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Abstract—In the Internet of Things(IoT) era, the demands
for low-latency computing for time-sensitive applications (e.g.,
location-based augmented reality games, real-time smart grid
management, real-time navigation using wearables) has been
growing rapidly. Edge Computing provides an additional layer
of infrastructure to fill latency gaps between the IoT devices and
the back-end computing infrastructure. In the edge computing
model, small-scale micro-datacenters that represent ad-hoc and
distributed collection of computing infrastructure pose new
challenges in terms of management and effective resource sharing
to achieve a globally efficient resource allocation. In this paper, we
propose Zenith, a novel model for allocating computing resources
in an edge computing platform that allows service providers
to establish resource sharing contracts with edge infrastructure
providers apriori. Based on the established contracts, service
providers employ a latency-aware scheduling and resource pro-
visioning algorithm that enables tasks to complete and meet their
latency requirements. The proposed techniques are evaluated
through extensive experiments that demonstrate the effectiveness,
scalability and performance efficiency of the proposed model.

Index Terms—fog computing; edge computing; resource allo-
cation

I. INTRODUCTION

In the Internet of Things(IoT) [1] era, the demands for
low-latency computing for time-sensitive applications (e.g.,
location-based augmented reality games, real-time smart grid
management, real-time navigation using wearables) has been
growing rapidly [2]. Edge Computing provides an additional
layer of infrastructure to fill latency gaps between the IoT
devices and the backend computing infrastructure. As shown
in Figure 1, an Edge/Fog Computing model [3]–[9] provides
an additional layer of computing infrastructure for storing and
processing data at the edge, allowing low latency applica-
tions to meet their response time requirements effectively.
The notion of Micro DataCenters(MDCs) [10] in an edge
computing platform makes it possible for IoT applications to
process data and access computational resources located closer
to the endpoints, providing low response time guarantees
to latency-sensitive applications that may operate on these
platforms. Figure 1 shows that the Edge Computing layer
represents the infrastructure located closer to the endpoints
and includes a more geo-distributed collection of adhoc MDC
resources spread geographically. The architecture primarily
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Fig. 1. Edge Computing Model

provides a solution for applications that have higher sensitivity
to network latency or incur a higher network cost. Here, small-
scale MDCs that represent ad-hoc and distributed collection
of computing infrastructure pose new challenges in terms of
management and efficient resource sharing towards to achieve
a globally efficient resource allocation.

There has been a few recent work [11], [12] addressing the
resource management and resource provisioning challenges in
the edge computing model. A fundamental assumption in these
solutions includes a tight coupling of the management of the
Edge Computing Infrastructures(ECIs) with that of the ser-
vice management performed by Service Providers(SPs), which
means that the computational resources present at the edge
MDCs are coupled and controlled directly by edge Service
Providers(SPs). We argue that such a coupled model for man-
agement of Edge Computing Infrastructures (ECIs) by Service
Providers (SPs) significantly limits the cost-effectiveness and
the opportunities for latency-optimized provisioning of edge
infrastructure resource to applications. When the management
of the Edge computing infrastructures are controlled by the
SPs, it results in an increased infrastructure cost and a decrease
in the overall utilization of the system leading to poor cost-
effectiveness.

In this paper, we propose Zenith, a new resource allocation
model for allocating computing resources in an edge comput-
ing platform that allows edge service providers to establish



resource sharing contracts with edge infrastructure providers
apriori. Based on the established contracts, service providers
employ a latency-aware scheduling and resource provisioning
algorithm that enables tasks to complete and meet their latency
requirements while achieving both global and local resource
allocation efficiency and fairness. Unlike existing solutions
that perform a coupled management of ECIs and SPs, Zenith
employs a decoupled model where the management of ECIs is
independent of that of the SPs which in turn provides increased
resource utilization and minimizes job execution latency.

Concretely, this paper makes the following contributions:
first, we propose Zenith, a decoupled resource allocation
model that manages the allocation of computing resources
distributed at the edges independent of the service provisioning
management performed at the service provider end. Second
based on the model, we develop an auction-based resource
sharing contract establishment and allocation mechanism that
ensures truthfulness and utility-maximization for both the
ECIPs (Edge Computing Infrastructure Providers) and SPs
(Service Providers). Third, we develop a latency-aware task
scheduling mechanism that allocates the resources committed
in the contracts to specific jobs in the workloads. Finally,
we evaluate the proposed techniques through extensive ex-
periments that demonstrate the effectiveness, scalability, and
performance of the proposed model.

The remainder of this paper is organized as follows. Sec-
tion II provides a background of various existing edge comput-
ing solutions and motivates the proposed resource allocation
model. In Section III, we present the Zenith architecture for
decoupled resource management and introduce the system
model. In Section IV, we present the proposed resource
allocation framework that comprises of the contract establish-
ment process and the task scheduling mechanism. Section V
presents the performance evaluation of Zenith through exten-
sive experiments. Section VI discusses the related work and
we conclude in Section VII.

II. BACKGROUND & MOTIVATION

There has been an increasing growth in modern low-latency
computing applications using wearables and IoT technologies
that include (i) augmented reality applications [13], (ii) real-
time traffic control systems [14] that require low-latency
responses to avoid potential collisions, (iii) real-time smart
grid management systems [15] that aggregate data from geo-
distributed sensors and control the grid in real time. Though
Cloud Computing has been a very cost-effective solution [16]
[17] to several computing needs, clouds fail to meet low
latency requirements of modern computing applications that
demand strict guarantees on response times. Edge Computing
[5]–[8] complements the backend computing provided by
clouds to fill the critical latency gaps between the endpoints
and the Cloud.

To achieve efficient processing at the edge, smart gateways
[18] and Micro DataCenters(MDCs) [10] are two key methods
proposed in the literature. A smart gateway is a device which is
placed at the edge of the network near the sensors. It provides a

platform for the edge applications to intermediately operate the
data from the endpoints to the Cloud or directly respond to the
requests from the endpoint applications. A Micro Datacenter
(MDC) is a data center which has a small number of resources
and located close to the edge of the network to support Edge
Computing services. MDCs are densely geo-distributed to
provide a low and predictable latency infrastructure to the end-
point applications. Compared with smart gateways, MDCs are
obviously more powerful and contain more servers and possess
higher computing capacity than smart gateways. In addition,
MDCs are more configurable than smart gateways as smart
gateways are often purchased by the end user. Therefore the
end users have the rights to control the smart gateways which
limit the control for the service providers.

In this work, we consider MDCs as the source of computa-
tional resources in the edge computing platform and the goal
of the MDCs is to support low latency applications at the edge,
enabling them to meet stronger guarantees on response time.
To effectively manage and leverage MDCs in an edge com-
puting platform, there are several key challenges that need to
be addressed. For instance, an effective resource management
of MDCs should address (i) how to provision the application
containers [19], [20] to serve jobs to maximize the utility
of the services and (ii) how to schedule workloads on the
application containers to both cover the demands and satisfy
the latency constraints. While edge computing as a research
area is emerging fast, there are a few prior efforts that discuss
the above challenges [11], [12]. A fundamental assumption in
these solutions includes a tight coupling of the management of
the Edge Computing Infrastructures(ECIs) with that of service
management by Service Providers(SPs), which means that the
computational resources present at the edge MDCs are coupled
and controlled directly by edge Service Providers(SPs). We
argue that such a coupled model for management of Edge
Computing Infrastructures (ECIs) by Service Providers (SPs)
significantly limits the cost-effectiveness and the opportuni-
ties for latency-optimized provisioning of edge infrastructure
resource to applications.

In contrast to existing solutions, our proposed model, Zenith
decouples the infrastructure management from service man-
agement, enabling the ECIs to be managed by ECIPs indepen-
dently of the service provisioning and service management at
the SPs. Such a decoupled model enables ECIPs to join up to
establish an Edge Computing Infrastructure Federation(ECIF)
to provide resources to the Edge Computing applications
provisioned and managed by the SPs. In addition, the model
provides increased opportunities for resource consolidation
and utilization as the geo-distributed ECIs can be jointly
managed and allocated to maximize application utility and
minimize cost. In the next section, we introduce the archi-
tectural details of Zenith and present its system model.

III. ZENITH: SYSTEM ARCHITECTURE AND MODEL

We introduce the system architecture and describe the
individual components of the Zenith system model.



A. System Architecture

As shown in Figure 1, the proposed system uses a layered
architecture [21]. In the bottom layer, the smart things rep-
resent the end devices (e.g. sensors, smart gateways, smart
phones) that act as the endpoints in the Edge Computing
platform. The field area network layer is the layer where
MDCs and the Edge Computing services are placed. The
core network layer provides the back bone of the wide area
network connecting the field area networks at the edge with
the cloud’s large-scale datacenters that may be located at
a farther distance from the local field area network. In the
resource allocation model of Zenith, the service management
and the infrastructure management are decoupled. In other
words, the service management is handled by the Service
Provider(SP) that determines the provisioning decisions such
as (i) where to place the containers to meet the latency require-
ments of the services, (ii) how many tasks in the workload
are scheduled to a single container and (iii) increasing the
number of containers to support the oncoming workloads.
The infrastructure management is performed by the Edge
Computing Infrastructure Provider(ECIP) which invests and
operates the infrastructures for supporting the services placed
at the edges. The ECIPs are federated to set up an Edge
Computing Infrastructure Federation(ECIF) which provides a
resource market for the SPs wanting to deploy edge computing
services at the edge. Each ECIP manages several adhoc MDCs
which can be densely geo-distributed. The resources of MDCs
are leased or provisioned on-demand to SPs by agreeing on a
contract agreement between the ECIPs and SPs. The contract
may include the duties and rights between the ECIP managing
the resource and the SP that uses the resources.

B. System Model

We next describe the system model for Zenith in five steps:
first, we describe the features of the Service Providers(SPs)
that provide Edge Computing services. Next, we represent the
features of Edge Computing Infrastructure Providers(ECIPs)
which provide infrastructure services for Edge Computing. We
then illustrate the region division process for simplifying the
resource discovery problems. After that, the agreements and
the responsibilities of the coordinator are presented and finally,
we discuss the role of the contract manager which is part of
the Zenith model to manage the resource sharing contracts that
are agreed between the ECIPs and SPs.

1) Service Provider: We consider there are N SPs that
require edge computing infrastructure to support their services.
For simplicity, we assume that for each SP i ∈ [1, N ], it only
runs one service. This model can be easily extended to one
SP running multiple services with additional small changes.
For each service, there is a quantifiable service demand of the
SPs in each geographic region for every discrete time slot of
a day.

The application container [19], [20](a configured VM inte-
grated with the service software) has several requirements such
as CPU consumption, memory size, network bandwidth and
latency requirement. We use the workload demand to estimate
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Fig. 2. An illustration of a WVD in Zenith with seven MDCs

the required number of the application containers to service
the workload. Therefore, when the demand increases, the SPs
begin to start adding more containers to serve the workload.

2) Edge Computing Infrastructure Provider: Each ECIP
handles a large number of highly geo-distributed Micro Dat-
aCenters (MDCs) and each MDC is operated by one ECIP.
We assume each MDC d ∈ [1, R] has several servers for the
infrastructure service. It has a server list Md which contains
all the servers controlled by the MDC d. The capacity of
one server m ∈ Md(τ) is Cmd . For simplicity, we assume
that every container consumes equal resources for running the
application service. The capacity for one server, Cmd can be
also represented as the number of containers which can be run
on the server.

3) Regions Division: The problem of choosing the right
MDCs to minimize the latency for every end-point and every
Edge Computing service in the geographic map is intractable:

Theorem 1. The placement decision of which MDCs should
host which edge computing application in order to maximize
utility in terms of response time and bandwidth is NP-hard.

Proof. In order to show that the problem is NP-Hard, we
first simplify the problem by assuming that each MDC can
only run one container and each SP only needs to place
several containers to some of the MDCs and we show that the
simplified version is NP- Hard. Here, the optimization problem
is to minimize the response time (latency) between the edge
containers to the end-users. We can map the containers and
users as the facilities and the MDCs as the locations in a
Quadratic Assignment Problem (QAP) [22] which is shown to
be an NP-Hard problem. As the simplified problem is a QAP
problem which is intractable, the original container placement
decision problem is also NP-Hard.

For solving the problem, we use Weighted Voronoi Dia-
grams (WVD) [23] a technique widely used in GIS, sensor
networks and wireless networks [24] for making placement de-
cisions to maximize the utility function. The use of Weighted
Voronoi Diagrams (WVD) simplifies the latency minimizing
problem to a map division problem which can be solved by
buiding the WVD in a polynomial time. In the example shown
in Figure 2, the geo-location is divided into seven regions by



the WVD generating algorithm with the seven MDCs as the
sites in WVD. With default condition that all the sites have
equal weights, the polygon of each region divides the map
and all the positions in the polygon are close to the site of
the region. Therefore, for each smart thing, the nearest MDC
which can serve its request at the edge is located in the region
where the smart thing belongs to. This method simplifies the
model, especially the process of estimating the latency to
the end users by dividing the map into several regions and
registering an area to one region. The Voronoi Diagrams are
predetermined by considering the location of the MDCs as the
sites and the expected workload of the services. The weight
for each MDC can be calculated as the ratio of the capacity of
the MDC to the historical workload amount in the nearby area
(e.g., an area within 30-mile radius). Thus, a micro datacenter
which has a higher workload pressure in the adjacent area will
handle a smaller region in the WVD.

We assume that the predetermined WVD divides the map
into R sub-regions. Each region r ∈ [1, R] only contains one
MDC and the nearest MDC for every position in region r
is the MDC d = r in that region. We also assume that the
expected workload distribution for each time slot τ is λri (τ)
for SP i in the region r. The workload distribution contains all
the workloads coming from the region. We use λpi (τ) ∈ λri (τ)
to represent the workload coming from a particular position
p in region r. As we primarily consider the workload which
needs real-time serving, λpi (τ) is often the upper bound of the
workload during the time slot τ from position p.

4) Coordinator: The coordinator is a third-party service
which is trusted by the ECIPs and SPs in the system and
it is responsible for providing a platform for the ECIPs to
trade resources with the SPs. There is an agreement which is
committed with the coordinator before ECIPs and SPs join the
federation. The agreement stipulates the rights and duties of
the three parties, the coordinator, the SPs and the ECIPs.

5) Contract Manager: The contract manager is a compo-
nent associated with both the SP and ECIP to manage the
resource sharing contracts agreed by them. Its responsibility
is to manage the resource sharing contracts and observe the
contracts’ status. For the SP which buys resources, it must pay
for the contract and has the right to observe the performance
of the resource that is allocated to it. For the ECIP which sells
resources, it must guarantee the performance of the resources
which are leased to the buyers. It collects the payments from
the buyers. The contract is an agreement between the SP and
the ECIP to lease resources from the ECIP’s MDC which is
effective in a particular time period with a particular constraint
such as latency and availability.

IV. ZENITH: RESOURCE ALLOCATION

In this section, we present the proposed resource allo-
cation techniques for ECIPs and SPs to establish relation-
ships(contracts) with each other and discuss the job scheduling
technique employed in Zenith.

A. Contracts Establishment

The key idea behind the contract establishment process is to
match the demands (e.g. workload and revenue) of the SPs and
the supplies(e.g. capacity and operating cost) of the MDCs.
The SPs want to maximize their utility of serving the customer
with a better quality of service to potentially gain more profits.
The MDCs want to maximize their utility (revenue) by renting
their servers to more SPs and the SPs who can pay more.

For the sake of model simplicity, in this subsection, we only
model the resource sharing problem for one MDC though the
model is generic to be extended to the scenarios where there
are multiple MDCs. As the WVD algorithm divides the map
into several regions, the problem of finding the MDC with the
lowest latency is transformed into a problem of determining
which region a smart thing belongs to. In each region, every
SP estimates the workload in that region based on historical
workload information and statistical prediction. It then bids
for the resource for running the application containers for
serving the workload in that region. The bid is decided by
the workload demand, λri (τ), the latency requirement and the
estimated utility that the SP can gain from running the service
in the MDC for serving the customers.

1) Utility of SPs: First, we model the utility of the SP
to run the service on the edge. Here, we consider services
having higher requirements for latency such as location-based
augmented reality games [13] and intelligent traffic light
control [25]. The utility of the SP can be expressed by the
gain in changing the execution of the real-time service from
the cloud to the edge, which we represent by the function:

upi (τ) = f(lpd(τ))− f(lpi(τ)) (1)

where f(x) is a function which estimates the utility that can
be obtained by providing the service with a latency x. It can
be approximated by an affine utility function which translates
the user-perceived criterion(latency) into utility(e.g., revenue),
f(x) = −ax+b where a and b are the parameters in the affine
utility function and lpd(τ) represents the latency between the
position p where the workload comes from and the MDC d
in time slot τ . Here lpi(τ) represents the latency between the
mega datacenter of SP i and the position p.

2) Utility of ECIPs: For the EFIP, its objective is to earn
higher revenue by providing the infrastructure to SPs. So the
utility for the EFIP is obviously the profit that it can obtain
by renting the resource to the SPs. For each MDC, the utility
function ud(τ) can be defined as the profit of selling the
resource:

ud(τ) =

Md∑
m

(Cmd ∗ πsd(τ)− Costmd (τ)) (2)

where πsd(τ) is the sell price in time slot τ for MDC d,
Costmd (τ) is the fluctuating operating cost of server m in
MDC d in time slot τ .

3) Bidding Strategy: For SP, the bidding strategy is to bid
by the true value that the SP believes for the resources, which
is represented by the utility function we discussed above. The



bid can be represented as < bpi (τ), λ
p
i (τ) >, where bpi (τ)

represents the bid price for each position the workload comes
from. The bid price bpi (τ) can be estimated by the utility of
SP i in time slot τ for running the service on the edge instead
of on the cloud. So the bid price for each position p can be
calculated as bpi (τ) = upi (τ).

For MDC, the sell bid is set to the operating cost, which
means if the bid wins, the MDC can at least break even the
cost. The sell bid can be represented as sd(τ) = Costd(τ),
where Costd(τ) represents the operating cost of running one
application container for MDC d in time slot τ .

B. Determining Winning Bids
After designing the bidding strategy of the SPs and MDCs,

we next design our algorithm for determining the winning bids
as shown in Algorithm 1. The winning bids decision algo-
rithm is based on the McAfee mechanism [26]. It guarantees
truthfulness and budget balance for the auction. Truthfulness
provides a huge benefit for designing the auction which
simplifies the bidding strategies for all the participants. If the
auction mechanism satisfies truthfulness, it ensures that the
strategy which bids with the true value is the dominant strategy
among all the other strategies. The budget balance is a feature
which guarantees that the auctioneer will not subsidize for the
auction, which means the payment from the buyers is always
more than the payment to the sellers.

Algorithm 1: Algorithm for winners selection
Input : MDC #: d;
Buy bids: B(τ) = {< b

p1
1 (τ), λ

p1
1 (τ) >,< b

p2
1 (τ), λ

p2
1 (τ) >, ..., <

b
p1
2 (τ), λ

p1
2 (τ) >, ...};

Operating Cost: Costd(τ)
Output: Clearing Buying Price: πb

d(τ) Clearing Selling Price: πs
d(τ);

Auction decision:
Xr(τ) = {< x

p1
1 (τ) >,< x

p2
1 (τ) >, ..., < x

p1
2 (τ) >, ...};

1 Sort B(τ) in descending order by the bid price per container:
b̄p
i
(τ) = bp

i
(τ)/λp

i
(τ);

2 Initially, set current buy price b as b̄ri (τ) as the first bid (highest price) in B(τ).
number of trading containers h = 0, bid index i = 1;

3 while b ≥ Costd(τ) do
4 if h+ λp

i
(τ) is larger than the capacity of MDC,

∑Md

m
Cm

d , or i+ 1 is
equal to the size of the number of buy bids: break;

5 b = bp
i
(τ);

6 h+ = λp
i
(τ);

7 i+ +;
8 end
9 ρ = (bp

i+1
(τ) + Costd(τ))/2 ;

10 if bp
i
(τ) ≥ ρ ≥ Costd(τ) then

11 All the first i buyers win with price per container:;
12 πd

s (τ) = πd
b (τ) = ρ;

13 end
14 else
15 All the first i−1 buyers win with buy price per container: πd

b (τ) = bdi (τ);
16 The sell price per container is πd

s (τ) = Costd(τ);
17 end

The decision of the auction is indicated by a set of indi-
cators, Xr(τ). The buying bid bpi (τ)’s indicator is set to be
xpi (τ) = 1 if bid bpi (τ) wins.

The time complexity of the winner deciding algorithm
can be shown as O(|B(τ)| log |B(τ)|) as the computation
complexity is determined by the initial sorting of the bids,
which is heavier than the computation deciding the winning
bids which has the computation complexity O(|B(τ)).

Next, we present the proposed contracts establishing algo-
rithm based on the winning bids decision ( Algorithm 1).
The basic idea behind the resource sharing auction framework
is to maximize the utility for the MDCs as well as for the
ECIPs and the SPs in a fair manner. As discussed earlier,
the objective of SPs is to increase their profit by maximizing
the utility of serving the customer with better service. The
ECIPs want to provide more edge computing resources to
the SPs to increase the revenue. The auction process for a
given slot τ can be presented as three steps. In Step 1, The
SPs estimate the workload for each position in every region
r to get the estimated workload, λpi (τ). They send buy bids,
< bpi (τ), λ

p
i (τ) >, where the bid price bpi (τ) is estimated from

the utility it can gain from providing the service on the edge in
region r, to the coordinator. In Step 2, the coordinator decides
the winning bids using the Algorithm 1 for every region r.
Each winner establishes a resource sharing contract with the
owner of the MDC d. Finally in Step 3, if the auction is cleared
without the MDC d selling all the resources, the MDC d will
attend the next round of the auction. In the next round of
the auction, if SP i has the workload that is not satisfied, it
sends the buy bids < bpi (τ), λ

p
i (τ) > where p ∈ r to randomly

choose an adjacent region r′ of region r. For the MDCs which
have remaining available resources, the process operates the
next round of auction from Step 1 until all the buy bids are
satisfied or all the resources of MDCs are allocated.

The above sequence of steps is operated for each time slot
τ = 1 to τ = T where T is the maximum time slot for
consideration. The result of the auction establishes the utility-
maximizing contracts between the SPs and MDCs for the
effective time slot from τ = 1 to τ = T .

After the previous steps, each SP has a set of contracts
established with the ECIPs. The contracts are denoted by
Contractri (τ) = {Contractd1i (τ), Contractd2i (τ), ...} for
serving the workload λpi (τ) ∈ λri (τ), where d1, d2, ...
are the index of the MDCs, Contractd1i (τ) =<
πdb (τ), π

d
s (τ), C

d
i (τ) > is the contract which is established by

SP i with MDC d for effective in time slot τ , where πdb (τ)
is the clear buying price for the contract, πdb (τ) is the clear
selling price for the contract and Cdi (τ) is the capacity of the
resources in the contract.

C. Provisioning

The contracts establishment algorithm solves the problem of
allocating the resources for each SPs in a utility-maximizing
manner. After the establishment of the contracts, the SPs hold
resources which are densely geo-distributed at the edge of the
network. The provisioning process is required for each SP to
schedule the tasks to the containers on the MDCs to handle the
requests of its services at the edge. The provisioning algorithm
here decides how to place tasks on the containers in the MDCs
of the established contracts in a contracts-aware manner.

In the provisioning process, the SP needs to react for the
workload changes in a real-time manner. A reactive provi-
sioning and task scheduling algorithm is needed to place the
tasks on the application containers and decide the placement
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Fig. 3. Impact of number of Servers per MDC

of the application containers to the right MDCs which can
both optimize the cost of using the resource and the service
performance that can potentially increase the application ex-
perience to the user. Our task scheduling algorithm aims at
minimizing the network latency between the end nodes and
the MDCs where the application container is hosted.

V. EVALUATION

We experimentally evaluate the effectiveness of Zenith in
terms of job response times, success rate of meeting response
time guarantees and resource utilization levels at the edge
micro datacenters.

A. Setup

The simulation uses a geographic map of 3000 miles *3000
miles size and randomly chooses locations from the map to
place the MDCs. The WVD (Weighted Voronoi Diagram) is
generated from the map with the locations of the MDCs as the
sites. The latency used in the experiments is estimated using
the distance-based model presented in [27]. This linear model
estimates the latency based on the distance between the two
points.

We consider that each region contains one micro data center
and each MDC has 1000 servers in the default setting. The
server has the same performance as that of the IBM server
x3550 (2 x [Xeon X5675 3067 MHz, 6 cores], 16GB). Each
server hosts up to 5 application containers at a given time. The
location of the MDC is randomly chosen, and the timezone
of the MDC is determined by the location. The geographic
map area is divided into four time zones evenly to simulate
the time-varying aspect of the dynamic electricity pricing.
The electricity price is generated based on the hourly real-
time electricity price from [28]. We use the distribution of the
data in 2015 from NationalGrid’s hourly electricity price to
simulate the fluctuation of the real electricity market.

The default workload generates job requests of low-latency
data processing tasks (of 100 bytes in size) and the container
running at the MDC processes the request. The distribution of
the workload is uniform throughout the map for the default
setting. We consider that all workloads are response time
sensitive, which means that if the response time exceeds the
constraint, the task is considered to be a failed task. The
default response time constraint is 30ms. We compare Zenith
with two candidate mechanisms: (i) Coupled Edge Computing

(CEC) mechanism, in which each MDC is owned by one of
the SPs and the workload to the MDCs comes only from the
SP that owns the MDC; (ii) conventional cloud-based (Cloud)
solution in which the workload is processed at the large-scale
datacenters placed on the left and right ends of the map.

B. Experiment Results

To evaluate the performance efficiency of Zenith, we per-
form three sets of experiments: first, we study the impact
of the number of servers in MDCs on the average response
time of tasks, the average utilization at the MDCs and the
overall success rate of the tasks. Second, we study the impact
of the number of MDCs in the geographic map. Finally, we
analyze the impact of different response time constraints on
the perceived performance efficiency.

1) Impact of No. of servers in MDCs: In this experiment,
we compare the performance of the mechanisms with different
number of servers in each MDC. The number of servers per
MDC is increased from 200 to 2000 in the evaluation. For the
Cloud-based mechanism, the total number of servers present
in the two large-scale datacenters are increased in such a way
that they have the same number of total servers as the total
number of servers in all MDCs. As shown in Figure 3a, the y-
axis is the average response time of the tasks. The x-axis is the
number of servers per MDC. We find that with the increased
ability to share resources among MDCs, Zenith achieves the
best result compared to CEC and Cloud mechanisms even
when the number of servers is low. As shown in Figure 3b,
Zenith, in general, can achieve higher utilization of the MDCs
except when the resources are scarce such as when one MDC
only handles 200 servers. In Figure 3c, we observe that the
success rate of the tasks increases with increasing the number
of servers. In addition, the success rates of CEC and Cloud
schemes do not reach 100%. This is due to the fact that even
when the resources are available, these schemes suffer from
reduced proximity between the tasks and the MDCs assigned
to them. Here, the response time constraints cannot be met
with the nearest datacenters. From the above experiments, we
can see that Zenith performs significantly better than CEC
and Cloud mechanisms with respect to response time, resource
utilization and success rate.

2) Impact of No. of MDCs: We next study the performance
of Zenith with different number of MDCs present in the
geographic map. The number of MDCs is increased from 20
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Fig. 5. Impact of latency constraints

to 200. For the CEC mechanism, the MDCs are divided into
10 even groups such that each group is owned by one SP.
As shown in Figure 4a, the x-axis is the number of MDCs.
We find that the response time decreases from 20ms to about
10ms for Zenith as increasing the number of MDCs decrease
the average distance between the endpoints and the MDCs
which results in a decrease in response time. For the CEC
mechanism also, the response time decreases from around
21ms to about 18ms. Here, we note that the Cloud-based
mechanism is not influenced by the number of MDCs as the
placement of the large-scale datacenters are fixed. In Figure 4b,
we compare the resource utilization levels at the MDCs and
we find that Zenith achieves higher utilization than CEC and
Cloud mechanisms. As shown in Figure 4c, the success rate
increases with increasing the number of MDCs. Here, Zenith
performs significantly better than the two other mechanisms.

3) Impact of Response Time Constraints: Finally, we study
the performance of Zenith to analyze the impact of different
response time constraints. In this experiment, we increase the
mean response constraint from 10ms to 100ms. As shown
in Figure 5a, the x-axis is the response time constraint. The
obtained response time increases for all the three mechanisms
as increasing the response time constraint provides additional
flexibility for task scheduling to satisfy more workloads with
longer distance which results in an increase in the obtained
response time. In Figure 5b, the utilization of all the three
mechanisms are compared and we find that it increases with
an easier response time constraint. For the Cloud mechanism,
when the response time constraint increases significantly, it
also achieves similar performance as Zenith and CEC. This
is due to the fact that when the response time constraint is
relaxed, a cloud solution allows the tasks to be transferred and
executed in remotely located large-scale datacenters leading

to a higher success rate. Figure 5c shows that the success
rate increases with extending the limitations of the response
time constraints. Here the Cloud solution also attains 100%
success rate as Zenith and CEC. From the above experiments,
we observe that Zenith performs significantly better than CEC
and Cloud when the response time constraints are significant.

VI. RELATED WORK

Edge Computing has gained significant attention from the
distributed systems community in the recent years. While the
concept of edge and fog Computing is still in their early years
of development, there has been several notable research efforts
on this emerging topic. Bonomi et al. [21] discuss the concept
of fog Computing and there has also been several other related
developments in the broader area of edge and fog computing.
Such efforts include the development of Cloudlets [4] pro-
posed by Satyanarayanan et al. and the work on mobile edge
computing [29] which is an extension of the effort on mobile
cloud computing [30]. The primary benefit of edge computing
comes from its ability to offer low latency computing resources
on the fly for applications that have strict latency requirements.
Edge computing is also beneficial in situations when a large
number of small computing nodes need to deliver data to a
cloud. Therefore applications such as IoT (Internet-of-Things),
AR (Augmented reality) and VR (Virtual reality) benefit the
most from modern edge computing solutions. There have been
many research efforts studying the benefits of edge computing
in these areas. Satyanarayanan et al. present GigaSight [31], an
Internet-scale repository of crowd-sourced video content. Want
et al. [32] discuss the technologies that enable IoT using edge
computing. As the field is still emerging, there has been only
few efforts addressing the problem of resource allocation in
edge computing platforms. Aazam et al. [12] propose a model



for SPs to estimate the amount of services for each MDC in
the edge computing platform. Do et al. [11] propose a system
for allocating fog computing resources to minimize the carbon
footprint. The solution is based on a distributed algorithm
that employs the proximal algorithm and alternating direction
method of multipliers(ADMM). All of the above solutions
assume that the ECIs are tighlty coupled with the SPs and
are controlled by the SPs which limits the resource sharing
and latency benefits of the edge computing model. To the best
of our knowledge, the work presented in this paper is the
first research effort focusing on resource allocation for edge
computing using a decoupled resource management model that
manages the allocation of MDC resources independent of the
service provisioning performed at the SPs.

VII. CONCLUSIONS

In this paper, we propose Zenith, a resource allocation model
for allocating computing resources in an edge computing
platform. In contrast to conventional solutions, Zenith employs
a new decoupled architecture in which the infrastructure
management at the Edge Computing Infrastructures (ECIs)
is performed independent of the service provisioning and
service management performed by the service providers (SPs).
Based on the proposed model, we present an auction-based
mechanism for resource contract establishment and a latency-
aware scheduling technique that maximizes the utility for
both ECIPs and SPs. The proposed techniques are evaluated
through extensive experiments that demonstrate the effective-
ness, scalability and performance efficiency of the proposed
model.
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