
Timed-release of Self-emerging Data using
Distributed Hash Tables

Chao Li
School of Information Sciences

University of Pittsburgh
Pittsburgh, USA

Email: chl205@pitt.edu

Balaji Palanisamy
School of Information Sciences

University of Pittsburgh
Pittsburgh, USA

Email: bpalan@pitt.edu

Abstract—Releasing private data to the future is a challenging
problem. Making private data accessible at a future point in time
requires mechanisms to keep data secure and undiscovered so
that protected data is not available prior to the legitimate release
time and the data appears automatically at the expected release
time. In this paper, we develop new mechanisms to support
self-emerging data storage that securely hide keys of encrypted
data in a Distributed Hash Table (DHT) network that makes
the encryption keys automatically appear at the predetermined
release time so that the protected encrypted private data can be
decrypted at the release time. We show that a straight-forward
approach of privately storing keys in a DHT is prone to a number
of attacks that could either make the hidden data appear before
the prescribed release time (release-ahead attack) or destroy the
hidden data altogether (drop attack). We develop a suite of
self-emerging key routing mechanisms for securely storing and
routing encryption keys in the DHT. We show that the proposed
scheme is resilient to both release-ahead attack and drop attack
as well as to attacks that arise due to traditional churn issues
in DHT networks. Our experimental evaluation demonstrates the
performance of the proposed schemes in terms of attack resilience
and churn resilience.

I. INTRODUCTION

In the age of Big Data, releasing private data to the future
is a challenging problem. Making private data accessible at a
future point in time requires mechanisms to keep data secure
and undiscovered so that protected data is not available prior to
the legitimate release time and the data appears automatically
at the expected release time. Such self emerging data are not
allowed to be accessed immediately after they are produced.
Examples of such data include private data of individuals with
privacy requirements that degrade over time [11]. For example,
personal data of individuals (e.g., medical diagnostics infor-
mation, web browsing patterns, location trajectory patterns)
collected during their lifetime may be highly sensitive during
the childhood and youth life of an individual, however, the
same data may become less sensitive as the individual ages
and after the end of the individual’s life. Other examples
of self emerging data include incorporating a secure voting
mechanism where the encrypted votes of individuals may
be collected during the polling process but the data may
be allowed to be accessed (decrypted) only after the end
of the polling process (release time). Similarly, an online
examination scheduled to be administered at a given time

(release time) may not be accessed before the prescribed start
time.

Supporting self emergence of data involves encrypting the
data and ensuring that the encryption key is destroyed and
remains unavailable until the release time. The encryption key
automatically appears at the release time and makes the data
self-emerge at the release time. A straight-forward approach
to implementing self-emergence of data would be to store the
encryption key on a trusted third party server which protects
the encryption key until the release time and makes it available
precisely at the release time. However, such a straight-forward
approach suffers from a single point of trust. An adversary in
such an approach can locate the key and focus on breaching
the security of the trusted server to release the data prior to the
release time which can violate the intended privacy provided
by self-emerging data.

In this paper, we develop a highly distributed solution for
supporting self-emerging data using Distributed Hash Table
(DHT) networks [20] that prevent the adversary from obtaining
the shares of the encryption key dispersed in the DHT before
the legitimate release time. The proposed mechanisms route
the encryption key on the DHT in a deterministically pseudo-
random manner making it automatically appear at the release
time while making it harder for the adversary to access it
prior to the release time. Compared to a centralized key
storage scheme, the proposed approach using large-scale DHT
networks significantly increase the attack resilience offered by
the scheme.

The proposed approach for self emergence of data develops
a novel integration of cryptographic techniques with DHTs to
enable self emergence of protected data at the release time.
We note that the proposed approach requires a strong defen-
sive performance towards powerful adversaries controlling a
fraction of the nodes in the DHT to forcibly extract the key
before the timeout. Such adversaries can sabotage our intended
goal in multiple ways leading to attacks that could either
make the hidden data appear before the prescribed release time
(release-ahead attack) or destroy the hidden data altogether
(drop attack). In this paper, we present a suite of self-emerging
key routing mechanisms on DHTs for securely storing and
routing encryption keys of self-emerging data. The proposed
techniques use a novel and effective combination of onion

Fig. 1: Private data timed release system

routing [14], data replication and Shamir secret sharing [17]
mechanisms to guarantee a higher degree of attack resilience
and performance.

In the rest of the paper, we introduce the self-emerging data
timed-release system and analyze its challenges in Section II.
In Section III, we present the proposed approach to handle the
challenges and discuss the routing path pattern construction
algorithms. In section IV, we evaluate our approach in terms
of attack resilience and churn resilience. Finally, we present
the related work in section V and conclude in section VI.

II. SYSTEM MODEL AND CHALLENGES

In this section, we present the proposed self-emerging
data release system, followed by the challenges including the
adversary models and the churn issues in DHTs.

A. Self-emerging data timed-release system

The proposed self-emerging data release system consists of
four major entities, namely the data sender, the data receiver,
the DHT network and the cloud, shown in Figure 1.

- Data sender: The data sender is the entity that wants
to send data to the data receiver. Specifically, she wants
to send a message out at start time ts and allow it to
be accessible by the data receiver only after release time
tr, where ts < tr. In our system, the data sender, Alice,
encrypts her message with a secret key and then sends
the secret key and encrypted message to the DHT and
the cloud respectively at start time. After ts, there is no
any further involvement required from Alice.

- Data receiver: The data receiver is the entity that wants
to get access to the message sent by the data sender. In
our system, the data receiver, Bob, can get the encrypted
message from the cloud at any time after ts. However,
he should be allowed to get the secret key from the DHT
only after the data release time, tr so that the plain text
message is only available to him after tr. Bob may start
to extract the secret key from the DHT before tr, which
makes him an adversary in that case.

- DHT network: A DHT network is required to hold and
hide the secret key during the time period tr−ts, defined
as the emerging time period T . To hold the secret key,

during T , the DHT network should keep the existence
of the secret key and prevent the loss of it. To hide the
secret key, the DHT network should prevent the secret key
from being found and extracted by any entities, including
Bob, before ts. To realize these, we design a suite of
mechanisms in Section III, which carefully determine
routing paths for the secret keys to be transmitted from
the source to destination with high attack resilience.

- Cloud: A cloud is required to store the encrypted data
during T . The encrypted data is always accessible by the
authenticated data receivers.

B. Adversary models

An entity is considered to be an adversary when it tries to
block the ‘hold and hide’ responsibility of the DHT protocol
in the system. That is, it tries to ‘steal or drop’ the secret key
stored in the DHT during the emerging time T = tr−ts. From
this perspective, even Bob can be an adversary. To execute
an attack, a fraction of nodes (for example p percentage) in
the DHT network are required to be malicious, which can
be realized through Sybil attack [5] or Eclipse attack [18]
performed either by a single adversary or through the collusion
among a group of adversaries. For example, Sybil attack
typically works as an amplifier to boost the destructive power
of the system-targeted attack models. The adversary may
create a large number of pseudonymous identities and using
them to gain a disproportionately large influence.

In this paper, we present two potential attack models,
namely the release-ahead attack aiming to steal the secret key
from the DHT before the release time tr and the drop attack
aiming to destroy the secret key so that the data cannot be
restored after tr.

1) Release-ahead attack: The release-ahead attack aims to
furtively extract the secret key from the DHT before the release
time, tr and uses it to decrypt the encrypted data stored in
the cloud, thus compromising the confidentiality of the private
data. For example, in the scenario of an online examination
released using self emerging data, if one of the participants
attacks the system by extracting the secret key from the DHT
network before the examination start time, she can download

(a) Secret key paths in DHT (b) Release-ahead attack (c) Drop attack

Fig. 2: Attack models

the encrypted test questions from the cloud and decrypt it with
the key to leak the examination questions in advance.

Figure 2(a) shows a simplified example of the behavior of
four secret keys in the DHT. In brief, during the emerging
time T from ts = t1 to tr = tn, each secret key sequentially
moves along a pre-determined onion routing [14] path formed
by a set of DHT nodes (called holders) and stop over at each
holder for a period of time. For this example, we denote the
jth holder on the path of ith secret key as Hi,j and the path
of ith secret key as P (Ki). Before launching the attacks, we
assume a fraction of nodes in DHT have been controlled by
the adversary through the traditional Sybil attack, including
holders H2,j+1, H3,j , H4,j−1, H4,j and H4,j+1. In Figure
2(b), we analyze the release-ahead attack result on the four
secret keys. The first secret key K1 can be securely received
by the receiver because its path has no malicious holder. On the
path of K2, the last two holders are malicious, so K2 can be
released at time tj+1. The path of K3 has malicious holders in
the head, middle and tail, but K3 cannot be released before tn
because the adversary does not have the key stored on holder
H3,j+1 to decrypt that layer of the onion. Finally, the K4 can
be released at the beginning t1 because all the nodes on the
path are malicious. To sum up, the onion structure forces the
adversary to control a set of successive holders starting from
the last one on the path. Any break in the continuity stops
the release-ahead attack from releasing the secret key prior to
release time.

2) Drop attack: The objective of the drop attack is to
make the secret key unavailable at the start time, tr, thus
compromising the availability of the self-emerging data when
it is required to be released. Typically, a successful drop attack
means the loss of the private self-emerging data as the secret
key can not be restored to decrypt the encrypted data. In the
online examination example, a successful drop attack means
that the examination questions are destroyed once for all and
are never readable.

Figure 2(c) shows the drop attack results on the four secret
keys for the example shown in Figure 2(a). To drop the secret
key, whenever a holder controlled by the adversary receives
it, the holder deliberately refuses to pass it to the next holder

along the path. Therefore, K1 is safe but all the other three
secret keys are dropped because there is at least one malicious
holder on their paths. As can be seen, the current path structure
is very vulnerable to drop attack as it is very hard to have a
non-malicious path under strong Sybil attack. In Section III,
we will propose a suite of strategies to enhance the drop attack
resilience.

C. Churn impact

So far in the discussion, we have simply assumed that all
the nodes in the DHT are stable and the only threat in the
DHT system are the malicious nodes. However, in practice,
this is not entirely true due to the fact that DHT networks
are prone to the churn issue [21]. The churn in the DHT has
short-term and long-term impacts to the self-emerging data
stored in the system. Churn can be briefly summarized as
node unavailability and node death respectively. A node in a
DHT may leave the network transiently due to network failure,
instability, or owner personal issues and rejoin the network
after the short departure. Because of node unavailability, at
release time tr, the secret key may not be entirely available
to be released on time as the transmission might be blocked
by some unavailable nodes on path. In a DHT, a node may
also leave the network forever due to hardware problems or
loss of interest. This leads to the ‘dead’ time of the node
in its lifetime, as the node ID in the DHT is no longer
retained and the stored data is lost. Because of the death of
the nodes, the secret key stored on it may also be lost. Even
if the key is replicated to another node through the replication
mechanism, we note that the new node also has probability
p (node malicious rate) to be malicious, thus increasing the
chance for the adversary to steal this key.

The above analysis of the challenges and attacks motivates
us to the design of the proposed self-emerging key routing
scheme in Section III that achieves a high degree of attack
resilience to both the adversarial attack models and the churn
issue in DHTs.

III. SELF-EMERGING KEY ROUTING IN DHT
Our self-emerging key routing schemes consist of three

components namely a routing path construction scheme, a

Fig. 3: Node-disjoint multipath routing

package generation scheme and package transmission proto-
col. Specifically, the secret key owner initially joins the DHT
network and pseudo-randomly selects nodes in the DHT to
form the routing paths using the routing path construction
scheme. Then, the owner locally encapsulates the secret key in
transmission packages. Finally, the packages are routed along
the paths to their destinations, they stop at each passed nodes
(named holders) for a time period th (named holding period)
so that the secret key can be finally released at release time,
tr by the terminal nodes on the paths.

In this section, we propose and analyze four self-emerging
key routing schemes. We start from the centralized scheme,
which stores the secret key on a single node for the en-
tire emerging time T . Then, by applying onion routing and
replication mechanisms, we design the node-disjoint multipath
routing and node-joint multipath routing schemes to improve
the attack resilience for shorter self-emerging time T . Finally,
to suppress the churn impact for long self-emerging time
T , we replace the replication mechanism with a key share
delivery scheme based on Shamir secret share [17] to enhance
churn resilience. To compare the schemes in terms of attack
resilience, we measure the release-ahead attack resilience, Rr

as the probability that an adversary fail to restore the secret
key at the start time ts by collecting necessary data from
the malicious nodes, and drop attack resilience, Rd as the
probability that an adversary fail to prevent the secret key to
be released at the release time tr by dropping data through
the malicious node.

A. Centralized scheme

The centralized scheme uses a single DHT node to store
the secret key for the entire emerging period T . This simple
scheme has the lowest attack resilience because the adversary
can obtain the secret key at start time ts and choose to either
release it or drop it if this node is malicious, which has
the probability p (node malicious rate). Therefore, both the
release-ahead attack resilience, Rr and drop attack resilience
Rd is 1− p in this scheme.

B. Node-disjoint multipath routing scheme

The node-disjoint multipath routing scheme applies onion
routing mechanism [14] to improve release-ahead attack re-
silience, Rr and employs a replication scheme to improve
drop attack resilience, Rd. In the example shown in Figure

Fig. 4: Node-joint multipath routing

3, there are 2 replicated node-disjoint onion routing paths,
Sender → H1,1 → H1,2 → H1,3 → Receiver and
Sender → H2,1 → H2,2 → H2,3 → Receiver with 3 holders
on each of them, where a holder Hi,j denotes the jth holder
on the ith path. At start time ts, the sender locally generates
onion P1 with three keys K1, K1 and K3, assigns the keys
to the six holders as shown and sends P1 to two holders H1,1

and H2,1, namely the first holders on the two paths. Once the
two holders receive P1, they decrypt one layer of the onion P1

with key K1 to get the IDs of the second holders on the paths
and the remaining onion P2, and hold P2 for a holding period
th = T

3 . Subsequently, at time t1 = ts + th, H1,1 and H2,1

send the remaining onion P2 to the second holders, namely
H1,2 and H2,2. The second holders decrypt the next layer of
P2 with key K2 to get the IDs of the third holders on the paths
and the remaining onion P3. After they hold P3 for another
holding period th, at time t2 = ts + 2th, P3 is sent to third
holders H1,3 and H2,3. The third holders decrypt P3 with K3

and get the secret key. They will hold the secret keys for a
last holding period th to make the entire emerging period to
be the expected value, T = 3 ∗ th and then release the secret
key at the release time tr = t3 = ts + 3th to the receiver. In
order to obtain the key at start time ts, the adversary need to
control at least one holder between every two holders with the
same key to collect K1, K2 and K3 to decrypt all the three
layers of the onion P1, which gives the release-ahead attack
resilience:

Rr = 1− (1− (1− p)k)l (1)

where k denotes the number of replicated node-disjoint onion
paths and l denotes the number of holders on each path. To
prevent the secret key to be released at the release time tr, the
adversary has to control at least one holder among the three
holders of each path to cut both the two paths, which gives
the drop attack resilience:

Rd = 1− (1− (1− p)l)k (2)

The sender can apply equations 1 and 2 to calculate k and l and
also th = T

l for her expected attack resilience Rr and Rd with
a known node malicious rate p, namely the ratio of malicious
nodes in DHT. The sender can then pseudo-randomly select
IDs of the k ∗ l holders to generate the onion P1, assign the
keys to the holders and send P1 out to the first holders. Each
holder will decrypt one layer of the onion with its key, hold

the remaining onion for the holding period th and forward
it to the next holder at the end of th. Finally, the secret key
can be sent to the receiver at release time tr by the terminal
holders on the paths.

C. Node-joint multipath routing scheme

The node-joint multipath routing scheme is similar to the
node-disjoint multipath routing scheme but allows the onion
routing paths to have intersecting holders. To maximize the
drop attack resilience Rd, the node-joint multipath routing
scheme connects every jth holder on the paths to every
(j + 1)

th holder on the paths. The node-joint multipath routing
shown in Figure 4 provides the extension of the example
shown in Figure 3. We find that the number of onion routing
paths has been increased to 8, which has been maximized with-
out changing the replication number of K1, K2 and K3. Thus,
without impacting the release-ahead attack resilience Rr, the
scheme reduces the drop attack resilience Rd as the adversary
now has to control all the holders holding the onion at the
same time, namely the group (H1,1, H2,1), or (H1,2, H2,2), or
(H1,3, H2,3) to drop the secret key. For instance, if the holders
(H1,1, H2,2, H1,3) are malicious, the adversary can drop the
secret key in a node-disjoint multipath routing scheme but she
can not do so in the node-joint multipath routing scheme as
the path Sender → H2,1 → H1,2 → H2,3 → Receiver is
still alive. This feature makes:

Rd = (1− pk)l (3)

which can be combined with equations 1 to calculate the
replication factor k, path length l and the holding period th.
We can also derive:

Lemma 1: The node-joint multipath routing scheme can
guarantee Rr +Rd > 1 when p < 0.5.
Proof: p < 0.5 → p < 1 − p → 1 − pk > 1 − (1 − p)k →
(1− pk)l > (1− (1− p)k)l → Rd > 1−Rr → Rr +Rd > 1.
Therefore, if we set Rr = Rd to expect the same release-
ahead resilience and drop attack resilience, we can get Rr =
Rd > 0.5 for p < 0.5. In other words, the node-joint multipath
routing scheme can make both Rr and Rd higher than 0.5
when p < 0.5. It also indicates the tradeoff between Rr and
Rd and the relationship between the tradeoff and p, which
helps to design a highly attack-resilient system.

D. Key share routing scheme

The node disjoint and node joint multipath routing schemes
require the sender to send the keys K1, K2 and K3 to the
holders at start time ts and hence the terminal holders on the
paths, namely H1,3 and H2,3, have to store the key K3 for
nearly the entire emerging period T . This approach is efficient
when T is small, indicating that the keys for onion decryption
do not need to be stored for a long time. However, when T
is large, the probability that the adversary can get the stored
keys, such as K3 in the example, is significantly increased due
to churn. For instance, if holder H1,3 is dead, a new node will
take the place of H1,3 and receive the replication of K3 from
the H2,3 that is alive. This process is equivalent to providing

Fig. 5: Key share routing

the adversary another opportunity to obtain the stored key
(K3 in the example) as the new node has probability p to
be malicious. As a result, the number of nodes knowing the
stored key, K3 is increased from 2 to 3 and the chance for the
adversary to get stored key K3 is increased from 1− (1− p)2
to 1− (1− p)3, thus making release-ahead attack easier to be
successful.

To increase the churn resilience, instead of pre-assigning
the keys to the holders at start time ts, the proposed key share
routing scheme builds another layer of paths to route the keys
for onion decryption to their target holders at the same time
when the onions arrives. For example, in Figure 4, we want
the holder H1,3 to receive both the onion P3 and key K3 at the
time t2 so that H1,3 does not need to store K3 from start time
ts to t2. To make that possible, the proposed key share routing
scheme applies the Shamir secret share [17] mechanism to split
each key to multiple key shares and routes the key shares to
the holders on the fly through the key share routing paths.
An example of key share routing layer is shown as Figure
5, which consists of the six holders determined by the node-
joint multipath routing scheme (Figure 4) and two additional
holders H3,1 and H3,2 to support the key share passing. In
Figure 4, the paths only transmit the onion packages as the
onion decryption keys, namely K1, K2 and K3, have been pre-
assigned to the holders at the start time ts and statically stored
by the holders to wait for the arrival of the onion packages.
However, in Figure 5, the key shares generated from the onion
decryption keys through Shamir secret share scheme at ts are
also transmitted through the paths together with the onion
packages. Specifically, in Figure 5, at start time ts, the sender
node sends K1 to holders H1,1 and H2,1 and an additional
key K3,1 to the holder H3,1. Also, each of the three holders
receives an onion package from the sender node. The two
keys, K1 and K3,1, do not need to be split as there is no
storage time for them. The three holders can thus decrypt the
onion packages with the received onion decryption keys and
obtain the IDs of the next three holders, namely H1,2, H2,2

and H3,2, the three remaining onions and three key shares to
be sent to the next holders at time t1. Then, at t1, each of
H1,2, H2,2 and H3,2 receives three onion packages and three

key shares. The Shamir secret share scheme guarantees that
the original key can be recovered from at least m out of n
key shares. If we make m = 2 and n = 3 in this example,
the onion decryption key can be recovered from the received
key shares even if one key share is unavailable due to churn
or attack. The holders H1,2, H2,2 and H3,2 can restore onion
decryption key K2, K2 and K3,2 respectively and use them
to decrypt the received onion packages to obtain the IDs of
H1,3 and H2,3 and the onion packages and key shares to be
sent to them. Similarly, at t2, H1,3 and H2,3 restore the onion
decryption key K3 from the received key shares and decrypt
the received onion package with K3 to find out the secret key.
Finally, at the release time tr, the receiver node receives the
secret key from H1,3 and H2,3. We can see that K1, K2 and
K3 have been sent to their target holders at time ts, t1 and t2
respectively to arrive no earlier than the corresponding onion
packages, as expected.

Algorithm 1: Key share routing scheme
Input : The replication factor k and path length l determined

by the node-joint multipath routing scheme, the
number of overall nodes available for path construction
N , the expected emerging time T , exponential
distribution parameter λ, node malicious rate p.

Output: Total share number n and threshold share number m
for each holder, the release-ahead attack resilience Rr

and Drop attack resilience Rd.
1 n = bN

l
c;

2 pdead = 1− e−
T
λl ;

3 d = bpdead ∗ nc;
4 pr = pd = p;
5 Initialize Pr , Pd and MN ;
6 Initialize Rr = Rd = 1;
7 for column = 2 to l do
8 Calculate m ∈ [1, n] that minimizes

Dif = |
∑n

i=m

(
n
i

)
pi(1− p)n−i −∑n−d

i=n−d−m+1

(
n−d
i

)
pi(1− p)n−d−i|;

9 pr = 1− (1− pr)(1−
∑n

i=m

(
n
i

)
pi(1− p)n−i);

10 pd = 1− (1− pd)
11 (1−

∑n−d
i=n−d−m+1

(
n−d
i

)
pi(1− p)n−d−i);

12 Add pr to Pr , pd to Pd and (m,n) to MN ;
13 end
14 for i = 0 to l − 1 do
15 Rr = Rr ∗ (1− (1− Pr(i))

k);
16 Rd = Rd ∗ (1− (Pd(i))

k);
17 end
18 Rr = 1−Rr;

To complete the construction of key share routing paths,
the values of m and n are required. The selection of m and
n should consider both the attacks and the churn impact. We
show the process to determine m and n and calculate attack
resilience Rr and Rd as Algorithm 1. First, line 1 calculates
the upper bound of the selection of n, where N denotes the
maximum number of nodes allowed to construct the key share
routing paths and l is the length of paths. In other words,
we uniformly assign the resources (nodes) along the paths.
Then, the number of dead nodes due to churn during holding
time th = T

l is estimated (line 2-3). As suggested by [2],

the node death can be expressed by a decay pattern, namely
the exponential mechanism pdead = 1 − e−

1
λ th , where λ

denotes the average lifetime of nodes in the DHT. We can
then estimate the dead shares during th as d. We next start to
calculate the (m,n) and (pr, pd) for each holder (line 4-13),
where pr and pd refer to the release-ahead attack success rate
and drop attack success rate respectively. The holders in the
same column share same (m,n) and (pr, pd). For example,
H1,2, H2,2 and H3,2 in Figure 5 form the second column.
The pr and pd for each column of holders are varying and
therefore results in the requirement to adjust m to handle
the difference. Initially, the first column of holders have the
smallest pr and pd (line 4). Then, the second column of holders
have larger pr and pd because the adversary who fails to
successfully attack the system at the first column can gain
additional opportunity to either release or drop the secret key
when enough key shares can be collected at second column.
Therefore, the farther away from the beginning a column is,
the larger pr and pd it will have. For each column from 2 to
l, the adversary needs to gather m out of n shares to recover
the onion decryption key to release the secret key or gather
n− d−m+ 1 out of n− d alive shares to prevent the onion
decryption key to be recovered. We can choose the value for m
that makes the difference between the success rates of the two
attack objectives minimum (line 8) so that the system has both
good release-ahead attack resilience and drop attack resilience
without bias that makes it vulnerable. Once m is determined,
the pr and pd for that column can be updated (line 9-10) and
all of them can be recorded (line 11). Finally, after the pr
and pd for all the columns have been calculated, the attack
resilience can be computed (line 14-18).

IV. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance
and security offered by the proposed scheme. Before reporting
our results, we first briefly describe the experimental setup.

A. Experimental setup
Our self-emerging key routing scheme is simulated through

a Java-based DHT toolkit Overlay Weaver on an Intel Core i7
PC with 16GB RAM. We invoke 10000 DHT node instances
and run each experiment for 1000 times to take the average.
We randomly select 10000 ∗ p non-repeated nodes and mark
them as malicious. The probability density function of node
death follows the exponential distribution suggested by [2].

B. Experimental results
The experimental evaluation consists of three parts. First, we

evaluate the release ahead attack resilience and drop attack re-
silience of the first three schemes, namely centralized scheme
(central), node-disjoint multipath routing scheme (disjoint)
and node-joint multipath routing scheme (joint). Then, we
evaluate the impact of churn to the three pattern schemes as
well as the key share routing scheme (share) and we show that
the key share routing scheme has the best churn resilience.
Finally, we evaluate the cost of key share routing scheme by
adjusting the number of nodes available to construct the paths.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

R

p

central
disjoint

joint

11
(a) attack resilience, 10000

1e+000

1e+001

1e+002

1e+003

1e+004

 0 0.1 0.2 0.3 0.4 0.5

C

p

central
disjoint

joint

(b) required nodes, 10000

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

R

p

central
disjoint

joint

(c) attack resilience, 100

1e+000

1e+001

1e+002

1e+003

1e+004

 0 0.1 0.2 0.3 0.4 0.5

C

p

central
disjoint

joint

(d) required nodes, 100

Fig. 6: Attack resilience evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R

p

central
disjoint

joint
share

11
(a) α = 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R

p

central
disjoint

joint
share

(b) α = 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R

p

central
disjoint

joint
share

(c) α = 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R

p

central
disjoint

joint
share

(d) α = 5

Fig. 7: Churn resilience evaluation

1) Attack resilience evaluation: In Figure 6(a), we evaluate
the attack resilience (R = Rr = Rd) of the three schemes with
varying malicious note rate p in 10000 nodes network. The
number of nodes required to construct the routing paths is also
measured and shown in Figure 6(b). The centralized scheme,
which only requires a single node, works as the baseline. The
node-disjoint multipath routing scheme makes R > 0.9 when
p <= 0.18 but then rapidly drops to the baseline. Among
the three schemes, the node-joint multipath routing scheme
has the best performance in terms of attack resilience. It
can keep R > 0.99 before p = 0.34 and R > 0.9 before
p = 0.42. However, from Figure 6(b), we can see that the
required nodes of node-joint multipath routing scheme, rapidly
increases towards 10000 after p = 0.15 as the cost of high
attack resilience increases. We then reduce the DHT network
scale from 10000 to 100. Although Figure 6(d) shows that the
required nodes of both node-disjoint multipath routing scheme
and node-joint multipath routing scheme are suppressed due
to the limited DHT nodes, we can see from Figure 6(c) that
both the two schemes, especially the node-joint multipath
routing scheme, still keeps good attack resilience. Therefore,
we can conclude that the DHT scale do not influence the attack
resilience significantly.

2) Churn resilience evaluation: The impact of churn is
highly related to the value of expected emerging time T ,
namely the time duration during which the secret key stays
in the DHT. Therefore, if we assume the average lifetime of
a DHT node is tlife, we can evaluate the impact of churn
by setting the emerging time T to be α times of tlife. From
Figure 7(a) to 7(d), we change α from 1 to 2, 3 and 5 to check
the influence of churn with increasing T . We can observe that
the centralized scheme is still the baseline of all. When α
increases, the attack resilience of centralized, node-disjoint
multipath routing and node-joint multipath routing schemes

are reduced rapidly. In contrast, the key share routing scheme
keeps nearly unchanged high attack resilience even for α = 5
when p < 0.3. This means, if the average lifetime of a
DHT node is one month, the key share routing scheme can
successfully hide the secret key for 5 months and then release
it if the adversary controls less than 30% DHT nodes. Such a
long-term use case significantly increases the application range
of the self-emerging data release system.

3) Key share routing scheme cost evaluation: Our last set
of experiments evaluate the cost of key share routing scheme
as the earlier experiments have demonstrated that the key share
routing scheme offers best churn resilience, especially for large
required emerging time T . However, the 10000 nodes used to
form the path structure may be too costly for DHT networks
with small or middle scale. Therefore, we want to evaluate the
performance of key share routing scheme when the number of
available nodes is smaller. Specifically, we change the number
of available nodes from 10000 to 5000, 1000 and 100 and
the results are shown in Figure 8. We set α = 3. Obviously,
the 10000-node cost shows the best result, which starts to
drop from nearly R > 0.99 only after p > 0.3. The 5000-
node cost shows very close performance, which only loses at
p = 0.32. The 1000-node cost also offers good performance,
which keeps R > 0.95 before p > 0.26. Finally, even the
100-node cost shows acceptable results, which keeps R > 0.9
before p > 0.14. Therefore, we can conclude that the cost
can be significantly reduced by 10 times for most application
cases and even by 100 times when p is not large.

V. RELATED WORK

Releasing private data to the future is a challenging research
topic that has intrigued researchers for more than two decades.
As its main technique, Timed-Release Encryption (TRE) was
first proposed by May [12] in 1993. The TRE schemes can

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R

p

100
1000
5000

10000

Fig. 8: Key share routing scheme cost evaluation

be mainly classified into two groups, namely time-lock puzzle
scheme [1], [7], [16] and third party scheme [12], [16]. In
2003, [13] proposed a non-interactive TRE scheme based on
quadratic residues (QR-TRE), but their time server has to
be trusted. Later in 2005, bilinear pairing based TRE was
proposed [3], but the time server is required to be curious.
After that, although more efficient models and extensions
were proposed [4], [6], [10], [23], most of them require the
time server to be either trusted or curious, which becomes a
bottleneck to the overall system security. Besides TRE, some
efforts try to model the time by capturing ‘real-world-time’ [9],
[19]. In [9], the role of time server can be eliminated by
emulating the real-world time in a computational model based
on Block-chain.

Another track of research efforts related to our work include
self-destroying data represented by the Vanish system [8].
Vanish stores tiny bits of key information into a DHT network
called Vuze. Research efforts [22] have shown that Vanish
is vulnerable to both Sybil attack and hopping attack. Sus-
bequently, the SafeVanish model has been proposed by [25]
to increase the cost required to effectively attack the Vanish
protocol. Vanish and its similar schemes [15], [24] take
significant advantage of the decentralization and large scale
features of distributed network to provide natural defense to
attacks. In contrast to Vanish, our proposed work addresses
the inverse of the problem addressed in the Vanish system
to develop a DHT-based protocol for enabling self-emerging
data. Our proposed schemes significantly leverage the large
scale features of DHT networks to protect self-emerging data
from being released prior to the release time.

VI. CONCLUSION

In this paper, we propose new mechanisms for timed
release of self emerging data using distributed hash tables.
The proposed schemes leverage the use of large scale DHT
networks to securely hide the protected data from being
accessed prior to the release time. The proposed protocols
enable automatic appearance of the stored encryption keys at
the predetermined release time while keeping the protected
encrypted data private and unavailable until the release time.
We identity two key attacks in the proposed approach that
could either make the hidden data appear before the prescribed
release time (release-ahead attack) or destroy the hidden data
altogether (drop attack). We present a suite of self-emerging

key routing schemes on DHTs for securely storing and routing
the encryption key in the DHT that achieve a high degree
of resilience to both release-ahead and drop attacks. Our
experimental evaluation using Overlay Weaver DHT emulator
toolkit demonstrates the efficacy and attack-resilience of the
proposed schemes.

REFERENCES

[1] Azar, Pablo, Shafi Goldwasser, and Sunoo Park. On time and order in
multiparty computation. Cryptology ePrint Archive. Report 2015/178,
2015. http://eprint.iacr.org.

[2] Bhagwan, Ranjita, et al. Replication strategies for highly available peer-
to-peer storage. Future directions in distributed computing, Springer
Berlin Heidelberg, 153-158, 2003.

[3] Chan A C F, Blake I F. Scalable, Server-Passive, User-Anonymous
Timed Release Public Key Encryption from Bilinear Pairing. IACR
Cryptology ePrint Archive, 211, 2004.

[4] Cheon J H, Hopper N, Kim Y, et al. Provably secure timed-release
public key encryption. ACM Transactions on Information and System
Security (TISSEC), 11(2): 4, 2008.

[5] Douceur, John R. The sybil attack. International Workshop on Peer-to-
Peer Systems, Springer Berlin Heidelberg, 2002.

[6] Emura K, Miyaji A, Omote K, et al. Time-specific encryption from
forward-secure encryption. International Conference on Security and
Cryptography for Networks. Springer Berlin Heidelberg, 184-204, 2012.

[7] Garay J A, Jakobsson M. Timed release of standard digital signatures.
Financial Cryptography. Springer Berlin Heidelberg, 168-182, 2002.

[8] Geambasu R, Kohno T, Levy A A, et al. Vanish: Increasing Data Privacy
with Self-Destructing Data. USENIX Security Symposium, 299-316,
2009.

[9] Jager, Tibor. How to Build Time-Lock Encryption. IACR Cryptology
ePrint Archive, 478, 2015.

[10] Kikuchi R, Fujioka A, Okamoto Y, et al. Strong security notions for
timed-release public-key encryption revisited. International Conference
on Information Security and Cryptology. Springer Berlin Heidelberg,
88-108, 2011.

[11] Koufogiannis, Fragkiskos, Shuo Han, et al. Gradually Releasing Private
Data under Differential Privacy, 2015.

[12] May T. Timed-release crypto. Unpublished manuscript, 1993.
[13] Mont M C, Harrison K, Sadler M. The HP time vault service: exploiting

IBE for timed release of confidential information. Proceedings of the
12th international conference on World Wide Web, 160-169, 2003.

[14] Reed, Michael G., Paul F. Syverson, and David M. Goldschlag. Anony-
mous connections and onion routing. IEEE Journal on Selected areas
in Communications, 16.4 (1998): 482-494.

[15] Reimann, Sirke, and Markus Drmuth. Timed revocation of user data:
long expiration times from existing infrastructure. Proceedings of the
2012 ACM workshop on Privacy in the electronic society, ACM, 2012.

[16] Rivest R L, Shamir A, Wagner D A. Time-lock puzzles and timed-
release crypto, 1996.

[17] Shamir, Adi. How to share a secret. Communications of the ACM,
22.11 (1979): 612-613.

[18] Singh, Atul. Eclipse attacks on overlay networks: Threats and defenses.
In IEEE INFOCOM, 2006.

[19] Schwenk, Jrg. Modelling time for authenticated key exchange protocols.
European Symposium on Research in Computer Security, Springer
International Publishing, 2014.

[20] Stoica, Ion, et al. Chord: A scalable peer-to-peer lookup service for
internet applications. SIGCOMM, ACM, 149-160, 2001.

[21] Stutzbach, Daniel, and Reza Rejaie. Understanding churn in peer-to-
peer networks. SIGCOMM conference on Internet measurement, ACM,
2006.

[22] Wolchok S, Hofmann O S, Heninger N, et al. Defeating Vanish with
Low-Cost Sybil Attacks Against Large DHTs. NDSS, 2010.

[23] Yavuz, Attila Altay, and Peng Ning. Self-sustaining, efficient and
forward-secure cryptographic constructions for Unattended Wireless
Sensor Networks. Ad Hoc Networks, 10.7: 1204-1220, 2012.

[24] Zarras, Apostolis, et al. Neuralyzer: flexible expiration times for the
revocation of online data. Proceedings of the Sixth ACM Conference
on Data and Application Security and Privacy, ACM, 2016.

[25] Zeng L, Shi Z, Xu S, et al. Safevanish: An improved data self-
destruction for protecting data privacy. CloudCom, 521-528, 2010.

