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Abstract—In the age of Big Data, releasing protected sensitive
data at a future point in time is critical for various applications.
Such self-emerging data release requires the data to be protected
until a prescribed data release time and be automatically released
to the recipient at the release time, even if the data sender goes
offline. While straight-forward centralized approaches provide
a basic solution to the problem, unfortunately they are limited
to a single point of trust and involve a single point of control.
This paper presents decentralized techniques for supporting self-
emerging data using smart contracts in Ethereum blockchain
networks. We design a credible and enforceable smart contract
for supporting self-emerging data release. The smart contract
employs a set of Ethereum peers to jointly follow the proposed
timed-release service protocol allowing the participating peers to
earn the remuneration paid by the service users. We model the
problem as an extensive-form game with imperfect information to
protect against possible adversarial attacks including some peers
destroying the private data (drop attack) or secretly releasing the
private data before the release time (release-ahead attack). We
demonstrate the efficacy and attack-resilience of the proposed
techniques through rigorous analysis and experimental evalua-
tion. Our implementation and experimental evaluation on the
Ethereum official test network demonstrate the low monetary
cost and the low time overhead associated with the proposed
approach and validate its guaranteed security properties.

I. INTRODUCTION

In the age of Big Data, releasing protected sensitive data at
a future point in time is critical for various applications. Such
self-emerging data release requires the data to be protected
until a prescribed data release time and be automatically
released to the recipient at the release time, even if the data
sender goes offline [23], [24], [29], [33]. Examples of appli-
cations requiring timed release of self-emerging data include
secure auction systems (bidding information needs protection
until all bids arrive), copyrights-aware data publishing (data is
automatically released when the copyright expires) and secure
voting mechanisms (votes are not allowed to be accessed until
the end of the polling process).

Centralized systems such as cloud storage services [1], [6],
[7] may provide a simple and straight-forward approach for
implementing self-emerging data release. The service provider
may simply keep the sensitive data until the prescribed release
time and make it available at the release time. However, such a
centralized approach limits the data protection to a single point
of trust and a single point of control. Even in cases when the
service providers are trustworthy, such centralized models lead
to channels of attacks beyond the control of service providers

for an adversary to compromise the security and privacy
of the data. It includes insider attacks [15], [30], external
attacks on the centralized data infrastructures, malware and
large-scale denial-of-service attacks [2], [9]. In 2014, 28% of
the respondents of the US State of Cybercrime Survey [15]
reported being victims of insider attacks and 32% reported that
insider attacks were more damaging than outsider attacks.

In this paper, we tackle the timed data release problem by
developing a decentralized self-emerging data release mech-
anism over the Ethereum blockchain network [35] that does
not involve a single point of trust. The choice of the Ethereum
Blockchain as the underlying data infrastructure network is
motivated by two factors. First, Blockchains are huge-scale
massively distributed systems that make complete decen-
tralization possible and they are inherently designed to be
reliable and robust to failures. Second, Ethereum offers Turing-
completeness that allows the protocol to be programmed and
implemented as decentralized smart contracts. The goal of the
proposed mechanism is to route the self-emerging data within
the blockchain infrastructure and enable it to automatically
appear at the release time while making it harder for an
adversary to access it prior to the release time. To achieve this
goal, the proposed mechanism, which is implemented using
smart contracts, recruits a set of Ethereum peers to jointly
follow the proposed timed-release service protocol allowing
the participating peers to earn the remuneration paid by the
service users. The protocol requires each recruited peer to
pay a security deposit so that any detected misbehaviors
can result in the deposit being confiscated. Specifically, we
model the problem as an extensive-form game with imperfect
information to protect against possible misbehaviors including
some peers destroying the private data (drop attack) or secretly
releasing the private data before the release time (release-
ahead attack). Through a careful design of the smart contract
based on game theory, we demonstrate that the best choice
of any rational Ethereum peer in the proposed technique is
to always honestly follow the correct protocol. We validate
the efficacy and attack-resilience of the proposed techniques
through rigorous analysis and experimental evaluation on the
Ethereum official test network. The experiments demonstrate
the low monetary cost and the low time overhead associated
with the proposed approach and validate its guaranteed secu-
rity properties.



II. DECENTRALIZED SELF-EMERGING DATA RELEASE

In this section, we present an overview of the proposed
decentralized self-emerging data release mechanism and we
introduce the key ideas behind the proposed protocol, named
timed-release service protocol.

A. Key components

The proposed decentralized self-emerging data release
mechanism involves four key components (Figure 1).
Data sender (S): At setup time ts, a data sender encrypts the
private data using a secret key, sends the encrypted data to a
cloud and sends the encrypted secret key into the blockchain
infrastructure for timed release at the expected release time tr.
Data recipient (R): While the encrypted private data can be
downloaded from the cloud at any time, the secret key from
the blockchain infrastructure can be released to data recipients
only at tr determined by data senders.
Cloud: A cloud storage platform is used as a medium for data
senders to transfer the encrypted private data to data recipients.
Blockchain infrastructure: The blockchain infrastructure
forms the core component of the self-emerging data release
mechanism. It implements the protocols necessary for offering
timed-release services to data senders.

B. Timed-release service protocol

The proposed timed-release service protocol recruits peers
from the blockchain peer-to-peer network to store the data
during [ts, tr] and release the data to the recipients at tr. The
protocol allows any peer to join the mechanism at any time
and declare any time period during which they are willing
to provide services. In case no single peer can handle the
entire [ts, tr] time period, the protocol can split [ts, tr] into a
series of successive shorter time durations, each of which is
handled by a different peer. In the example shown in Figure 1,
the storage time duration [ts, tr] is split into three fractions
and the encrypted secret key is passed from sender S to
recipient R through a routing path formed by P1, P2 and
P3. The proposed protocol enables such a routing scheme
requiring the sender to first encrypt the secret key using the
public key of the recipient and then iteratively form layers of
encryption using the public keys of the selected peers on the
routing path [16]. As a result, each peer on the routing path
decrypts one layer of the encryption of the secret key using
their private keys before forwarding it to the subsequent peers
on the path until it reaches the recipient who decrypts the final
layer of the encryption to obtain the key in plain text. The
protocol incentivizes the participating peers by requiring the
data senders to pay remunerations to the peers for obtaining the
store and forward services from them to route the encrypted
key along. Also, the protocol requires the participating peers
to pay security deposits so that any detected misbehavior can
result in their deposits being confiscated.

The timed-release service protocol satisfies two key require-
ments in order to be effective in practice. First, it ensures
credibility so that senders, recipients and peers are guaranteed
that they all see the same protocol when they participate in the

Fig. 1: Decentralized self-emerging data release

timed-release service. We implement the timed-release service
protocol using the Ethereum smart contract platform [35]
which ensures that when smart contracts get deployed into
the blockchain infrastructure, the protocol can be recorded in
the blockchain and be available to the public and becomes
nearly tamper-proof unless someone controls a majority of
computation power of the distributed network [3]. Second, the
protocol needs to be enforceable so that peers are guaranteed
to receive remunerations for honestly performing the agreed
services while being penalized for any misbehavior or failure
to render the promised service. In our approach, the protocol
forces the participants to pass the ownership of their money
to the smart contract such that it ensures that the only way
to receive payment from the smart contract is to trigger the
contract with a satisfied condition dictated in the protocol.

The proposed protocol consists of four key components
which are briefly introduced here and we will present their
detailed design in Section III. The implementation of the
protocol is maintained and supported through a smart contract
C.
Peer registration: At any point in time, a new peer P can
register by paying a security deposit to the contract C to be
added into the registration list maintained by C. This process
makes the entire network learn that the peer has registered and
can provide services during its prescribed working times. For
example, in Figure 1, we find that P1, P2 and P3 have been
registered before the setup time ts.

Service setup: At any point in time, a sender S can pay
remunerations and submit peers selected from the registration
list to the contract C and set up a timed-release service. This
process makes the service to be recorded by a service list
maintained by C. In Figure 1, we find that sender S requests
a service at ts with selected peers P1, P2 and P3.

Service enforcement: After a service has been set up, the
participants, namely sender S, recipient R and peers P s
should follow the protocol honestly in order to render the
service successfully. Behaviors violating the protocol will lead
to service failure and such misbehaviors are detected and
penalized by the contract. In Figure 1, the process of routing
the encrypted secret key from S to R through the path formed
by the three peers is enforced by the contract C through paying
remunerations for honest behaviors while confiscating deposits
for misbehaviors detected by C.



Reporting mechanism: To effectively detect misbehaviors in
the protocol implemented in the smart contract, the report-
ing mechanism incentivizes peers to report misbehaviors by
announcing an award in the contract C.

C. Attack models

In our work, we model adversaries with rationality and
consider two key attack models, namely drop attack and
release-ahead attack.
Rational adversaries: Recently, modeling adversaries with ra-
tionality has been recommended in many attack scenarios [17],
[19], [20], [32]. Informally, a semi-honest adversary follows
the prescribed protocol but tries to glean more information
from available intermediate results while a malicious adver-
sary can take any action for launching attacks [21], [36].
A rational adversary lies in the middle of the two types.
That is, they choose to violate protocols, such as colluding
with other parties, only when doing so brings them a higher
profit. In this paper, in order to design our mechanism with
strong and practical security guarantees, we model all involved
participants, namely S, R and P , to be rational adversaries
without assuming any of them to be honest.
Adversarial attacks: The mechanism targets adversarial at-
tacks launched after the data senders decide to release their
private data. In many use cases, data senders, as the source of
the private data and the initiator of the process, can determine
whether to release the data and when the data should be
released. For example, at a certain time point, Carol may
decide to draw up a will before anyone else knows her plan.
Then, by treating this time point as the registration deadline
td and only selecting peers from the registration list that were
registered before td, it can be guaranteed that all the selected
peers were not intentionally registered for attacking just her
data. In the rest of the paper, we assume that such a registration
deadline td exists.
Drop attack: A drop attack happens when the encrypted secret
key fails to reach the recipient R at release time tr. For
example, in Figure 1, after receiving the encrypted secret key
from peer P2, peer P3 may decide to destroy it. In such attacks,
due to the existence of the security deposit, a rational peer has
no motivation to destroy the data. However, we notice that a
drop attack can happen when an adversary intends to bribe
the selected peer (say, P3). Specifically, a drop attack can
be successful when the rational adversary gets higher profit
from it than the paid bribery and when the bribee receives
higher bribery than the drop penalty. To break the win-win
situation, we carefully design the detection mechanism in
Section III-C to make drop attacks detectable and to allow
the reporting mechanism in Section III-D to distinguish and
penalize the adversaries. In addition, by modeling the protocol
as an extensive-form game with imperfect information [25],
we demonstrate that drop attack can be entirely prevented in
our rational model.
Release-ahead attack: In release-ahead attacks, an adversary
aims to obtain the secret key before the actual release time

tr and earn a profit by utilizing the data prior to the release
time. In Figure 1, peer P3 can launch a release-ahead attack
by releasing its private key to recipient R before tr. Similar
to drop attacks, release-ahead attacks may happen through
peer bribery. However, unlike drop attacks that can be de-
tected, a release-ahead attack happens secretly as peers on
the path can share stored data to any party without leaving
a mark. Our proposed techniques handle this challenge by
designing a reporting mechanism to model the release-ahead
attack as an extensive-form game with imperfect information
(Section III-D). It makes rational adversaries choose to never
launch release-ahead attacks as the game ensures that the best
choice of any rational Ethereum peer is to always honestly
follow the correct protocol.

D. Assumptions
We make the following key assumptions in this paper:

• We assume that the monetary value v of the private data
is known to the sender S. That is, the maximum profit
made by an adversary from the two attack models, without
considering the deposit penalty, is bounded by this value.

• We assume that the number of registered peers is adequate
for providing the required service. We precisely assume that
there are at least two different available registered peers at
any moment for each service request.

III. TIMED-RELEASE SERVICE PROTOCOL

We present the proposed timed-release service protocol
organized along four subsections, each of which discusses a
key component of the protocol.

A. Peer registration

In this subsection, we present the first part of the protocol,
peer registration. It allows peers to submit their information
to the public registration list maintained by the decentralized
smart contract C and become publicly known as potential par-
ticipants in the timed-release service protocol. The submitted
information includes three components, namely when they are
able to provide services (working windows), their public keys
and security deposit.

Peer registration protocol
1. To be registered, each peer must submit a set of future working

windows Tws, a public key and a deposit to contract C.
2. Each peer can modify working windows Tws and the unfrozen

deposit at any time.

Peer working windows: As discussed in Section II-B, the
proposed timed-release service protocol splits a long storage
time duration, T s into a series of successive shorter time
durations, each of which is handled by a different peer during
its working window, Tw, as the encrypted secret key gets
routed on the blockchain network. Figure 2 shows an example
representing Tw as horizontal segments in a coordinate frame
with timeline and peer indexes as x and y axes respectively.
Here, the segment at the bottom-left corner represents a
working window [t1, t2] belonging to Pi.
Deposit management mechanism: The proposed protocol
uses deposits as a mechanism to penalize peer misbehaviors in



order to prevent drop and release-ahead attacks. Senders may
want to pay more for getting a higher deposit from peers as
guarantees of their behaviors to send private data with higher
monetary value v. To support such requirements, we design
a dynamic deposit management mechanism that incorporates
deposit with two states: frozen and unfrozen. One can imagine
that each peer has a deposit account in contract C. The deposit
account is opened after registration and its balance is denoted
as da. Initially, da is unfrozen. Later, data senders can calculate
the amount of deposit they want from peers, denoted as ds,
based on the monetary value of the private data v. Then,
during service setup, senders should only select peers from
the registration list with at least ds unfrozen deposit. The
amount of ds deposit, once being verified by contract C, will
be frozen from accounts of selected peers until the end of their
services. At any time, each peer can only manage its unfrozen
deposit in account as the ownership of the frozen part has been
temporarily transferred to contract C. In this way, the designed
deposit management mechanism encourages peers with secure
storage environment to keep a high deposit balance so that
they can get jobs requiring a higher deposit ds to earn more
payments by taking higher risk.

B. Service setup

Next, we present the second part of the protocol, namely
service setup, designed for allowing senders to select peers
from the registration list based on their requirements and set
up the service with contract C after paying remunerations.

Service setup protocol
1. Before setup time ts, senders compute the remuneration r̂ and

deposit ds required by this service and then locally run the
peer selection algorithm to select peers from the registration
list satisfying their requirements.

2. At setup time ts, senders submit service information including
selected peers to contract C. Also, both sender S and recipient
R should pay p > ds + r̂ to contract C.

3. Upon receiving a setup request, contract C calculates remu-
neration r̂ and deposit ds of this service, then:

3.1. If p > ds + r̂ and each selected peer has unfrozen deposit
higher than ds, C will approve the setup, freeze ds of
selected peers and refund p− ds − r̂ to S, p− ds to R.

3.2. Otherwise, C will reject the setup and refund p to S, R.

Remuneration computation: The remuneration r̂ paid by
sender S consists of two parts r̂c and r̂s. The r̂c component is
charged to compensate the cost of peers for invoking functions
during the service, so r̂c = krc for k selected peers. The r̂s
component is charged to reward peers for storing the secret
key, so it should be higher for longer storage time |T s|.
Meanwhile, to encourage more peers to serve for long-term
storage, S should be charged more for a later storage hour
closer to release time tr than an earlier one closer to ts.
Therefore, if we represent the charge of ith storage hour as
4ris and set the first hour charge as 4r1s , by setting per
hour increment of 4ris as α, we get 4ris = 4ri−1s + α,
which further gives r̂s =

|T s|[24r1s+(|T s|−1)α]
2 . Additionally,

S should be charged more for a higher monetary value of
private data v as an incentive to make peers maintain higher

Fig. 2: Peer selection

deposit balance, so we consider the above r̂c and r̂s as the
charging standard when v = 4v (e.g., 4v = $100) and adjust
the final r̂ based on that. To sum up, a sender should pay
remuneration r̂ = (d v

4v e)
β [krc + |T s|4r1s + |T

s|(|T s|−1)
2 α] in

total and a peer serving for ith to jth hours in T s should be
paid r = (d v

4v e)
β [rc + (j − i)4r1s + i+j−2

2 α], where α > 0
and β > 1.
Peer selection: The peer selection algorithm has two objec-
tives, namely (i) minimizing remunerations paid by senders
and (ii) maximizing the expected profit made by the peers.
To realize the first objective, we note that the only way to
reduce remuneration r̂ is to make k smaller, namely selecting
fewer peers for a service, which does not impact the expected
profit r earned by selected peers as r̂s is fixed. For achieving
the second objective, we need the algorithm to always pick
earlier hours in peer working windows Tws first so that deposit
ds can be unfrozen as soon as possible. We design a greedy
algorithm to achieve both of these objectives simultaneously.
By decomposing the peer selection problem into a series of
subproblems, we define each subproblem as ‘given all peer
working windows Tws covering an input time point, output the
Tw that makes the total number of selected peers minimum’.
Once a Tw is selected, its beginning time tb is then used as
the input time point of the subsequent subproblem to select
the next peer. Intuitively, in a subproblem, the greedy choice
is to pick the Tw with earliest tb. Next, we demonstrate the
peer selection process with an example in Figure 2.

In the example, instead of release time tr, the algorithm
takes tr + |Tt| as the input time point of the first-round
subproblem as we need to leave a buffer zone |Tt| for data
transfer between each pair of adjacent peers on path. In the first
round, there are three available peer working windows Tws
covering tr + |Tt| and obviously Tw3 , due to its earliest begin
time tb among the three, is the greedy choice. As a result, we
select P3 as the last peer on path and set Tw3 .tb+ |Ti| as input
of the second-round subproblem. We then get Tw2 as second-
round greedy choice, so we select P2 and set Tw2 .tb + |Ti|
as input of the third-round subproblem, which gives Tw1 as
third-round greedy choice to pick P1. This is the end of peer
selection process as Tw1 has already covered setup time.

C. Service enforcement

The third component of the protocol deals with service en-
forcement that specifies the behaviors that should be followed
by the sender S, recipient R and peers, P s during the service
process to render the service successfully. The protocol sets



deadlines for each behavior and treats any missing behavior as
a drop attack to enable drop attacks behavior to be detectable.
The deadlines are enforced as conditional statements in the
smart contract code and any missed deadlines will result in
the confiscation of security deposits. Next, we present the
protocol with a discussion on the designed behaviors. We
then model the protocol as an extensive-form game with
imperfect information to prove that rational participating peers
will always follow the protocol honestly.

Service enforcement protocol
1. Before time ts + |Tt|, the sender must submit hashes of

certificates and the encrypted whisper key to contract C. It
must also encrypt the secret key using public keys of selected
peers and transfer it to the first peer.

2. Each selected peer must decrypt one layer of the received
encrypted secret key, submit the obtained certificate to contract
C and verify the behavior of previous participants before its
first deadline d1. It must submit encrypted whisper key to
contract C before its second deadline d2 and transfer the secret
key to the next peer before its third deadline d3.

3. Before time tr + |Tt|, the recipient must first decrypt the
last layer of the encrypted secret key to submit the obtained
certificate to contract C and then verify the behavior of both
the previous participants and the recipient itself.

4. If any verification launched by a peer (or recipient) in term 2
(or 3) gives False, C should immediately terminate the service
and judge the last participant on the path that fails to pass the
verification to be guilty. Then, C should refund deposit ds to
all innocent participants, pay remuneration r to innocent peers
and issue confiscated ds and unused r to sender.

5. If a verification gives Ture, contract C should refund deposit
ds and pay remuneration r to all participants that have already
honestly finished their job before their deadlines.

Whisper key submission: Our mechanism employs the Whis-
per protocol [12] to transfer secret keys between any two
Ethereum peers by building private channels with symmetrical
whisper keys. Specifically, the first peer should encrypt its
whisper key with the public key of the second peer and submit
it to contract C so that only the second peer can set up the
channel.

Certificate: We design certificates for detecting drop attacks.
For each peer and recipient, we need the sender to secretly
generate a unique certificate and package it along with the
corresponding layer of the encrypted secret key. Therefore,
upon decrypting the received encrypted secret key with the
private key, the peer (or recipient) will get the unique certifi-
cate. The peer (or recipient) then should submit the certificate
to contract C. If the hash of the submitted certificate is same as
the one submitted by sender, the correct reception of encrypted
secret key can be proved. Otherwise, a drop attack is detected.
However, with certificates, we can only detect that a drop
attack has happened between two adjacent peers. It is hard to
further figure out which of the two peers launched the attack
as the channel between them is private. We will discuss how
to handle such a dispute in Section III-D.
Verification: We design verification as a function of contract
C for enforcing submission of whisper keys and certificates.
A missing whisper key or certificate, both causing a drop

attack, cannot be automatically detected by contract C. Here,
we need the verification function to be triggered by Ethereum
peers to check whether the submissions have been made
on time. If all the submissions have been correctly made
until the time of verification, the function returns a True.
Otherwise, it returns a False. For each timed-release service,
multiple verifications are required to detect a drop attack in a
timely manner so that the service can be terminated on time
and deposits of innocent peers can be unfrozen quickly. We
carefully design the protocol as an extensive-form game with
imperfect information to prove that any rational participant in
this game will always choose to submit both whisper key and
certificate on time.
The game induced by the protocol: We model the protocol
as an extensive-form game with imperfect information [25],
which can be represented as a game tree in Figure 3. For ease
of explanation, the example only has one peer P between
sender S and recipient R on path, but the services with
more peers follow the same result. The game has three
players {S, P,R}. Its basic actions are (whisper key and/or
certificate) submission (s) and verification (v), so the action
set is {s, v, s̄, v̄, sv, sv̄, s̄v, s̄v̄}, where s̄ and v̄ represent no
submission and no verification respectively and sv, sv̄, s̄v, s̄v̄
stand for the combinations. The game tree consists of choice
nodes {n0, ..., n6} and terminal nodes {n7, ..., n14}. At the
beginning of the game, sender S ({n0}) can choose either to
submit whisper key or not by taking one action from {s, s̄}.
Then, the game moves to peer P ({n1, n2}), who has no idea
about the choice made by sender S (imperfect information).
The peer P should choose one action from {sv, sv̄, s̄v, s̄v̄},
namely four combinations of doing submission and verifica-
tion or not, but sv̄ and s̄v can be omitted as they can be
replaced by sv and s̄v̄. Finally, the game goes to the turn
of recipient R ({n3, n4}, {n5, n6}), who has no idea of the
action taken by sender S and peer P . Similar to P , recipient
R should choose one action from {sv, s̄v̄}.

We now analyze the payoffs shown under the terminal
nodes, where uS , uP and uR represent payoff of sender
S, peer P and recipient R respectively. The payoffs have
uncertainty. Most peers on the path, by dropping the encrypted
secret key, can only save a service cost c, but some peers can
get an additional profit no more than the monetary value of
the private data v. In this paper, for ease of explanation, we
will only analyze the situation that both peer P and recipient
R can get additional benefit v, denoted as P̄ R̄, because all
the other situations can reach the same Nash equilibrium [31].
In P̄ R̄, we will show that if deposit ds > v is satisfied, then
the best choice of each player is to do both submission and
verification on time. We start from analyzing the choice of
recipient R between sv and s̄v̄ at the last step of this game.
At n3, by choosing sv, R gets 0 at n7, which is higher than
uR = v− ds at n8 if s̄v̄ is chosen and ds > v is satisfied. By
further checking n4 to n6, we can find sv always brings uR no
less than uR from s̄v̄, which proves that sv dominates s̄v̄ and
R should always choose sv no matter how the game has been
played before. Following the same rule, peer P should always



Fig. 3: Game tree induced by service enforcement protocol

choose sv at {n1, n2} if ds > v−(r−c) is satisfied. Since we
need r > c to make P s get positive profit from the service,
ds > v − (r − c) can be automatically satisfied when ds > v.
Finally, with the same rule, sender S should always choose
s at n0. In game theory, if by taking a strategy, a player can
make the expected payoff no less than that induced by taking
any other strategy no matter what strategies are taken by other
players, this strategy will become his or her best response. If
all the players are taking their best responses, the game will
reach a Nash equilibrium [31]. Nash equilibrium is the most
important solution concept in game theory, which describes a
situation that every player chooses the best response and no
one can make payoff higher by changing strategy if no one else
changes strategy. In this game, the Nash equilibrium is reached
when all the players follow the bold edges, which results in all
rational players, whether they are sender, recipient or peers,
choosing to honestly obey the protocol.

D. Reporting mechanism

In this subsection, we present the last part of the protocol,
namely reporting, designed for handling both release-ahead
attacks and the dispute of drop attacks that are hard to be
detected by service enforcement protocol.

Reporting protocol
1. Any peer can report a release-ahead attack to contract C with

evidence before tr to earn an award a.
2. Any peer on the path can report a dispute of drop attack

between a suspect (the peer before this reporter on path) and
the reporter to contract C before deposit ds of the suspect is
unfrozen to earn an award a.

Release-ahead attack: As discussed in Section II-C, it is
highly difficult to detect a secret release attack made by
peers on the path. We design a reporting mechanism to
enable a release-ahead attack to be reported with evidence
by adversaries themselves. The evidence should include a
message and the message signed by the private key of the
disloyal peer, which has been released by the peer to the
adversary. Then, contract C can verify the correctness of the
private key with the public key of that peer. If the private key
is proved to be the one of this peer, the adversary will get an
award, a from contract C while the peer will lose its deposit
ds. This reporting mechanism is an effective way to prevent
release-ahead attacks as long as both adversary and the peer
are rational. In the game between them, the best response of
the adversary is to always report the peer to earn the award a
from contract C without any penalty. Based on this knowledge,
the best response of any peer on the path is to never accept
bribery. Therefore, the Nash equilibrium of this game makes
such a release-ahead attack never happen.

Dispute of drop attack: As discussed in Section III-C, drop
attacks cannot be solely prevented by verifications. After a
drop attack is detected between two adjacent peers on the
path when the second peer between the two fails to submit the
correct certificate, it is hard to figure out which peer actually
launched it. It can be either launched by the first peer by not
sending the correct encrypted secret key to the second peer
or by the second peer by maliciously denying the reception of
the encrypted secret key. In addition, it can be launched by the
sender S by submitting fake hashes of certificates to contract C
at the very beginning. To solve it, we allow the second account
to report the dispute. Upon receiving the report, contract C
should confiscate deposit ds of the three participants and send
back an award a to the second peer. Again, this anti-intuitive
reporting mechanism is an effective way to prevent drop attack
dispute by making the three participants as a community of
interests as long as these accounts are rational. In this game,
when there is a drop attack, the second peer has the dominant
action to always report the dispute because it will lose part of
its deposit ds − a by reporting it but lose the entire deposit
ds due to the missing certificate by not reporting it. With this
knowledge, the best response of the first peer and sender is to
never launch a drop attack because otherwise they will lose
the entire deposit ds > v due to the report. Finally, given the
best response of the first peer and sender, if ds > v + a is
satisfied, the best response of the second peer is also to never
launch a drop attack because otherwise it will lose ds−a > v
due to the report. As a result, the Nash equilibrium is reached
when all of them choose to never launch a drop attack.

IV. IMPLEMENTATION

In this section, we present the implementation of the pro-
posed self-emerging data release smart contract and experi-
mentally evaluate its performance and security.

A. Implementation

We programmed the smart contract in the contract-oriented
programming language Solidity [10], deployed it to the
Ethereum official test network rinkeby [8] and tested it with
Ethereum official Go implementation Geth [5]. We used the
SolRsaVerify contract [11] to verify signatures in the release
reporting mechanism. We ran our experiments on an Intel Core
i7 2.70GHz PC with 16GB RAM.

We design the smart contract to include fifteen main func-
tions for supporting the four components of the protocol
presented in Section III. The functions are shown in Table I.
Specifically, any peer can invoke newPeer() to be registered
and then manage its data through the other three functions
in register. During setup, a sender should sign the contract
through senderSign() and then invoke setup() to complete



Components Functions Gas cost Monetary cost

R
eg

is
te

r newPeer 278672 $0.87
updateBalance 31785 $0.10
updateWindow 42805 $0.13
updatePubKey 49866 $0.16

Se
tu

p senderSign 235687 $0.73
recipientSign 45605 $0.14

setup 1142774 $3.56

E
nf

or
ce

setCert 45932 $0.14
verifyCert 33121 $0.10

setWhisperKey 38787 $0.12
verification 87435 $0.27

R
ep

or
t releaseReport 101552 $0.32

releaseAward 66723 $0.21
dropReport 70065 $0.22
dropAward 75565 $0.24

TABLE I: Summary of functions in the smart contract

service setup. At the beginning of a service, sender S should
invoke setCert() and setWhisperKey() to submit hashes of
certificates and encrypted whisper key to C. Then, during the
service process, verifyCert() is invoked by peers P s and re-
cipient R to submit certifications, setWhisperKey() is invoked
by P s to submit encrypted whisper key and verification() is
invoked by P s and R to do verification. Finally, any Ethereum
peer can invoke releaseReport() to report a release-ahead
attack and get award through releaseAward(). Similarly, P and
R on path can report a drop attack through dropReport() and
get award through dropAward().

For testing purpose, we generated 100 Ethereum accounts as
registered peers. The 100 working windows are distributed in
the future 1200 hours. Their start times follow an exponential
distribution with a mean of 300 hours while their lengths
follow a normal distribution with a mean of 15 hours and a
standard deviation of 5 hours. In addition, we design an input
parameter Time to simulate the time during testing.

B. Experimental evaluation

We use the presented test setting to experimentally evaluate
the performance and security of the smart contract. In one test
instance, to send the private data to 1000 hours in the future,
the peer selection algorithm selected five peers to form the
path. Due to space limitations, we omit details about the five
shorter time durations generated through partitioning the 1000-
hour time duration. Next, we analyze the monetary cost to
invoke the functions in this situation and then test the contract
in different conditions including drop attack and release-ahead
attack scenarios.
Monetary cost: The monetary costs of functions are shown in
Table I. In Ethereum, each function call will cost some gases
if it changes the state of contract. Therefore, the raw data
measured here is the gas cost of each function, which is then
transferred to cost in $ based on 1 gas = 1.0371979124×10−8

ETH and 1 ETH = $300 as of date, 10/29/2017 [4]. As can be
seen, most functions cost very little. Specifically, among the
fifteen functions, seven cost lower than $0.2 and twelve cost
lower than $0.32. The remaining three functions are newPeer()
($0.87), senderSign() ($0.73) and setup() ($3.56). They cost

Cond S P1 P2 P3 P4 P5 R

1. 5 5 5 5 5 5 5
2. 7.872 5.010 5.017 5.026 5.035 5.040 5
3. 8.489 5.010 4.4 5.026 5.035 5.040 5
4. 8.212 5.310 5.017 5.026 5.035 4.4 5
5. 1.347 5.010 5.017 5.026 4.4 1.7 5

TABLE II: Security evaluation

higher as data is stored into the registration list and service
list in C through the three functions. However, since each P
only calls newPeer() for once during registration and each S
only calls senderSign() and setup() once during service setup,
these costs are quite acceptable in practice. Thus, in case of
sending data to 1000 hours later, a timed-release service costs
$7.51 in total.
Security evaluation: We then evaluate the security protection
by testing the results of a timed-release service with five
selected peers in different conditions when the S, R and
P s engage in suspicious behaviors, shown in Table II. The
remuneration parameters are set as α = 0.000012 ETH,
β = 1.1, 4r1s = 0.000001 ETH, 4v = 1 ETH, rc = 0.002
ETH, ds = 1.2v, a = 0.1v respectively.
• Condition 1: Before the service, S, R and the five P s all

hold 5 available ETH. Then, S wants to send a secret key
with its monetary value v = 3 ETH.

• Condition 2: If all the participants follow the protocol
honestly, S can earn 2.872 ETH from the 3 ETH v after
paying 0.128 ETH to P s . Each P can earn its remuneration
based on the length of its service time as well as the distance
of its service from the setup time tr.

• Condition 3: If P2 does not submit its whisper key or
certificate on time, its confiscated deposit ds = 3.6 ETH
will make its final payoff to be 5− 3.6 + 3 = 4.4 ETH.

• Condition 4: If P5 releases its private key to P1, P1 can
report it to earn the 0.3 ETH award, which will make P5

get 5− 3.6 + 3 = 4.4 ETH payoff.
• Condition 5: If P4 does not send the secret key to P5 through

the private channel, P5 can report this drop dispute, which
will make P4 get 4.4 ETH payoff. Without reporting it to
earn the 0.3 ETH award, P5 can only get 5 − 3.6 = 1.4
ETH payoff due to the failure of certificate submission.

As can be seen, in conditions 3 to 5, adversaries with mis-
behavior only get 4.4 ETH payoff, which makes them lose
0.6 ETH. Therefore, a rational Ethereum peer should always
choose to honestly follow the protocol resulting in condition 2.

V. RELATED WORK

The problem of revealing private data only after a certain
time in future was first described by May as timed-release
cryptography in 1992 [29] and has intrigued many researchers
in the field of cryptography since then. There are four sets
of representative solutions in the literature. The first category
of solutions was designed to make data recipients solve a
mathematical puzzle, called time-lock puzzle, before reading
the messages [13], [14], [33]. The time-lock puzzle can only be
solved with sequential operations, thus making multiple com-
puters no better than a single computer. This solution suffers



from two key drawbacks. First, the time taken to solve a puzzle
may be different on different computers. Second, the puzzle
computation is associated with a significant computation cost,
which does not lead to a scalable cost-effective solution. The
second group of solutions relies on a third party, also known
as a time server, to release the protected information at the
release time in future. The information, sometimes called time
trapdoors, can be used by recipients to decrypt the encrypted
message [23], [24], [33]. However, the time server in this
model has to be trusted to not collude with recipients so that
encrypted messages cannot be entered before release time.
This restriction makes this set of solutions involve a single
point of trust. The third set of approaches use blockchains as a
reference time clock correctness guaranteed by the distributed
network [22], [28]. By combining witness encryption [18] with
blockchain, one can leverage the computation power of PoW
in blockchain to decrypt a message after a certain number
of new blocks have been generated. However, the current
implementation of witness encryption is far from practical,
which requires an astronomical decryption time estimated to
be 2100 seconds [28]. Recent work has studied the problem in
the context of Distributed Hash Table (DHT) networks [26],
[27]. The idea behind these techniques is to leverage the
scalability and distributed features of DHT P2P networks to
make message securely hidden before release time. In contrast
to such DHT-based solutions that do not offer guaranteed
resilience to potential misbehaviors, the decentralized self-
emerging data release techniques presented in this paper
employs a blockchain infrastructure that offers more robust
and attractive features including higher protocol enforceability
by using incentives and security deposits.

VI. CONCLUSION
In this paper, we develop decentralized techniques for sup-

porting self-emerging data using smart contracts in Ethereum
blockchain networks. Our proposed timed release service pro-
tocol implemented as a smart contract is nearly immutable in
the Ethereum blockchain. The credibility and enforceability of
the protocol are guaranteed through a careful design based on
extensive-form games with imperfect information to prevent
possible misbehaviors including drop attacks and release-
ahead attacks. We developed the smart contract using Solidity
and implemented the mechanism on the Ethereum official test
network. Our rigorous theoretical analysis and extensive ex-
periments demonstrate the low monetary cost and the low time
overhead associated with the proposed approach and validate
its security properties. In future work, we plan to deal with the
situation that powerful adversaries can make their controlled
peers register even before the registration deadline selected
by the data owners. Potential solutions include establishing
a reputation system to make it harder for malicious peers to
be selected or adopting secret share scheme [34] to transmit
shares of a secret key through multiple paths to make it harder
for adversaries to restore the secret key.
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