the query
processing costs, one can only publish Top-K groups with most pos-
itive providers, whereK is a system parameter. Depending on the
value ofK, this strategy makes a trade-off between query perfor-
mance and result recall. For example, smallK can result in more
efficient query processing, but not more effective. That is, query re-
call may be harmed, since certain results appear in bottom of the or-
dered posting lists. In practice,K should be set according to users’
demands on result quality and system resource budget.

6We address the global meta-information, like the number of positive
providers, can be leaked since it does not disclose any information on
which provider is positive.
7The stop condition must be met in certain iteration, for we assume
the thresholdq is bigger than global term selectivity. It is a reason-
able restriction, since otherwise even query broadcasting can’t make
all group-wise percentage of positive providers be smaller than term
selectivity.



3.5.3 Index Updates
In real systems, data may be frequently updated and new providers

may come and leave. A naive way to handle this update is to re-
build our privacy preserving index from scratch every time an update
occurs. For index update efficiency, we adopt an incremental, batch-
oriented update approach. Whenever there aret providers that newly
join or locally updates their index, we re-run the index construction
protocol among the updated providers. Thus, updates can not be tied
to any specific provider out oft. In addition, since we add noise and
do not disclose exact value of term selectivity (as will be discussed in
Section 4.2.4), content privacy during update is preserved.

4. PROTOCOL SECURITY ANALYSIS
In our system, privacy leakage consists of two parts, oneP1 is

during index construction and the otherP2 after index gets published.
For P1, in our protocol for index construction, there are four kinds
of information; the “super-value”v, the “super-packets”ul, the “sub-
packets”ui,j and “sub-secret”vi. The super-valuev is the final result
and is made publicly known. Out of the four, only “sub-secret”vi’s
is the private information to protect.

4.1 Privacy Model

4.1.1 Privacy Adversaries
For security analysis, we start with adversaries of different roles

with different capabilities. Adversaries could be providers, network
eveasdroppers, searchers and even the index server. However,to make
a system function correctly, one needs to assume minimal level of
trusts. For instance, providers and the index server in our network
are assumed to be semi-honest, implying they follow our protocol
specification, but may attempt to learn additional information by an-
alyzing the transcript of messages received during the execution[12].
More specifically, providers will follow the secret-sharing based in-
dex construction protocol and index server will perform work for
query answering, like posting list intersections. A network eaves-
dropper could passively log the messages under her surveillance. She
can have the global power to monitor all messages coming through
the network or the local power to monitor messages sent out by a par-
ticular providers. A searcher could pose queries to the index server in
the wish to obtain sensitive information. Overall, an adversary in our
model can assume multiple roles, like she could be one of participat-
ing providers and can pose queries to index server at the same time.
Or multiple adversaries could collude with each other to gain more
informed knowledge.

For privacyP1, providers can obtain more information than other
roles, since all messages are encrypted in our network and only providers
can see the content/payload of the network messages.

4.1.2 Privacy Metric
Recall that content privacy and policy privacy are addressed in

this paper. The degree of privacy preservation is quantitatively mea-
sured by the probability with which an adversary’s claim on sensitive
knowledge fails. The actual claim differs for different types of pri-
vacy, as defined above. The probability is equal to the percentage
of false positive providers in the result list, which is used as privacy
metric in our system. For instance, in the result list of10 providers, if
they all possess a sensitive termt, content privacy is definitely leaked.
Because for any providerp in the list, adversary can claimp possess
term t in question and such claim is true with100% probability. On
the other hand, when there are5 false positive providers in the list, in
the case that adversary randomly pick a provider to perform attack,
the probability for her claim to fail is atleast half (50%). In this paper,
we choose the “Probable Innocence”[2, 7]) as our main quantitative
privacy goal, in which the false positive rate should be higher than
one half0.5.

4.1.3 Attack Model

Our general attack model involves that a security role (e.g., a provider)
observing certain messages from other parties makes claim on sensi-
tive knowledge that breaches privacy. We consider attack to breach
both privacyP1 and privacyP2. 1) For privacyP1, we consider both
attacker as a single provider and attackers as colluding providers. We
assume that a single provider observing the messages from its neigh-
bors always claim its neighbor has the term (even she can only see the
sub-packets). Providers in collusion can observe multiple messages
from a single innocent provider. If number of such messages is2c−1,
colluding providers can see all sub-packets of a secret value and thus
be able to reconstruct the sub-secret value. If the reconstructed secret
value equals1, providers claim the innocent provider has the term,
otherwise, the innocent provider do not have the term. 2) For privacy
P2, we assume searchers/index server search for termt and claim
any provider in the result list has documents of termt.

4.2 Privacy Characteristic
We analyse privacy characteristic of our protocol against different

roles. Our protocol achieves privacy preserving in many situations,
like against network eavesdroppers and single semi-honest provider.
There are also certain scenarios in which privacy could be possibly
leaked, as the two cases stated in our attack model. In this section,
we analyze privacy preserving ofP1 against eavesdroppers, single
provider and colluding providers. For privacyP2, we will conduct
privacy evaluation by experiments.

4.2.1 Network Eavesdropper
For eavesdroppers, our protocol achieves privacy preserving mainly

by encrypted communication; All communications in our protocol are
authenticated and encrypted. Eavesdroppers seeing a series of cypher-
text can not have any knowledge about its content and thus can’t make
any informed claims. Secure channels[10] guarantees eavesdroppers
themselves can not obtain the cryptographic keys.

4.2.2 Single Semi-honest Provider
In the presence of semi-honest providers, our protocol achieves

information-theoretic security.8 A single providerpi can only see
atmost one sub-packet/share out of totally2c− 1 sub-packets of one
sensitive sub-secret from other providerpi′ . The fact thatf ′(·) is a
(2c − 1, 2c − 1) secret sharing scheme, as proved by Theorem4.1,
yields the information-theoretic security. Thus, adversary obtaining
one piece/packet learn no information on the value ofvi at all and can
not even make informed claim.

THEOREM 4.1. If f(·) is a(c, c) secret sharing scheme with pack-
ets on domainZq, f ′(·) is a (2c − 1, 2c − 1) secret sharing scheme
onZq, too. Specifically,

• Recoverability: Given2c− 1 packets(j, yj)’s where

yj =











ui+j,−j if j ∈ {−c+ 1, . . . ,−1},

ui if j = 0,

ui,j if j ∈ {1, . . . , c− 1}.

the secretvi can be easily reconstructed.

• Secrecy: Given any2c − 2 or fewer packets, one can learn
nothing about value ofvi, in the sense that the conditional dis-
tribution given the known packets is the same to the prior dis-
tribution,

∀x ∈ Zq, prob(vi = x) = prob(vi = x|∀j ∈ I, (j, yj))

whereI is any set with2c−2 or less elements in{−c+1,−c+
2, . . . , 0, . . . , c− 1}.

8Unlike cryptographic security as in secure channel case,
information-theoretic security does not rely on any assumptions
of computation theory and is less computation-intensive.



PROOF. The first condition is directly implied by Equation 4. For
the second condition, we take the worst case in consideration, that is,
when there are2c − 2 packets available to adversary. Let(j′, yj′)
denote the only missing packet. We consider two cases: Case 1),
j′ ≥ 0. In this case, we can use Equation 3 to reconstruct the value
ui,0, that is,ui,0 = (y0−y−c+1−· · ·−y−1) mod q. Then for(c, c)
secret sharing schemef , we have allc packets determined, except for
ui,j′ . By the definition of(c, c) secret sharing, the valuevi = f(·)
is completely undetermined. Case 2),j′ ≤ 0. We can determine all
c − 1 packetsui,j for j ∈ {1, 2, . . . , c − 1}, and we turn to prove
thatui,0 ≡ (y0 − y−c+1 − · · · − y−1) mod q is completely unde-
termined given one packet(j′, yj′) is missing. We further consider
two cases, ifj′ = 0, we haveui,0 − yj′ ≡ (−y−c+1 − · · · − y−1)
mod q; otherwise, we haveui,0+yj′ ≡ (y0−y−c+1−· · ·−yj′−1−
yj′+1−· · ·−y−1) mod q. In both cases, the RHS of the equation is
completely determined, while LHS, in the formui,0±yj′ , is not. Ap-
plying lemma 4.2, we can see that the distribution ofui,0 is fully un-
affected by the given knowledge ofui,0±yj′ (but notyj′ ). Thus,ui,0

is completely undetermined. Notevi = f(ui,0, ui,1, . . . , ui,c−1) is a
(c, c) secret sharing scheme, thus the secretvi is completely undeter-
mined.

LEMMA 4.2. Random variablea, b are natural numbers in do-
mainZq. Their values are independently chosen and uniformly dis-
tributed inZq. Then∀x, y ∈ Zq, we have

prob(a = x) = prob(a = x|(a± b) mod q = y) =
1

q
(7)

Proof of Lemma 4.2 can be found in Appendix.

4.2.3 Semi-honest Providers in Collusion
Our protocol is resistent to providers in collusion. In specific, 1)

when collusion is of no more than2c − 3 providers, attackers can’t
gain any information onvi ∀i ∈ {1, . . . , n}, as in the single provider
case. Hence, our protocol retains the information-theoretic security.
2) When there are more than2c−3 colluding providers, privacy could
be possibly leaked. In this section, we analyse the possibility and
argue it’s very unlikely for such breach to occur.

Note sub-packets of a single sub-secretvi are distributed to at least
2c − 2 providers, which are the2c − 2 consecutive neighbors of
providerpi. When these nearest-(2c− 2) providers happen to form a
collusion, then privacy regarding sub-secretvi is definitely leaked.9

However, we argue the likehood for collusion of this kind to occur is
fairly low. Besides, even in this case, only one sub-secret is disclosed,
while other sub-secrets’ privacy is still gauranteed. Note in our pro-
tocol group members are randomly ordered in ring-like overlay and
they follow this protocol specification (since they are semi-honest).
The probability for a honest provider to be surrounded by2c − 2
adversaries is,

h =
Pm
2c−2

Pn−1
2c−2

=
m!(n− 2c+ 1)!

(n− 1)!(m− 2c+ 2)!
(8)

m is the total number of colluding providers in the network. As can
be seen, the probability is very low for moderate value ofc. For ex-
ample, whenm = n

2
, the probability ish < ( 1

2
)2c−2, which quickly

approaches0 for largen.
In practice, the number of colluding adversaries is usually small.

For example, as discovered in a peer-to-peer measurement study [13],
most collusions are of two or three mutually colluding nodes. Thus,
by settingc at relatively small value (e.g.,5), it suffices to make our
SS-PPI secure against colluding attacks.

4.2.4 Index Server aware of Term Selectivity
Our protocol discloses group-wise term selectivity in the published

index, rendering privacyP2 vulnerable. With this information, in-
dex server can make informed decision on picking up the right group
9Here, we exclude the trivial case thatpi is itself in collusion, because
thenvi can be known locally frompi.

and term (if any) and perform security attacks successfully. To over-
come this vulnerability in our system, we propose an enhanced ver-
sion of SS-PPI which preserves privacyP2 and still achieves effi-
ciency in performance. In specific, we add noises to the term-wise bit
before group aggregation starts. For termt and a possession bitv, the
provider generate another numberv′ in {0, 1, . . . , b} to do aggrega-
tion, as follows,

v′ =

{

rand(b) in {1, 2, . . . , b} if v=1

0 if v = 0.

Now the sum ofv′ does not necessarily equal the number of positive
providers in each group. By this means, privacy can be further pre-
served, at expenses of extra inaccuracy of ranking between groups in
the public index. Parameterb controls the trade-off between meta-
data privacy and ranking accuracy. With this approach, the selectivity
observed to be high could end up being small ones. In this sense, we
prevent an adversary from picking up the term with high selectivity.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate our SS-PPI, mainly by simulations.

The evaluation is based on the comparison to previous work, flip-
ping PPI[2]. Throughout the experiments, we mainly use synthetic
dataset which consists of105 providers, which are further mapped to
1000 groups. Groups are disjoint and are configured with an expected
group size, that is,105/103 = 100. We also used a peer-to-peer
dataset[14], which is developed based on the TREC WT10g web test
collection, a10 gigabyte,1.69 million document subset of the VLC2
collection[15]. In our default setting, we run each experiments20
times and report the averaged results.

5.1 Correctness
In the first set of experiments, we evaluate the PPI’s correctness.

For SS-PPI, the correctness is measured by the probability that the
aggregated result equals number of positive providers in a group, that
is,

∑n−1
0 vi; for flipping PPI, it’s measured by that for logical OR of

vi’s. In the first experiment, we vary the number of rounds and fix
term selectivity being0.1, the results are shown in 4a; then, we test
the protocol with terms of different selectivity and fixing the rounds
to be10, results shown in 4b. In general, SS-PPI achieves100% ac-
curacy, while flipping PPI doesn’t. For small number of rounds and
selective terms, flipping PPI incurs relatively high inaccuracy and un-
certainty. It becomes more accurate as the number of rounds goes
up. However, this improvement comes at the expenses of more se-
vere privacy leakage, more bandwidth consumption and longer time
duration, as will be shown.
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Figure 4: Search correctness

5.2 Privacy Preserving
This set of experiments evaluate the level of privacy preservation

of our SS-PPI. We mainly follow our security analysis to conduct
experiments, in which two types of privacy are considered, including
index construction privacyP1 and published privacyP2.

5.2.1 Preserving Index Construction PrivacyP1 against
Colluding Attacks



Our simulation for evaluation of privacy preserving against col-
laborating adversaries is based on Equation 8. flipping PPI can be
modeled withc = 1 and in our SS-PPI,c ranges from3 to 18.
We have done two experiments; the one is with varying the num-
ber of colluding adversaries and fixed group size of100, the other
with varying group size, and the adversaries accounting for20% of
the group. We evaluate the probability of specific positioning of ad-
versaries that leaks privacy. The results are plotted in Figure 5. In
general, flipping PPI incurs the highest privacy breach; its leaking
probability is an order of magnitude higher than that of SS-PPI, even
with small c. As c grows up, the improvement of SS-PPI’s privacy
preserving against flipping PPI becomes significant. In Figure 5b, the
privacy breach generally become more severe, as there are more ad-
versaries. When all providers in a group are malicious, the probability
of privacy breach becomes100%, for all protocols. When there are
limited adversaries (which is more likely the case in real world), SS-
PPI achieves much better privacy preserving comparing to flipping
PPI. As can be observed, there exist a threshold on number of adver-
saries under which SS-PPI’s leaking probability is0. For example,
in the plot, the curve for SS-PPI-18 shows up only when adversaries
are more than35. This is more obvious in Figure 5a. By contrast,
flipping PPI is vulnerable to collaborating attacks in all experiment
settings. In Figure 5a, we can also see SS-PPI slightly increase pri-
vacy leaking probability until certain converging value as group size
goes up, while flipping PPI stays constant. Note that the probability
(y axis) is plotted in log scale, the differences between two protocols
in comparison are significant.

In previous experiment, we consider privacy leakage of one inno-
cent provider. Here, we move forward to study the multiple-provider
case. Given a number of colluding adversaries, we measure the num-
ber of innocent providers being attacked. Leta(l) denote the mini-
mum number of colluding adversaries required to hackl providers’
private information. By analysis model in Section 4, SS-PPI has,

aSS−PPI(l) = (c− 1)(l + 1) (9)

For l andc large enough, the above equation must meet(c − 1)(l +
1) + l ≤ n, or l ≤ n+1

c
− 1. For flipping PPI,c = 2 and we have,

aflipping(l) = l + 1 (10)

Comparing to flipping PPI, our SS-PPI has higher requirement on
the number of colluding adversaries, thus less likely to leak privacy.
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Figure 5: Privacy preserving against collaboration of adversaries

5.2.2 Preserving PrivacyP2 against Searchers
In this experiment, we evaluate property of privacy preserving of

random grouping. We considered two cases, the common term case
and the rare term case. For each case, we measure the true posi-
tive rates (i.e., the group-wise selectivity or how many providers in a
group do possess the term) under different group sizes. The results
are shown in Fig. 6. To visualize the degree of preserving privacy
P2, we ranked groups based on true positive rates, descently. The
maximal level of true positive ratios is criticl to the overall degree of
privacy preserving, thus being of interests to us. As can be seen from
the results, the smaller the group size is, the more non-uniform the

distribution of true positive rates is. For instance, the maximal true
positive rate for group size of10 is 0.6 for common terms of selectiv-
ity 0.2, while for group size configured to be100, the maximal true
positive rate is around0.3. In this sense, larger group size leads to
more privacy preserving. Comparing rare terms and common terms,
grouping with common terms could end up with every group having
non-zero true positive rate, implying query broadcast, which is not
the case for those rare terms.
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Figure 6: Preserving privacyP2 of random grouping

5.3 Performance of Group Aggregation
We evaluate the performance of SS-PPI by simulation. Specifi-

cally, we use two distributions on round-trip times (RTTs) to emulate
the message delays, that is, gaussian distribution with deviation being
1 and mean being3, and the distribution modeled from real network
traces [16]. In the latter case, about35% of the messages have RTT
< 50ms, 60% with RTT < 100ms, 25% with RTT > 200ms, and
the rest are in seconds. For fair comparison, we setr = c (by which
the bandwidth costs of SS-PPI are equal to those of flipping PPI).
The simulation results are shown in Fig. 7, from which we can see
that SS-PPI achieves much better performance in terms of scalability
(especially in the large groups). We explain the results based on time-
complexity analysis. For SS-PPI, the bandwidth costs aren·c and la-
tency ismax(hopi,j) for ∀i ∈ [0, n− 1], j ∈ [i+ 1, i+ c− 1]. For
flipping PPI, the latency isr ·

∑n−1
i=0 hopi,i+1 and bandwidth costs

aren · r (in terms of number of messages transmitted). Whenc = r,
latency of flipping PPI is O(n · r) while that of SS-PPI isO(1).
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Figure 7: Time-efficiency of SS-PPI

5.4 Query Processing Costs
The query processing costs are measured by the number of providers

returned from the index server for a single query. In this experiment,
we focus on single-term queries, in which term is randomly picked
from index dictionary. We vary the group size from2 to 1000 and
plot the results in Figure 8. Overall, the query costs grow up as the
group size increases. For group size bigger than50, the percentage of
providers that need to check by queriers quickly approaches to100%,
implying our index deteriorates to query broadcasting in this setting,
which conforms to our previous experimental and analysis result.

We further study the relationship between search recall and search
costs. Experiments are conducted in the both cases of common terms



and rare terms. Common term is with selectivity0.1 while rare term
with selectivity0.004, as they can be picked from the peer-to-peer
text dataset[14]. Different value of group sizes are picked for experi-
ments. With results illustrated in Fig. 9, we can see that search costs
approximately grow in linear to search recall. For100% recall, search
for common terms always require query broadcasting, while search
for rare terms only need multicast to the partial set of providers. In
rare term case, the search costs are sensitive to the group size; a big
group size generally results in more search costs.

The set of experiments give us implication to properly set the value
of group sizes. Finding an appropriate value for group size is tricky,
because as aforementioned, too big a group size could lead to query
broadcast which hurts scalability and performance, while too small a
group size deteriorates the level of privacy preserving. From the ex-
periment results, rules of thumb are to set group size to50, by which
only terms with selectivity bigger than0.01 will ends up with query
broadcast (from Fig. 8) and maximal true positive rate for common
terms (e.g., with selectivity0.2) is less than0.4 (note in this case,
the false positive rate is smaller than0.5, thus meeting the privacy
requirement of “Probable Innocence”[2, 7]).
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Figure 9: Search costs in number of providers contacted

6. RELATED WORK
This section briefly surveys relevant work. We review different ar-

chitectures of privacy-preserving indices proposed in literature, com-
pare two important primitives to construct such architectures, namely
secure multi-party computation (SMC) and secret sharing, and finally
discuss other privacy issues in information sharing infrastructures.

6.1 Indexing on Untrusted Servers
The work [2] paved the way for public privacy preserving index

from multiple content providers. It randomly organizes providers into
disjoint privacy groups; it employs an iterative, randomized algorithm
to form group-wise indexing structure, which is further used to direct
queries. Comparing to our protocol, this solution suffers three ma-
jor drawbacks. First, the random grouping strategy makes privacy
groups tend to have all terms, and query processing ends up broad-
casting. Second, the probabilistic index construction scheme take ar-
bitrary rounds before convergency, leading to unacceptable running
time. Third, index construction leaks considerable privacy and is vul-
nerable to colluding attacks.

Zerber [4] is based on multiple servers with certain amounts of
trusts. Zerber distributes inverted index overn servers by using ak-
out-of-n secret sharing scheme. During query time, a searcher has
to be authenticated and authorized by at leastk servers. Then af-
ter issuing masked queries individually, searcher obtains shares of
matched posting entries from each server, and proceeds to compos-
ite the secrets, including indexed terms, document id and relevances.
The scheme performs client-side intersection of positing lists, which
seriously slow down query performance for large scale dataset (in
terms of large number of documents), multiple-keyword queries and
searcher with broader accesses. Overall, the amount of trusts as-
sumed on index servers may become unacceptable, since it relies on
servers to do authentication and authorization. In particular, access
policy privacy is seriously leaked in the sense that any single mali-
cious server cloud disclose such privacy.

Union query dissemination trees (or UQDT) [5] is a distributed
privacy preserving index; the indexes are organized as multiple trees,
which share the same set of leaf nodes, each corresponding to a dis-
joint privacy group of publishers/providers. In essence, each QDT
can be viewed as a hierarchy of group-wise index at different gran-
ularity, and privacy preserving (defined in publisher k-anonymity) is
attained in a similar group-wise way. To form the finest group at leaf
level, a generic secure multi-party computation [3] is adopted, which
however is inefficient and unscalable to thousands of providers. Dif-
ferent UQTs are responsible for different (disjoint) subset of index
terms; The multiple-UQT architecture is intended for better load bal-
ance and higher throughput, as compared to single UQT with global
set of indexed terms. Specifically, the same physical nodes are intelli-
gently positioned at different levels of different UQT, so overall load
is balanced.

6.2 SMC and Secret Sharing
Secure multiparty computation (or SMC) [17] refers to the prob-

lem in which multiple parties, each holding a private input, collec-
tively perform a computation without disclosing information more
than the output reveals. Many operations in privacy-aware applica-
tions [18] can be deemed as secure multiparty computation, includ-
ing the group-wise index aggregation in our problem. Secret shar-
ing is one primitive for SMC problems. In particular, a generic se-
cret sharing scheme splits a secret into multiple shares, only more
than a certain mount of which can reconstruct the secret. Many se-
cret sharing schemes [9] are additive homomorphic [19]. Our pro-
tocol takes advantages of this nice property and applies in privacy
preserving index construction. Comparing to other primitives for se-
cure multiparty computation, secret sharing is advantageous; it at-
tains information-theoretic security, robust against colluding attacks.
More importantly, secret sharing has been shown to significantly out-
perform those generic SMC protocols in execution efficiency [20,
21]. Secret sharing has been applied in various contexts, for exam-
ple, database query processing [22], information aggregation [20] and
keyword searches[4]. The above approaches put the computation of
secret shares onto multiple third parties while index construction in
our SS-PPI involves no third party, which sees better scalability.10

Other work [23] uses similar secret-sharing protocol to preserve pri-
vacy in data mining. However, their way in distributing shares incurs
load imbalance and hurts overall performance.

7. CONCLUSION
In this paper, we propose SS-PPI, an efficient and strong privacy

preserving index over multiple content sources. Specifically, SS-PPI
adopts a new architecture of PPI, namely role-sensitive PPI, that takes
into account role access information and achieves better search per-
formance. We also identify a new type of potential privacy leakage in
this architecture, that is, access policy privacy. Further, we proposea
secret sharing based approach for efficient and secure construction of

10It implies the more providers participate in the network, the more
secure we will end up with, because adversaries now need to compro-
mise all providers to obtain all secrets.



public index, from multiple content providers. Comparing to previous
work, SS-PPI makes a better balance between privacy preserving and
search performance. Our protocol is secure against colluding adver-
saries and achieves information-theoretic privacy preserving. We also
conduct extensive analysis and experiments that show advantages of
SS-PPI in terms of query performance and security properties.
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APPENDIX

A. PROOF OF THEOREM
THEOREM A.1. Suppose packets are defined onZq′ and secrets onZq .

If q′ = k · q (wherek is an integer) and the firstc − 1 packets are chosen
randomly and independently,f(·) defined by Equation 2 is a(c, c) secret
sharing scheme. Formally,

Recoverability: Givenc sub-packetsui,j with j ∈ Zq , the secretvi can
be easily reconstructed.

Secrecy: Givenc − 1 or fewer sub-packets, the secretvi is completely
undetermined, in the sense that each possible value on sub-secret do-
main is equally likely forvi,

∀x ∈ Zq′ , prob(vi = x)

= prob(vi = x|∀j ∈ I, ui,j = yj)

=
1

q′

whereI is any set with2c − 2 or less elements in{−c + 1,−c +
2, . . . ,−1, 0, 1, . . . , c− 1}.

PROOF. We consider the worst case, that is, when2c− 2 ui,j are known
in priori and there is only one packet variable that is unknown. Denote the un-
known variable and the sum of the known variables byux andv′i, respectively.
Then,vi = v′i + ux mod q. For any valuevi = x in Zq and fixedv′i, there
is exactlyk values inZq′ , subject tovi = v′i + ux mod q. And it’s easy to
see for differentx, the set of thesek values are disjoint (essentially, forming
an equivalence class). The probability forvi = x is then the probability for
ux to fall in the equivalence classes corresponding tox. Sinceux is unknown,
meaning it’s uniformly distributed, the probability forvi = x stays the same,
even when any2c− 2 ui,j is known in advance. The theorem holds.

B. PROOF OF LEMMA
Lemma 6.2Random variablea, b are natural numbers in domainZq . Their

values are independently chosen and uniformly distributed inZq . Then∀x, y ∈ Zq ,
we have

prob(a = x) = prob(a = x|(a± b) mod q = y) =
1

q
(11)

PROOF.

prob((a± b) mod q = y|a = x)

= prob(b = (y ∓ x) mod q|a = x)

= prob(b = (y ∓ x) mod q) =
1

q

The derivation is due to the fact that variablea andb are mutually independent.

prob(a = x|(a± b) mod q = y)

=
prob(a = x ∧ (a± b) mod q = y)

prob((a± b) mod q = y)

=
prob(a = x) · prob((a± b) mod q = y|a = x)

prob((a± b) mod q = y)

=
prob(a = x) · prob(b = (y ∓ x) mod q|a = x)

∑q

x′=1
prob(b = (y ∓ x′) mod q|a = x′) · prob(a = x′)

Becausea,b are independent random variables, so∀x′, prob(b = (y ∓ x′)

mod q|a = x′) = prob(b = (y ∓ x′) mod q) = 1
q

. And sinceprob(a =

x′) = 1
q

, we have

prob(a = x|(a± b) mod q = y)

=

1
q
· 1
q

∑q

x′=1
1
q
· 1
q

=
1

q

= prob(a = x)


