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A B S T R A C T

Ubiquitous deployment of low-cost mobile positioning devices and widespread use of high-speed wireless
networks have resulted in a rapid growth of location-based applications. While location-based services provide
a wide range of life enhancing experiences to users, the exposure of location information poses significant
privacy risks that can invade the users’ location privacy. Location privacy risks can be mitigated using location
anonymization techniques that perturb the raw location of users to make the location indistinguishable from that
of a set of other users. A fundamental limitation of traditional location anonymization techniques is that they are
developed as unidirectional techniques that fail to support multi-level control of access to location data when
data users have different access privileges on the exposed location information. As a result, location information
once perturbed cannot be reduced in terms of anonymity or degree of perturbation even when some data users
have access to fine granular information in the exposed data. Recent techniques on reversible spatial cloaking
techniques employ data anonymization keys to perturb a user’s location in a pseudo-random manner such that
the anonymized location information can be de-anonymized later using the anonymization keys. While reversible
spatial cloaking provides support for multi-level location privacy, their performance is limited by their adopted
spatial cloaking model in which the location perturbation occurs solely in the spatial domain without considering
the temporal domain. Hence, reversible spatial location cloaking techniques obtain lower success rate and lower
spatial resolution of the perturbed location leading to unreliable anonymization and lower service quality. This
paper presents a new suite of reversible cloaking techniques that reversibly perturb location information of users
using a spatio-temporal cloaking model, allowing data perturbation to occur along both spatial and temporal
dimensions while still ensuring that the spatio-temporal expansion process is reversible when suitable access
keys are provided. The proposed model achieves higher success rate and higher spatial resolution compared to
reversible spatial cloaking. We compare our techniques through extensive experiments on real road networks.
The results show that our techniques offer better QoS performance than the existing approaches and demonstrate
strong attack resilience against adversarial attacks.

1. Introduction

Wide-spread availability of high-bandwidth wireless networks and
the proliferation of GPS supported mobile devices have rapidly in-
creased the demands for location-based service applications. In the
big data era, the user experience of location-based service applications
is widely enhanced through novel combinations of both location and
contextual information of users from multiple data sources leading to
more personalized and more customizable services than ever. Examples
include personalized navigation (‘‘it is not easy to drive through this road
based on user’s past driving behavior’’), weather forecast (‘‘the rain at
your current location will stop exactly after 11 min’’.) and location-based
social networking (‘‘you have one friend currently in the same restaurant’’).
According to recent surveys [1,2], nearly 68% of the US population
own and use a smartphone and roughly 90% of them use location-based
service applications, implying that on an average over six out of ten
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people use services that require location information. While location-
based services find numerous potential benefits, they also open new
doors for privacy threats. The exposure of private location information
can have many undesirable effects ranging from receiving unwanted
location-related advertisements and spam to experiencing even life-
threatening events leading to physical attacks [3]. With the advent of big
data and big data analytics, the risk of disclosing location information is
further exacerbated as an adversary can correlate the exposed location
with information from various other data sources to infer more accurate
and fine-grained information about individuals [4].

The risks of disclosing private location information can be reduced
by using location anonymization techniques. Location anonymization
refers to the process of perturbing user location information such that
the perturbed information becomes indistinguishable from that of a set
of other users. A user is considered to be location 𝑘-anonymous if her
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location information is indistinguishable from the location information
of at least 𝑘 − 1 other users in a spatial or spatio-temporal space.
As an extension to the location 𝑘-anonymization model, location 𝑙-
diversity [5] and segment 𝑙-diversity [6] constraints have been proposed
to further strengthen the privacy offered by these solutions. Several
location perturbation techniques based on anonymization and differ-
ential privacy [7–15] have been proposed in the literature to tackle the
location privacy problem. However, a fundamental limitation of these
existing location privacy protection schemes is that location information
once perturbed to provide a certain anonymity level cannot be reversed
to reduce anonymity or the degree of perturbation, which means
different location data users have no choice but to get the perturbed
location information with same privacy level. In such a scenario, the
owners of the location information lose the multi-level privacy control
of their data requiring even privileged data users to access information
at lower accuracy and granularity than what they are entitled to. For
instance if Alice is concerned about her location privacy, she might
decide to expose her location with a certain privacy level at a location-
based social network [16]. However, she may wish to give her friends
access to a reduced anonymity level as she may trust them more than
the others. Also, Alice may want to give access to her exact location
information to some of her close friends who are most trustworthy.

Recent techniques [17] on reversible spatial cloaking techniques
employ data anonymization keys to perturb a user’s location in a pseudo-
random manner such that the anonymized location information can be
de-anonymized later using the anonymization keys. While reversible
spatial cloaking provides support for multi-level location privacy, their
performance is limited by their adopted spatial cloaking model in
which the location perturbation occurs solely in the spatial domain
without considering the temporal domain. Hence, reversible spatial
location cloaking techniques obtain lower success rate and lower spatial
resolution of the perturbed location leading to unreliable anonymization
and lower service quality. This paper presents a new suite of reversible
cloaking techniques that reversibly perturb location information of users
using a spatio-temporal cloaking model, allowing data perturbation to
occur along both spatial and temporal dimensions while still ensuring
that the spatio-temporal expansion process is reversible when suitable
access keys are provided. The proposed model achieves higher suc-
cess rate and higher spatial resolution compared to reversible spatial
cloaking. We compare our techniques through extensive experiments
on real road networks that show that our techniques offer better
QoS performance than the existing approaches and demonstrate strong
attack resilience against adversarial attacks.

The rest of the paper is organized as follows: Section 2 provides
a background and an overview of the multi-level reversible loca-
tion anonymization problem. In Section 3, we discuss two reversible
spatio-temporal cloaking schemes that support multi-level location pri-
vacy, namely time-first reversible spatio-temporal cloaking scheme and
space-first reversible spatio-temporal cloaking scheme. In Section 4, we
present the analysis of our experiments on realistic road network traces
generated using GTMobiSim. We discuss related work in Section 5 and
we conclude in Section 6.

2. Overview of concepts and models

In this section, we first present the location anonymity models used
in our work and describe the composition of a user-defined privacy
profile that captures customized privacy requirements of the users. We
then introduce the spatio-temporal cloaking model used in our work that
allows data perturbation to occur along both spatial and temporal di-
mensions. We discuss the proposed class of reversible cloaking schemes
that can leverage the spatio-temporal cloaking model to support the
multi-level location privacy requirements of users while ensuring high
service quality. Finally, we discuss the attack models used for evaluating
the attack resilience of the proposed schemes.

2.1. Location anonymity models

In this paper, We use two anonymity models, namely location 𝑘-
anonymity and segment 𝑙-diversity for protecting the location privacy of
users. They are defined as follows.

Definition 1 (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑘-𝑎𝑛𝑜𝑛𝑦𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛). The location information of a
user is said to be k-anonymous if the location information is indistin-
guishable from the location information of at least k-1 other users.

Definition 2 (𝑆𝑒𝑔𝑚𝑒𝑛𝑡 𝑙-𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦). The location information of a user
is said to be segment l-diverse if the exposed location contains at least 𝑙
well-represented road segments.

The location 𝑘-anonymity requirement ensures that the exposed loca-
tion of a user is indistinguishable from a set of other users on the road
network. However, satisfying location 𝑘-anonymity alone may not be
sufficient to protect the location privacy of the user in cases when there
are homogeneity attacks [5]. For instance, if all the 𝑘 users contained in
a 𝑘-anonymized spatial region are present in a single physical location,
such as a hospital, then even though there are 𝑘 users in the cloaked
region, an adversary observing the region can still infer the actual
location of the subject with high certainty. To protect against such
scenarios, the notion of location 𝑙-diversity has been introduced [5,18].
A cloaked location satisfies segment 𝑙-diversity [6] if the cloaked region
not only includes 𝑘 distinct users but also contains 𝑙 well represented
road segments. Therefore, from an attacker’s perspective, a cloaking
area with more segments increases the difficulty to track a user and
hence ensuring a larger 𝑙-diversity provides higher location privacy.

2.2. User-defined privacy profile

In practice, each anonymization request should include a user-
defined privacy profile, which indicates customized anonymization
requirements desired by the user. A user specifies a pair of values,
denoted as (𝛿𝑘, 𝛿𝑙), as her desired anonymization level, where 𝛿𝑘 and
𝛿𝑙 indicates the numbers of users and segments that she would like
the cloaking region to contain. Besides 𝛿𝑘 and 𝛿𝑙, the privacy profile
also includes two QoS-related parameters, namely the spatial tolerance
𝜎𝑠 and temporal tolerance 𝜎𝑡, which indicate the maximum acceptable
cloaking spatial area and the maximum time delay to receive the
response [6,10,14]. Therefore, a complete user-defined privacy profile
contains four parameters, represented as (𝛿𝑘, 𝛿𝑙 , 𝜎𝑠, 𝜎𝑡).

2.3. Spatio-temporal cloaking model

To satisfy the 𝑘-anonymity requirement 𝛿𝑘, a cloaking algorithm can
include mobile users by expanding the cloaking region geographically
and/or extending the waiting time window, thus resulting in three
cloaking models, namely spatial cloaking, temporal cloaking and their
combination spatio-temporal cloaking. Fig. 1 explains the relationship
and differences among the three models. Suppose a user sends an
anonymization request with (𝛿𝑘 = 10, 𝛿𝑙 = 2) at 𝑡0, then the cloaking
region should contain at least ten mobile users and two segments.
Fig. 1(a) shows the result of spatial cloaking, which expands the cloaking
region as a two-dimensional spatial area to include nine other mobile
users to satisfy (𝛿𝑘 = 10, 𝛿𝑙 = 2). In this example, the result includes
eight segments from 𝑠1 to 𝑠8, which are restricted by the 𝜎𝑠. In Fig. 1(b),
unlike spatial cloaking, the temporal cloaking includes nine other mobile
users by extending the waiting time window 𝑊 along the time axis
so that the other nine mobile users passing the minimum number of
segment requested by 𝛿𝑙 = 2 are included in the cloaking region to
satisfy 𝛿𝑘 = 10. In the example, the temporal cloaking results in a cloaking
region containing only two segments 𝑠4 and 𝑠6 while the mobile users are
accumulated through the waiting time window 𝑊 restricted by the 𝜎𝑡.
Alternatively, as shown in Fig. 1(c), the spatio-temporal cloaking expands
in all the x, y and t axes so that a three-dimensional box is formed
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Fig. 1. Cloaking models.

to include the required number of mobile users. To achieve a certain
𝛿𝑘, the cloaking spatial area generated by the spatio-temporal cloaking
is smaller than the one generated by spatial cloaking while larger than
the one generated by temporal cloaking. Meanwhile, the waiting time
window 𝑊 required by spatio-temporal cloaking is between the ones
required by the other two models. Therefore, we can see that there
is a tradeoff between the cloaking spatial area and the waiting time
window 𝑊 regarding 𝛿𝑘 and the spatio-temporal cloaking is a general
model to handle this tradeoff. In addition, we may treat spatial cloaking
and temporal cloaking as two special cases of spatio-temporal cloaking.
In practice, by properly leveraging this tradeoff, spatio-temporal cloaking
can usually achieve better results. Consider an anonymization request
with (𝛿𝑘, 𝛿𝑙 , 𝜎𝑠, 𝜎𝑡), to satisfy 𝛿𝑘, spatial cloaking may easily lead to a
cloaking region larger than 𝜎𝑠 while temporal cloaking may also lead
to a response delay longer than 𝜎𝑡. In contrast, spatio-temporal cloaking
can make full use of available resources within the QoS requirements
(𝜎𝑠, 𝜎𝑡) to satisfy (𝛿𝑘, 𝛿𝑙).

2.4. Multilevel location privacy management system

Our work aims at developing techniques for supporting a multilevel
location privacy management system (Fig. 2) for location-based services
(LBS), which allows a LBS user to expose location information with dif-
ferent granularity to other users. In this system, mobile users first submit
their real location information to a reversible cloaking process. Such a
process can be operated by trusted LBS providers as a functional module
supporting reversible and fine-grained location cloaking for their users.
In case of untrusted LBS providers, the reversible cloaking process
can be implemented using a trusted third party anonymizer [6,7,17].
Upon receiving the real location information, the reversible cloaking
process then generates multiple secret keys and uses these keys to
pseudo-randomly create multiple levels of cloaked location information
from user’s real location information. After that, the reversible cloaking
process sends the secret keys to the mobile user and exposes the
cloaked location information corresponding to the highest privacy level.
From then on, privileged data users can request secret keys from the
mobile user to reduce the privacy level of the exposed cloaked location
information to access the information with higher accuracy. Compared
with conventional location cloaking systems [6,7,10,19], the system in
Fig. 2 offers several advantages. First, instead of an all-or-nothing access
control, this system enables a multi-level access control that allows
different groups of data users to access the location data with different
levels of utility and privacy. Second, this system allows the data owner to
manage the access to the location data using secret keys. The data owner
can determine a set of access rules and make the locally stored secret
keys be automatically sent to privileged data users based on the rules.
Last but not the least, with the reversible cloaking algorithms, the system
allows the multiple levels of cloaked location information to be derived
from a single cloaked location information exposed at the LBS provider
through the access keys and thus minimizes the storage overhead for
maintaining multiple versions of the cloaked location information.

Fig. 2. Multilevel location privacy management system.

2.5. Reversible spatio-temporal cloaking

The performance of the multilevel location privacy management
system highly depends on the adopted reversible cloaking techniques.
In [17], a class of reversible cloaking techniques was designed based
on the spatial cloaking model. However, as we discussed in Section 2.3,
the performance of such reversible spatial cloaking techniques is limited
by the spatial cloaking model. In this paper, we develop a new set
of reversible cloaking techniques based on the more advanced spatio-
temporal cloaking model, which can efficiently support the multi-level
location privacy management system with higher success rate and
higher spatial resolution while ensuring higher service quality.

An example of the reversible spatio-temporal cloaking process with
𝑁 privacy levels is shown in Fig. 3. In the example, the user-defined
privacy profile can be denoted as 𝑈𝐷𝑃𝑃 = {(𝛿𝑖𝑘, 𝛿

𝑖
𝑙 , 𝜎

𝑖
𝑠, 𝜎

𝑖
𝑡 )|1 ≤ 𝑖 ≤ 𝑁−1},

with 𝑈𝐷𝑃𝑃 𝑖 = (𝛿𝑖𝑘, 𝛿
𝑖
𝑙 , 𝜎

𝑖
𝑠, 𝜎

𝑖
𝑡 ) representing the profile for a specific

privacy level 𝐿𝑖. Specifically, we define privacy level 𝐿0 as the cloaking
box that is actually the snapshot of the segment of the actual user at
𝑡0. In addition, each privacy level, 𝐿𝑖 is associated with a secret key,
𝐾𝑒𝑦𝑖, which is used to drive the anonymization process for that privacy
level. Therefore, with access to the anonymization key of a particular
privacy level, users of the cloaked location data can selectively de-
anonymize the cloaking box to reduce privacy levels and obtain finer
location information. A detailed example of a four level case is shown
in Fig. 3. The segment 𝑠4 contains the actual user, so its snapshot at
query time 𝑡0 forms the cloaking box of level, 𝐿0. Using the key 𝐾𝑒𝑦1 to
reach the privacy level, 𝛿1𝑘, 𝛿

1
𝑙 of 𝐿1, the cloaking box is expanded along

spatial axes by including 𝑠6 while at the same along the time axis from 𝑡0
to a time window 𝑊1. Then, 𝐾𝑒𝑦2 is used further to expand the cloaking
box to meet 𝛿2𝑘, 𝛿

2
𝑙 of level 𝐿2 by adding segments {𝑠3, 𝑠5} and extending

𝑊1 to 𝑊2. Finally, {𝑠1, 𝑠2, 𝑠7, 𝑠8} are added and 𝑊2 is extended to 𝑊3 by
using the key, 𝐾𝑒𝑦3 to reach the highest privacy level, 𝐿3.

Later, when the cloaked location information needs to be reduced
in privacy levels, it can be done using the secret keys. For instance, for
accessing the information at the lower privilege level, 𝐿2, 𝐾𝑒𝑦3 can be
used to exactly identify and remove the segments {𝑠1, 𝑠2, 𝑠7, 𝑠8} from
the spatial cloaking region and also shrink window 𝑊3 to 𝑊2 so that the
cloaking box of level 𝐿2 can be restored. Similarly, using both 𝐾𝑒𝑦3 and
𝐾𝑒𝑦2, the segments {𝑠1, 𝑠2, 𝑠7, 𝑠8, 𝑠3, 𝑠5} can be removed and 𝑊2 can be
reduced to 𝑊1, which result in the cloaking box of level 𝐿1. Therefore,
by merely managing the secret keys among the location data users at
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Fig. 3. Reversible spatio-temporal cloaking.

different privilege levels, the whole process protects location privacy
under multiple discrete levels as customized in the user-defined privacy
profile.

2.6. Attack model

An anonymization scheme is considered to be strong if it makes
it harder for the attackers to infer the original location information
from the anonymous cloaking area. However, when it is extended to a
multilevel framework, the ability of the attackers to correctly reduce the
privacy level should also be taken into account. Given that an adversary
at one privilege level may attempt to access the finer information
entitled to users of a higher privilege level, we need to ensure that
even if the attacker has complete knowledge of the reversible spatio-
temporal cloaking algorithm, no additional information can be inferred
without the access to the secret anonymization keys. In this paper,
we introduce two attack models: (i) replay attack and (ii) network-
distance attack to evaluate the attack-resilience of the proposed multi-
level spatio-temporal cloaking schemes. Similar to the adversary models
in [6,7,14], we primarily focus on snapshot exposure of location infor-
mation for supporting snapshot location-based queries. For continuous
location-based queries, with the additional ability to combine and
correlate information from the location exposure of multiple snapshot
instances, the adversary’s chances of inferring the true location can be
increased [20,21]. While addressing such query-correlation attacks is a
promising direction for future work, the scope of the replay attack model
considered in our work is limited to snapshot queries.

2.6.1. Replay attack
In the replay attack, each segment within the cloaking region is

iteratively considered to be the segment of the actual user and the
associativity for all the segments are calculated by simulating the
cloaking algorithm from this assumed start segment. If the number
of segments shared by the replayed cloaking region generated from
a segment, 𝑠𝑖, and the real cloaking region generated from the real
start segment is 𝑁𝑖. The associativity, 𝐴𝑖 of 𝑠𝑖, can be calculated as
𝐴𝑖 =

𝑁𝑖
∑

𝑁𝑖
. After obtaining 𝐴𝑖 for all the segments within the cloaking

region, the uncertainty of the attacker can be quantified by Entropy [22]
measured as 𝐸 = −

∑

𝐴𝑖 log𝐴𝑖. The Entropy is a measure of the amount
of information required to break the anonymity provided by the system.
Therefore, the larger the entropy, the higher is the uncertainty of the
attacker and the scheme is more attack-resilient. The purpose of the
replay attack is to infer the location of the actual user in terms of the
segment where the user is located. However, in a multi-level location
privacy model, the purpose of the attacker may be just to infer finer
location information corresponding to a lower privacy level. Therefore,
even if the cloaking algorithm provides high resilience to replay attacks,
it may not be safe under attacks that target at just reducing the privacy

levels as opposed to exactly inferring the actual user’s location. Next,
we introduce the network-distance attack that aims at reducing the
anonymity level of the exposed location based on network distance
information in the exposed cloaked location.

2.6.2. Network distance attack
In the network-distance attack, the attacker’s goal is to identify

which privacy level each segment in the cloaking region belongs to.
This attack can be effective because many road-network based cloaking
algorithms expand the cloaking region by adding new segments adjacent
to the current cloaking region. Therefore, the inference attack becomes
very effective when the cloaking algorithm leaves the actual user
location close to the center of the cloaking area. In other words, with
higher confidence, the attacker can guess that the segments far away
from the center of the cloaking region belong to the higher privacy levels
as those segments are likely to be added near the end of the cloaking
process.

Precisely, in the network-distance attack, given a cloaking region,
the attacker first computes the distance between each segment of the
cloaked region and the center of cloaking area. Let the set of segments
within the cloaking region be represented as 𝐶 = {𝑐𝑠1, 𝑐𝑠2,… , 𝑐𝑠𝑛}.
The distance, 𝑑(𝑐𝑠𝑖, 𝑐𝑠𝑗 ) between two segments 𝑐𝑠𝑖, 𝑐𝑠𝑗 in the cloaked
region is defined as the distance between their midpoints along their
road segments and the network distance of 𝑐𝑠𝑖 indicates the distance
between 𝑐𝑠𝑖 and the center of the cloaking area. It is computed as
𝑛𝑑𝑖 =

∑𝑛
𝑗=1 𝑑(𝑐𝑠𝑖 ,𝑐𝑠𝑗 )

𝑛−1 . The attacker then estimates the likelihoods of a
segment belonging to a privacy level by assigning higher likelihoods
to segments with higher network distance to the higher privacy levels.
Based on this information, the attacker can guess the privacy level a
particular segment belongs to. Therefore, in order for a location cloaking
scheme to be resilient to this attack, every segment added to the cloaked
region should be equally probable to be located within the cloaking
area. In other words, the probability distribution of the network distance
of any segment added to the cloaked region should follow a uniform
distribution, thus maximizing the uncertainty of the attacker in this
attack.

In the next section, we present our proposed reversible spatio-
temporal location cloaking mechanisms that support multi-level loca-
tion privacy over road networks.

3. Reversible spatio-temporal cloaking

A successful spatio-temporal cloaking should satisfy both 𝜎𝑠 and 𝜎𝑡.
In general, it is hard to determine which of the many possible cloaking
boxes is the optimal one as it should be determined in a customized
manner. For the type of LBS requests that users prefer more accurate
response using a smaller cloaking area, the spatio-temporal cloaking box
with the smallest bottom area while the highest height would be the best
choice. In contrast, for the type of LBS requests that users prefer shorter
response delay, the spatio-temporal cloaking box with the shortest
height while the largest bottom area offers the best performance. In this
section, we present two different multi-level reversible spatio-temporal
cloaking techniques satisfying the two types of LBS requests, respec-
tively. We first present time-first reversible spatio-temporal cloaking
(TF-RSTC), which aims at generating the spatio-temporal cloaking boxes
with the smallest spatial cloaking area by first expanding itself along
the time axis. We then present space-first reversible spatio-temporal
cloaking (SF-RSTC), which results in the spatio-temporal cloaking boxes
with shortest response delay by first expanding along the spatial axes.

3.1. Time-first reversible spatio-temporal cloaking

Intuitively, to minimize the spatial cloaking area, the available time
𝜎𝑡 should be made full use of. Therefore, in time-first reversible spatio-
temporal cloaking (TF-RSTC), the height of a cloaking box is directly set
to the maximum allowable value, namely 𝜎𝑡, to aggregate the maximum
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Fig. 4. Time-first reversible spatio-temporal cloaking.

number of mobile users for each segment, thus increasing the weight
of each segment before a spatial cloaking algorithm is performed.
Then, segments with boosted weights are gradually added to the spatial
cloaking area to expand the cloaking box along x–y axes until (𝛿𝑘, 𝛿𝑙) is
satisfied.

There are two main challenges in this process. First, in the cloaking
time window 𝑊 that starts at 𝑡𝑠 and ends at 𝑡𝑒, the position of location
exposure time 𝑡0 in the window should be chosen in a randomized
manner, otherwise it may be exposed. For example, if we set 𝑡𝑠 = 𝑡0
and extend the window along one direction of time axis, the adversary
who knows the information of 𝑊 can easily infer 𝑡0 because of the
deterministic scheme and then leverage this vulnerability to locate the
real user as one of the mobile users who were included into the cloaking
box at 𝑡0. Therefore, the location exposure time 𝑡0 should be uniformly
distributed in 𝑊 to be perturbed. To achieve this, the cloaking time
window 𝑊 should be extended along two directions of the time axis. The
positive extension corresponding to the future time should be bounded
by temporal tolerance set by the service user, namely |𝑡𝑒 − 𝑡0| ≤ 𝜎𝑡, to
guarantee an acceptable delay of feedback. However, even though the
negative extension pointing corresponding to the past has no influence
on feedback delay, it should also be bounded. A very long negative
extension may aggregate too many mobile users on each segment. In
segment-based algorithms over road networks, each time one segment is
added or removed, the change of 𝛿𝑘 will be very large in this case, which
fails to control the anonymity level in a fine-grained manner. Therefore,
we set |𝑊 | = |𝑡𝑒 − 𝑡𝑠| = 𝜎𝑡 and 𝑡𝑠 ≤ 𝑡0 ≤ 𝑡𝑒 to bound both positive and
negative extension by 𝜎𝑡 and also perturb 𝑡0. In other words, the window
𝑊 can be viewed as a sliding window with a fixed length 𝜎𝑡, which is
bounded by the range [𝑡0 − 𝜎𝑡, 𝑡0 + 𝜎𝑡]. An example of such a window is
the 𝑊1 in Fig. 4. The real position of the window is pseudo-randomly
determined by a secret key. We will discuss this later.

Algorithm 1: TF-RSTC
Input : Road network graph 𝐺, original segment 𝑠𝑢, original request

time 𝑡0, number of privacy levels 𝑁 , secret keys
{𝐾 𝑖

𝑠|1 ≤ 𝑖 ≤ 𝑁 − 1}, user defined {(𝛿𝑖𝑘, 𝛿
𝑖
𝑙 , 𝜎

𝑖
𝑠, 𝜎

𝑖
𝑡 )|1 ≤ 𝑖 ≤ 𝑁 − 1}.

Output: A cloaking area 𝐶𝑙𝑜𝑎𝑘𝐴𝑁−1 and a set of users 𝐶𝑙𝑜𝑎𝑘𝑈𝑁−1 for
privacy level 𝐿𝑁−1.

1 Initially, 𝑡0𝑒 = 𝑡0, 𝜎0
𝑡 = 0;

2 for 𝑖 = 1 𝑡𝑜 𝑁 − 1 do
3 𝑅 = 𝑃𝑠𝑒𝑢𝑑𝑜𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑥𝑡(𝐾 𝑖

𝑠);
4 𝑇 = 𝜎𝑖

𝑡 − 𝜎𝑖−1
𝑡 ;

5 𝑡𝑖𝑠 = 𝑡𝑖−1𝑒 − 𝜎𝑖
𝑡 + 𝑇 ∗ 𝑅 𝑚𝑜𝑑 100

100
;

6 𝑡𝑖𝑒 = 𝑡𝑖𝑠 + 𝜎𝑖
𝑡 ;

7 𝑊𝑖 = [𝑡𝑖𝑠, 𝑡
𝑖
𝑒];

8 for each segment 𝑠′ satisfying 𝑑𝑖𝑠𝑡(𝑠′, 𝑠𝑢) ≤ 𝜎𝑠 do
9 Weight 𝑠′ based on 𝑊𝑖;
10 end
11 {𝐶𝑙𝑜𝑎𝑘𝐴𝑖, 𝐶𝑙𝑜𝑎𝑘𝑈 𝑖} ← 𝑆𝐸𝐹 ;
12 end

The second challenge arises due to the requirement of having multi-
ple levels. In a multi-level scenario with 𝑁 privacy levels, as discussed
in Section 2.5, each privacy level 𝐿𝑖, except 𝐿0, has a user-defined 𝜎𝑖𝑡 .
Usually, a higher privacy level expecting larger 𝛿𝑘 is given longer 𝜎𝑡 for
getting more mobile users. We now consider window 𝑊1 = [𝑡1𝑠 , 𝑡

1
𝑒 ] for a

higher privacy level 𝐿1 and window 𝑊2 = [𝑡2𝑠 , 𝑡
2
𝑒 ] for a lower privacy

level 𝐿2 and we assume |𝑊1| < |𝑊2| based on the rule. Since both
the two windows should include 𝑡0, the position of the two windows
may have two probabilities. In the first case, the smaller window 𝑊1
is fully included by the larger window 𝑊2, namely 𝑡2𝑠 ≤ 𝑡1𝑠 < 𝑡1𝑒 ≤ 𝑡2𝑒 .
One example of this fully included situation can be found in Fig. 4. In
the second case, 𝑊1 and 𝑊2 are only intersected, which indicates either
𝑡2𝑠 ≤ 𝑡1𝑠 < 𝑡2𝑒 ≤ 𝑡1𝑒 or 𝑡1𝑠 ≤ 𝑡2𝑠 < 𝑡1𝑒 ≤ 𝑡2𝑒 . However, we have to force
the first probability to happen because the intersection case will make
an adversary easily infer that 𝑡0 locates in the intersection area, thus
significantly compromising the cloaking result.

We propose the TF-RSTC algorithm that can properly handle both
the challenges (Algorithm 1). The algorithm takes the road network
graph data, user’s original location information, multi-level number and
a secret key and a profile (𝛿𝑖𝑘, 𝛿

𝑖
𝑙 , 𝜎

𝑖
𝑠, 𝜎

𝑖
𝑡 ) for each level as inputs. For each

privacy level (line 2–12), the algorithm takes three steps to pseudo-
randomly expanding the spatio-temporal cloaking box in a reversible
manner, namely time window expansion (line 3–7), segment weight
increment (line 8–10) and finally spatial expansion (line 11). In both
first and third step, the reversibility is supported by using the secret key
as a seed of a pseudo-random number generator (line 3 and 11) and
then leverage the created pseudo-random numbers to serve as providers
of randomness during window expansion and segment selection. As a
result, when later the same secret keys are used, the same randomness
can be re-generated to narrow the window and remove segments,
thus allowing the secret key holders to reduce the privacy level in a
deterministic manner while preventing any party without the keys to
do the same thing. During time window expansion, after generating
a pseudo-random number, the algorithm first computes the expansion
amount 𝑇 , which indicates the amount of length increased from window
𝑊𝑖−1 in the last round to window 𝑊𝑖 in the current round. In TF-RSTC,
as the goal is minimizing spatial cloaking area, the window length is
always expanded to its maximum allowable amount, so 𝑇 should be the
difference of 𝜎𝑡 between two adjacent privacy levels. Once 𝑇 has been
set, a part of its amount is pseudo-randomly cut off through 𝑇 ∗ 𝑅 𝑚𝑜𝑑 100

100
and then added to the lower bound of the range of the window in the
current round, which then determines the start time 𝑡𝑠 of the current
window (line 5). After that, the end time 𝑡𝑒 is simply the sum of 𝑡𝑠 and 𝜎𝑡
(line 6) and the current window is finalized (line 7). To sum up, this time
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Fig. 5. Space-first reversible spatio-temporal cloaking.

window expansion process offers the following properties: (1) windows
at all privacy levels are all with the length of their maximum allowable
amounts; (2) a higher privacy level window is always longer than a
lower privacy level window and it always covers all lower privacy level
windows in full; (3) the multi-level window expansion is performed in
a pseudo-random manner, which allows only the secret key holders to
later narrow the window and de-anonymize the cloaking box along the
time axis. After the time window of a particular privacy level has been
decided, the mobile users passing the reachable segments from user’s
original location information within 𝜎𝑠 are accumulated to increase
the weight of those segments. Finally, the spatial expansion function
(SEF) can be used to expand the cloaking box along the spatial axes
to form the cloaking box with 𝐶𝑙𝑜𝑎𝑘𝐴 and 𝐶𝑙𝑜𝑎𝑘𝑈 that satisfies the
(𝛿𝑘, 𝛿𝑙) of the current privacy level. It is worth noting that both RGE and
RPLE proposed in [17] can be adapted to work as the spatial expansion
function. We discuss more details about how RGE and RPLE can be
adapted in Section 3.3.

3.2. Space-first reversible spatio-temporal cloaking

Unlike TF-RSTC, in the space-first reversible spatio-temporal cloak-
ing (SF-RSTC), the spatio-temporal cloaking box first expands itself in
the spatial domain along x–y axes to capture all available segments in
the area bounded by 𝜎𝑠. After that, the cloaking box gradually expands
itself along the time axis by including more mobile users passing the
same area at different timestamps until 𝛿𝑘 is satisfied. As a result, the SF-
RSTC scheme enables shortest response delay at the price of the largest
spatial cloaking area. Similar to TF-RSTC, the SF-RSTC algorithm should
also solve the two challenges presented in Section 3.2. In addition, the
two challenges should be handled in a way that the time window 𝑊
gradually increases its length along the two directions of the time axis
in a step-by-step manner. The reason for this requirement is to make
the response delay as small as possible without violating the privacy
protection.

To handle the challenges under the new circumstances, we propose
the SF-RSTC algorithm as shown in Algorithm 2. In addition to the
inputs taken by the TF-RSTC algorithm, the SF-RSTC algorithm requires
a window extension rounds 𝑀 , which indicates the number of times
that a window spends to increase its length from zero to the maximum
allowable amount. Intuitively, a larger 𝑀 tends to results in a smaller
window increment step and therefore a smaller window length is more
likely to be found. In contrast, a smaller 𝑀 may reduce the algorithm
running time because of its coarse-grained search. In the algorithm, for
each privacy level (line 2–23), the spatial expansion function is first run
under the restriction that there is no room to expand the cloaking box
along the time axis (line 3). In other words, the algorithm first gives it a
try to see whether the maximum spatial cloaking area generated purely
through the spatial expansion function can directly satisfy (𝛿𝑘, 𝛿𝑙) (line
20–22). If not, the algorithm will start to gradually increase the time
window 𝑊 (line 4–19). Similar to the TF-RSTC algorithm, the secret
key is used to provide pseudo-randomness (line 5). The algorithm will
try 𝑀 rounds (line 7–18) of window length increment, with each round
increasing the window length by an amount ▵ 𝑡 (line 6). For example, in
Fig. 5, the algorithm spent three rounds to set 𝑊1 and two rounds to set
𝑊2. During the 𝑗th round at the 𝑖th privacy level, the window with its
current length 𝜎𝑖𝑡 = 𝜎𝑖−1𝑡 + 𝑗 ∗▵ 𝑡 is pseudo-randomly determined within
the range [𝑡𝑖−1𝑒 −𝜎𝑖𝑡 , 𝑡

𝑖−1
𝑠 +𝜎𝑖𝑡 ], thus guaranteeing that the current window

can fully cover all lower privacy level windows (line 8–12). After the
window has been set, the mobile users passing the spatial cloaking
region generated through the first try (line 3) during the extended time
window are accumulated (line 13). If the updated result can satisfy
(𝛿𝑘, 𝛿𝑙) for this privacy level, the algorithm will go to the next privacy
level (line 14–17), otherwise the algorithm will further increase the time
window with another ▵ 𝑡 in the next round until either (𝛿𝑘, 𝛿𝑙) is satisfied
or the window length has been increased for 𝑀 rounds.

Algorithm 2: SF-RSTC
Input : Road network graph 𝐺, original segment 𝑠𝑢, original request

time 𝑡0, number of privacy levels 𝑁 , secret keys
{𝐾 𝑖

𝑠|1 ≤ 𝑖 ≤ 𝑁 − 1}, user defined {(𝛿𝑖𝑘, 𝛿
𝑖
𝑙 , 𝜎

𝑖
𝑠, 𝜎

𝑖
𝑡 )|1 ≤ 𝑖 ≤ 𝑁 − 1},

window extension rounds 𝑀 .
Output: A cloaking area 𝐶𝑙𝑜𝑎𝑘𝐴𝑁−1 and a set of users 𝐶𝑙𝑜𝑎𝑘𝑈𝑁−1 for

privacy level 𝐿𝑁−1.
1 Initially, 𝑡0𝑒 = 𝑡0, 𝜎0

𝑡 = 0;
2 for 𝑖 = 1 𝑡𝑜 𝑁 − 1 do
3 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑆𝐸𝐹 ;
4 if 𝑟𝑒𝑠𝑢𝑙𝑡 == 𝐹𝐴𝐼𝐿 then
5 𝑅 = 𝑃𝑠𝑒𝑢𝑑𝑜𝑅𝑎𝑛𝑑𝑜𝑚𝑁𝑒𝑥𝑡(𝐾 𝑖

𝑠);
6 ▵ 𝑡 = 𝜎𝑖

𝑡−𝜎
𝑖−1
𝑡

𝑀
;

7 for 𝑗 = 1 𝑡𝑜 𝑀 do
8 𝜎𝑖

𝑡 = 𝜎𝑖−1
𝑡 + 𝑗 ∗▵ 𝑡;

9 𝑇 = 𝜎𝑖
𝑡 − 𝜎𝑖−1

𝑡 ;
10 𝑡𝑖𝑠 = 𝑡𝑖−1𝑒 − 𝜎𝑖

𝑡 + 𝑇 ∗ 𝑅 𝑚𝑜𝑑 100
100

;
11 𝑡𝑖𝑒 = 𝑡𝑖𝑠 + 𝜎𝑖

𝑡 ;
12 𝑊𝑖 = [𝑡𝑖𝑠, 𝑡

𝑖
𝑒];

13 Update 𝑟𝑒𝑠𝑢𝑙𝑡 based on 𝑊 𝑖;
14 if 𝑟𝑒𝑠𝑢𝑙𝑡 == 𝑆𝑈𝐶𝐶𝐸𝑆𝑆 then
15 {𝐶𝑙𝑜𝑎𝑘𝐴𝑖, 𝐶𝑙𝑜𝑎𝑘𝑈 𝑖} ← 𝑟𝑒𝑠𝑢𝑙𝑡;
16 𝑏𝑟𝑒𝑎𝑘;
17 end
18 end
19 end
20 else
21 {𝐶𝑙𝑜𝑎𝑘𝐴𝑖, 𝐶𝑙𝑜𝑎𝑘𝑈 𝑖} ← 𝑟𝑒𝑠𝑢𝑙𝑡;
22 end
23 end

3.3. Reversible spatial expansion

In both the TF-RSTC and SF-RSTC algorithms presented in the
previous two subsections, we abstract the spatial expansion of the
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cloaking box as an external function called at line 11 of Algorithm 1 and
line 3 of Algorithm 2, respectively. To make the two algorithms fully
reversible, similar to the way that window expansion can be pseudo-
randomly controlled by secret keys, we also need to use the secret keys to
pseudo-randomly select segments to expand the spatial cloaking region
so that later the same keys can be applied by privileged data users to
identify and remove these segments. In the rest of this subsection, we
first present the high level idea of using keys to pseudo-randomly select
segments to form spatial cloaking regions in a reversible manner. We
then review the two approaches proposed in [17] for implementing
reversible spatial cloaking, namely reversible global expansion (RGE)
and reversible pre-assignment-based local expansion (RPLE). Finally, we
discuss how RGE and RPLE techniques can be adapted and used as the
spatial expansion function in TF-RSTC and SF-RSTC algorithms.

In reversible spatial cloaking, the anonymization and
de-anonymization processes are considered as a continuous selection
and removal of road segments on the geographic road map respectively.
To ensure that the process is reversible, the segments are selected in a
pseudo-random manner. Each road segment on the map is linked to sev-
eral other segments, which are located close to it. Once a road segment 𝑆
is selected during anonymization, the next selected road segment is from
one of its linked segments. With a certain access key, a fixed segment 𝑆′

among them is deterministically selected. However, without the access
key, all its linked segments would have the same probability to be
selected, thus making the selection process pseudo-random and making
it impossible to reverse without possessing the access key. Then, during
the de-anonymization process, the newly selected segment 𝑆′ maps to
the previous road segment 𝑆 using the access key. The algorithms checks
which road segment is linked with 𝑆′ to narrow down the options and
whether segment 𝑆′ can be deterministically selected with the access
key if we assume a segment is 𝑆. A key challenge here is the ‘collision’
issue that could happen in the de-anonymization process. That is, we
may find multiple road segments that meet the conditions to be the
candidate of the previously chosen road segment. To address this issue,
in RGE, for each road segment selection during anonymization, the links
of previously selected segments are rebuilt on the fly to avoid collisions
and optimize the selection based on the current state. In RPLE, prior
to the anonymization process, all the road segments in the map are
pre-assigned their links in a collision-free manner. As a result, RGE has
larger anonymization runtime to build collision-free links on the fly but
smaller memory requirement while RPLE has smaller anonymization
runtime but requires larger memory space to store the collision-free
links. Next, we review the process of RGE and RPLE with Figs. 6 and 7,
respectively.

In both Figs. 6 and 7, the current cloaking region is {𝑠8, 𝑠9, 𝑠11},
where 𝑠8 is the last selected segment, and the algorithms are selecting
the next segment to be added into the cloaking region. In RGE (Fig. 6),
the three selected segments {𝑠8, 𝑠9, 𝑠11} and the same number of non-
selected nearby segments {𝑠6, 𝑠10, 𝑠14} are taken to form a 3 × 3
square matrix, where the cells are filled with 0–2 in a way that each
row/column has no repeated value. Assume that the pseudo-random
number 𝑅𝑖 generated through the access key gives 𝑅𝑖 𝑚𝑜𝑑 3 = 2, then 𝑠14
will be the next selected segment because only the cell [𝑠8][𝑠14] has value
2 at row 𝑠8. Later in de-anonymization, after removing 𝑠14, the same
matrix can be formed and the same access key can give 𝑅𝑖 𝑚𝑜𝑑 3 = 2.
By looking at column 𝑠14, since only the cell [𝑠8][𝑠14] has value 2, the
algorithm understands that 𝑠8 should be the next removed segment. In
this way, the reversibility can be established in a collision-free manner.
Unlike RGE, in RPLE (Fig. 7), prior to the anonymization process, the
algorithm has generated one forward list and one backward list for each
segment in the map. All the lists have the same length, which is six in the
example. Assume that the pseudo-random number 𝑅𝑖 gives 𝑅𝑖 𝑚𝑜𝑑 6 = 3,
then 𝑠14 will be the next selected segment because it is the third element
in the forward list of 𝑠8. Later in de-anonymization, since 𝑠8 is also the
third element in the backward list of 𝑠14, with the same access key giving
𝑅𝑖 𝑚𝑜𝑑 6 = 3, the algorithm is able to remove 𝑠8 after 𝑠14. As can be seen,

Fig. 6. Reversible global expansion.

Fig. 7. Reversible pre-assignment-based local expansion.

to establish reversibility in RPLE, 𝑠14 should be at the same position in
the forward list of 𝑠8 where 𝑠8 is located in the backward list of 𝑠14.
With this objective, in RPLE, the two lists for all the road segments can
be generated in a greedy manner.

Both RGE and RPLE can be adopted as the spatial expansion function
used in TF-RSTC and SF-RSTC algorithms. However, they must be
adjusted in two aspects. First, in a spatio-temporal cloaking box, the
same mobile user may appear at different segment within the box
at different timestamps. To avoid counting such a mobile user for
multiple times, when each new segment is selected to be added into the
cloaking region, such collision should be first detected and the repeated
mobile users should be removed. Second, in the original RGE and RPLE
algorithms, the algorithm will stop when only 𝛿𝑘 is satisfied. However,
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in the new context, the algorithm should stop only when both 𝛿𝑘 and 𝛿𝑙
are satisfied.

4. Experimental evaluation

In this section, we first present the experimental setup, and then
evaluate the performance of proposed reversible spatio-temporal cloak-
ing schemes.

4.1. Experimental setup

To simulate and compare different anonymization approaches, we
use GTMobiSim mobile trace generator for road network [23]. Our
experiments were designed based on a real road network map of
northwest part of Atlanta, involving 6979 junctions and 9187 segments,
obtained from maps of National Mapping Division of the USGS. There
are 10,000 cars randomly generated along the roads based on Gaussian
distribution. Once a car is generated, the associated destination is also
randomly chosen and the route selection is based on shortest path
routing. All the cloaking schemes are implemented in Java with the help
of GTMobiSim. For all experiments, we repeated 100 times and took the
average as results.

Our experimental evaluation consists of three parts. In the first part,
we compare the performance of reversible spatio-temporal cloaking
schemes proposed in this work with the existing reversible spatial
cloaking schemes [17], namely reversible global expansion (RGE) and
reversible pre-assignment-based local expansion (RPLE). In the rest
of this section, when a spatial cloaking algorithm XYZ is applied as
the spatial expansion function in time-first reversible spatio-temporal
cloaking (TF-RSTC) (line 11 of Algorithm 1) or space-first reversible
spatio-temporal cloaking (SF-RSTC) (line 3 of Algorithm 2), we refer
to the corresponding spatio-temporal cloaking algorithms as TF-XYZ
and SF-XYZ respectively. Since both RGE and RPLE can be applied in
both TF-RSTC and SF-RSTC, we implement and compare all the possible
combinations, namely TF-RGE, TF-RPLE, SF-RGE and SF-RPLE, with
RGE and RPLE. Our results show that the reversible spatio-temporal
cloaking schemes achieve higher success rate and higher spatial reso-
lution compared to reversible spatial cloaking.

In the second set of experiments, we implement and compare the
proposed reversible spatio-temporal cloaking schemes (TF-RGE, TF-
RPLE, SF-RGE, SF-RPLE) with a set of irreversible spatio-temporal
cloaking schemes. The irreversible spatio-temporal cloaking schemes
are implemented by adopting two conventional spatial cloaking algo-
rithm, namely Random Sampling (RS) and Star-based road network
expansion (SE) [6] in TF-RSTC and SF-RSTC, which results in TF-RS, TF-
SE, SF-RS and TF-SE schemes. The comparison of the eight algorithms
shows that although the reversible spatio-temporal algorithms can offer
the reversibility feature, their performance evaluated with different
evaluation metrics are still as good as the irreversible ones without the
reversibility feature, which demonstrates that the reversibility feature
does not come at the cost of a performance drop.

Finally, in the third part of experiments, we compare and evaluate
the attack resilience of the four reversible spatio-temporal cloaking
schemes (TF-RGE, TF-RPLE, SF-RGE, SF-RPLE) against replay attack and
network distance attack.

4.2. Reversible spatio-temporal cloaking and reversible spatial cloaking
comparison

In the first part, we compare four reversible spatio-temporal cloaking
schemes (TF-RGE, TF-RPLE, SF-RGE, SF-RPLE) with two reversible
spatial cloaking schemes (RGE, RPLE) regarding two evaluation metrics.
The first metric is relative spatial resolution (RSR), which is defined
as the ratio of the size of the maximum allowable spatial area size
specified by the spatial tolerance 𝜎𝑠 to the size of obtained cloaking
area from algorithms. A larger RSR refers to a smaller cloaking area,

Fig. 8. Reversible spatio-temporal cloaking and reversible spatial cloaking comparison.

Fig. 9. Space-first and Time-first reversible spatio-temporal cloaking comparison.

which has a higher probability to provide more accurate LBS responses.
The second metric is success rate, which simply refers to the ratio of
the number of cloaking requests receiving successful responses that
satisfy corresponding user-defined privacy profiles to the number of
total cloaking requests.

The performance of the six algorithms are evaluated by varying the
anonymity level 𝛿𝑘 as

𝛿𝑘 = 10𝑖 𝑓𝑜𝑟 𝑖 = 1, 2...20

Also, the spatial tolerance, 𝜎𝑠, is set as a function of the anonymity level,
𝛿𝑘 such that

𝜎𝑠 = 400
√

𝑖 =
40𝛿𝑘
√

𝑖
𝑓𝑜𝑟 𝑖 = 1, 2...20

where the unit is meter(m). Therefore, the maximum allowable special
region is a circular region with the user’s actual location as the center
and the spatial tolerance, 𝜎𝑠 as the radius. We also set 5% standard
deviation for each 𝜎𝑠 and the segment diversity level 𝛿𝑙 is fixed to be 10.
In addition, the temporal tolerance 𝜎𝑡 is fixed to 30 s for spatio-temporal
algorithms.

The results of RSR with varying 𝛿𝑘 are shown in Fig. 8(a), where
we observe three points. First, compared with RGE and RPLE, their
implementation in space-first reversible spatio-temporal cloaking (SF-
RSTC), namely SF-RGE and SF-RPLE, perform lower RSR. In contrast,
the implementation of RGE and RPLE in time-first reversible spatio-
temporal cloaking (TF-RSTC), namely TF-RGE and TF-RPLE results in
much higher RSR. The reason is that SF-RSTC schemes first expand
cloaking boxes in the spatial domain, which may quickly make RSR close
to 1, namely the situation that the obtained cloaking area is close to the
maximum allowable area. Theoretically, RSR offered by SF-RGE and
SF-RPLE should be similar to that offered by RGE and RPLE. However,
when cloaking region has been expanded to the maximum allowable
area while 𝜎𝑘 is still not satisfied, SF-RGE and SF-RPLE can further
extend cloaking boxes along the time axis while RGE and RPLE have to
stop and response a ‘FAIL’. This difference makes SF-RGE and SF-RPLE
provide even lower RSR. In contrast, TF-RSTC schemes first expand
cloaking boxes along the time axis, thus resulting in much smaller spatial
cloaking area and much higher RSR. Second, in all three scenarios,
cloaking schemes with RGE always perform higher RSR than cloaking
schemes with RPLE. The reason is that RGE generates lists for segments
in a dynamic on-the-fly manner, which helps make segments within
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Fig. 10. Space-first spatio-temporal cloaking.

Fig. 11. Time-first spatio-temporal cloaking.

the cloaking region tighter and the cloaking area smaller. Finally, we
observed that when 𝛿𝑘 increases, only RSR offered by TF-RSTC schemes
also increases. The main reason is that the accumulation of mobile users
along the time dimension in TF-RSTC schemes makes the expansion of
cloaking boxes in spatial domain fall behind the expansion of maximum
allowable area due to the increment of 𝛿𝑘.

In Fig. 8(b), we show the results of success rate with varying 𝛿𝑘.
When 𝛿𝑘 increases from 10 to 200, the success rates offered by RGE
and RPLE eventually decrease from higher values close to 100% to very
low values, 71% for RGE and 52% for RPLE. In contrast, the success
rates offered by all the reversible spatio-temporal cloaking schemes are
always at 100%. This shows that reversible spatio-temporal cloaking
schemes can significantly improve request success rate by making full
use of both 𝜎𝑡 and 𝜎𝑠.

To sum up, the results of the first part of experiments prove that the
reversible spatio-temporal cloaking algorithms proposed in this work
offer higher relative spatial resolution and higher query success rate
than the reversible spatial cloaking algorithms in [17].

4.3. Reversible and irreversible spatio-temporal cloaking comparison

In the second part of designed experiments, we compare four re-
versible spatio-temporal cloaking algorithms (TF-RGE, TF-RPLE, SF-
RGE, SF-RPLE) with four irreversible spatio-temporal cloaking algo-
rithms (TF-RS, TF-SE, SF-RS, SF-SE). For short, the random sampling
(RS) scheme first chooses the road segment containing the actual user.
It then randomly adds segments within the bounded area restricted by
𝜎𝑠 into the cloaking region until the requirements of 𝛿𝑘 and 𝛿𝑙 are met.
In the star-based road-network expansion(SE) [6], instead of randomly
choosing segments from the bounded region in a discrete manner, the
segments are chosen continuously based on an expansion scheme. The
expansion begins from the segment containing the actual user and
randomly expands such that each newly added segment is adjacent to
at least one other segment in the currently formed cloaking region.

We first evaluate the eight algorithms in terms of response delay and
RSR when 𝛿𝑘 is changed from 10 to 200. The results are shown in Fig. 9.
Here, we fix 𝛿𝑙 to 10, 𝜎𝑠 to 300 m and 𝜎𝑡 to 30 s. As can be seen in
Fig. 9(a), all the TF-RSTC algorithms have their response delay close to
15 s, namely a half of 𝜎𝑡. This is because all TF-RSTC algorithms directly
extend the time window length to 𝜎𝑡 and the window end is randomly
taken within the range. In contrast, all SF-RSTC algorithms perform

much smaller response delay, especially when 𝛿𝑘 is small. The reason
is that a smaller 𝛿𝑘 requires fewer mobile users to be collected along
the time axis, thus resulting in a smaller window length. In Fig. 9(b),
the RSR of all the TF-RSTC algorithms is much larger, indicating that
smaller spatial cloaking area can be provided. Therefore, to sum up, in
cases when a shorter delay is the primary objective, SF-RSTC algorithms
work much better. We can conclude that TF-RSTC algorithms should be
preferred when more accurate feedback is expected.

Next, we separately evaluate SF-RSTC algorithms and TF-RSTC
algorithms using additional metrics, which are anonymization time,
response delay, relative spatial resolution (RSR) and success rate. In
Fig. 10, we evaluate the performance of the four SF-RSTC algorithms
with varying 𝜎𝑠 = 300 m, 350 m, 400 m, 450 m and we fix 𝛿𝑘 to 200,
𝛿𝑙 to 10 and 𝜎𝑡 to 30 s. In SF-RSTC algorithms, the cloaking box first
extends along x–y axes before 𝜎𝑠 is reached and then turns to the
time axis to capture more mobile users to satisfy 𝛿𝑘. In Fig. 10(a),
following the growth of 𝜎𝑠, the anonymization times of all the algorithms
increase because larger 𝜎𝑠 indicates more segments to be included into
the cloaking area. In this case, for all the tested spatial tolerances,
the boundary of the bounded area is reached first, so the RSR of
all algorithms is always minimum (Fig. 10(c)). Once all the available
segments have been captured, the extension of cloaking box turns to
the time axis. For a smaller 𝜎𝑠, a longer time window is required as
shown in Fig. 10(b). In Fig. 10(d), the success rates of all algorithms
in all four cases are very close to 1 indicating that the techniques are
highly reliable.

Finally, in Fig. 11, we evaluate the performance of the four TF-RSTC
algorithms with varying 𝜎𝑡 = 0 s, 10 s, 20 s, 30 s and we fix 𝛿𝑘 to
200, 𝛿𝑙 to 10 and 𝜎𝑠 to 1000 m. In TF-RSTC algorithms, the cloaking
box first extends along the time axis to reach 𝜎𝑡. In Fig. 11(a), the
anonymization time of all the four algorithms decreases when 𝜎𝑡 is
larger. Larger time window means smaller spatial cloaking area, thus
fewer required segments. Fig. 11(b) measures the number of active
segments with different 𝜎𝑡. A segment is said to be active if it can fill
the 𝑘-user requirement of 𝛿𝑘 by at least one user once it is added to the
cloaking area. For a larger 𝜎𝑡, a mobile user has more chance to pass
more segments, which also means a segment may be passed by more
mobile users and have a higher chance to become active. When 𝜎𝑡 is
close to 0 s, which shows a snapshot record, only 2133 segments among
the 9187 segments are active. This value increases to 3443 when 𝜎𝑡 rises
to 30 s. In Fig. 11(c), the relative spatial resolution (RSR) is measured.
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Fig. 12. Attack resilience.

For all the four algorithms, the RSR increases significantly, especially for
TF-RGE and TF-SE. The reason for that is the increment of the number
of active segments, which makes the algorithms satisfy 𝛿𝑘 with fewer
selected segments, thus smaller cloaking area and larger RSR. Fig. 11(d)
shows the results of success rate. The success rates of all the algorithms
rise towards 100% with increasing 𝜎𝑡. For the case when 𝜎𝑡 is 30 s, the
success rates of the four algorithms are almost the same, which is very
close to 1.

As can be seen from the results, the reversible spatio-temporal
algorithms maintain similar performance as irreversible techniques in
terms of anonymization time, response delay, relative spatial resolution
(RSR) and success rate. Thus the reversibility feature of the proposed
schemes does not come at the cost of any reduction in performance.

4.4. Attack resilience evaluation

This set of experiments evaluate the effectiveness of the four re-
versible spatio-temporal cloaking algorithms (TF-RGE, TF-RPLE, SF-
RGE, SF-RPLE) in terms of their resilience to replay attack and network
distance attack.

For replay attack, average information entropy is used as the metric
to evaluate the uncertainty of the attacker: 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −

∑

𝐴𝑖 log𝐴𝑖,
where 𝐴𝑖 is the associativity for each segment. Here, higher entropy
means higher randomness and higher uncertainty for the attacker in
inferring the true location of the user, thus leaking out less information
and providing better privacy protection. Fig. 12(a) shows average
entropy of the replay attack with varying 𝛿𝑘. It can be seen that both
SF-RGE and SF-RPLE offers higher average entropy than TF-RGE and
TF-RPLE, which is the results of larger spatial cloaking area provided by
SF-RSTC algorithms. In addition, RPLE performs higher average entropy
in both TF-RSTC and SF-RSTC than RGE, which indicates that the looser
cloaking region offered by RSTC has higher randomness than the tighter
cloaking region offered by RGE.

In order to measure the resilience of the schemes against network
distance attack, we measure entropy that captures the uncertainty of the
attacker in identifying which privacy level a cloaking segment belongs
to. In this experiment, we consider eight privacy levels beyond 𝐿0 and
therefore, the highest possible entropy of a network-distance attack
in this case would be 3. This highest entropy represents the highest
possible uncertainty of the adversary representing the scenario when
the associativity of all the segments for all the eight levels follow a
uniform distribution. Fig. 12(b) shows the results for varying 𝛿𝑘. As can
be seen, both TF-RGE and TF-RPLE offer higher entropy than SF-RGE
and SF-RPLE. In SF-RSTC algorithms, since the spatial cloaking area is
usually expanded close to the maximum allowable area, the position of
the real user is usually closer to the center of the maximum allowable
area. As a result, the probability to find the segment containing the real
user through network distance attack becomes higher. In contrast, TF-
RSTC algorithms can perform much better resilience regarding network
distance attack. In addition, we can find that RPLE performs higher
entropy in both TF-RSTC and SF-RSTC than RGE, which is also the
results of looser cloaking region offered by RSTC.

Thus, this set of experiments shows that even though all algorithms
offer significant resilience against the adversarial attacks, the TF-RSTC
algorithms offer relatively higher resilience against network distance
attack while the SF-RSTC algorithms offer higher resilience against the
replay attack.

5. Related work

Location privacy has been an active area of research in the past.
Broadly, location privacy protection mechanism can be classified into
policy-based protection techniques and inference prevention-based
techniques. Policy-based schemes give users permission to define pri-
vacy rules according to the service request, thus getting users’ active
participation. The inference-prevention schemes are more focused on
prevention by protectively processing and perturbing the location
information prior to disclosure. The latter can be further broken down
into location data perturbation techniques represented by [10,14,15,
17,24,25] and trajectory inference prevention techniques represented
by [21,26–29].

Location data perturbation schemes consists of perturbation through
dummies [30,31], information-theoretic approaches [24,25], spatial lo-
cation cloaking [7,10,11,13–15,32] and differential privacy [8,9,12,33–
35]. The goal of location data perturbation is to perturb users’ real
location information so that the injected uncertainty can resist potential
attacks made by adversaries. In dummy-based approaches [30,31],
when a user sends a query to one LBS provider, some dummy locations
are also sent with the query. The dummy trajectories should have
similar properties of the real trajectories so that adversaries with map
information cannot distinguish the real trajectories from the dummy
trajectories. In information-theoretic approaches [24,25], to reduce
privacy leakage, the location data of a user consists of public data that
is safe to be released and private data that should be well protected.
However, information about private data may be revealed from the
public data. To solve this, the public data of a user can be obfuscated
through a carefully designed probabilistic obfuscation function so that
information of private data is hard to be inferred from the obfuscated
public data [24].

In the past, there have been many works related to spatial location
cloaking. To proactively protect user’s location privacy, 𝑘-anonymity,
which was proposed for sensitive data protection [36], was applied to
protect location privacy in the context of location-aware systems [37].
Since then, the techniques related to spatial cloaking has been de-
veloping rapidly. CliqueCloak algorithm proposed in 2004 considered
the individual user’s personalized privacy requirement for the first
time [10]. A grid-based cloaking framework, Casper further extended
this model with a privacy-aware query processor [14,38]. Subsequently,
a directed-graph based cloaking algorithm was proposed to improve the
success rate of anonymization [15] and the Hilbert Cloak algorithm uses
a Hilbert curve to fill the whole area and track users [11].

These traditional cloaking schemes have some limitations. Most
traditional cloaking techniques were designed for mobile users trav-
eling on Euclidean space, recent work has considered the location
cloaking problem under a constrained road network model [6,39,40].
In [41], location labels are introduced to distinguish locations of mobile
users to sensitive and ordinary locations, which can be viewed as an
enhanced cloaking technique in the IoT scenario. In [42], the fully
trusted Anonymizer, which is usually required by most traditional
cloaking schemes to perform the cloaking algorithms, is replaced by
a function generator distributing the spatial transformation parameters
periodically. In [43], an information-theoretic approach was introduced
to define the notion of perfect location privacy, which indicated how to
ensure users’ perfect location privacy through anonymization methods.
In [44,45], game theory models were applied to further enhancing
cloaking schemes. Specifically, the privacy-utility tradeoff was modeled
as a Stackelberg Bayesian game in [44] while a hide-and-seek game-
theoretic model was used in [45] to prevent the rational trusted third
party from colluding with rational adversaries.
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Another dimension of recent work has studied the location privacy
problem by perturbing the location information based on differential
privacy constraints prior to disclosure [33–35]. Differential privacy [46,
47] provides rigorous protection against adversaries with background
knowledge and quantifies the privacy in a mathematically provable
manner. By carefully applying differential privacy mechanisms [46–48]
to the trajectory data, the personal location information in the disclosed
statistical output can be protected. Usually, the raw location dataset is
first transferred to a special data structure, such as Prefix tree [9,12]
or N-gram [8]. Then, the differential privacy protection mechanisms
(e.g. Laplace Mechanism [46], Exponential Mechanism [48]) inject
noises to the data structures before releasing them for further processing.
While differential privacy provides a more formal and rigorous privacy
guarantee against background knowledge attacks, it can result in a
higher perturbation and may provide a lower data utility compared
to anonymization techniques. Thus in cases where there is a lack of
background knowledge and when the risks of such attacks are minimal,
anonymization techniques are likely to provide a higher data utility
compared to differential privacy.

As we can observe, most existing location privacy protection mecha-
nisms have focused on developing unidirectional location perturbation
approaches that do not allow fine granular information to be inferred
even when some users have the privileges to access it. The reversible
spatial cloaking algorithms proposed in [17] use access keys to control
the pseudo-randomness required for generating an attack-resilient spa-
tial cloaking region, thus allowing data owners to control the utility
and privacy levels of their data. These algorithms are spatial cloaking
algorithms that expand the cloaking region only along the spatial dimen-
sion. As a result, reversible spatial location cloaking techniques obtain
lower success rate and lower spatial resolution of the perturbed location
leading to lower reliability and reduced service quality. In contrast, the
work presented in this paper leverages the more sophisticated spatial–
temporal cloaking model [19] that perturbs the location data along both
spatial and temporal dimensions while still ensuring that the spatio-
temporal expansion process is reversible when suitable access keys are
provided. Our experimental results show that, compared with the two
reversible spatial cloaking algorithms in [17], the reversible spatio-
temporal cloaking schemes proposed in this paper have a significant
performance improvement in terms of spatial resolution and query
success rate.

6. Conclusion

In this paper, we presented a new class of reversible spatio-temporal
cloaking mechanisms for supporting multi-level privacy requirements
in access controlled environments. We argue that conventional location
perturbation techniques are irreversible and are not inherently designed
to support multi-level privacy of users. While recent techniques on
reversible spatial cloaking techniques employ data anonymization keys
to perturb a users location in a pseudo-random manner, the performance
of these schemes in terms of success rate and service quality is limited by
their adopted spatial cloaking model in which the location perturbation
occurs solely in the spatial domain. In this work, we have developed
two reversible spatio-temporal cloaking mechanisms namely (i) time-
first reversible spatio-temporal cloaking and (ii) space-first reversible
spatio-temporal cloaking scheme that effectively support multi-level
privacy, allowing users with higher privileges to obtain finer location
information through reduced anonymity levels. The proposed tech-
niques allow data perturbation to occur along both spatial and temporal
dimensions while still ensuring that the spatio-temporal expansion pro-
cess is reversible when suitable access keys are provided. We evaluate
the proposed techniques through extensive experiments on real road
networks that show that the proposed model achieves higher success
rate and higher spatial resolution compared to the reversible spatial
cloaking and offers better QoS performance and strong attack resilience
against adversarial attacks.
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