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Road Network-Aware Spatial Alarms
Kisung Lee, Ling Liu, Balaji Palanisamy, and Emre Yigitoglu

Abstract—Road network-aware spatial alarms extend the concept of time-based alarms to spatial dimension and remind us when we
travel on spatially constrained road networks and enter some predefined locations of interest in the future. This paper argues that road
network-aware spatial alarms need to be processed by taking into account spatial constraints on road networks and mobility patterns
of mobile subscribers. We show that the Euclidian distance-based spatial alarm processing techniques tend to incur high client energy
consumption due to unnecessarily frequent client wakeups. We design and develop a road network-aware spatial alarm processing
system, called ROADALARM, with three unique features. First, we introduce the concept of road network-based spatial alarms using
road network distance measures. Instead of using a rectangular region, a road network-aware spatial alarm is a star-like subgraph
with an alarm target as the center of the star and border points as the scope of the alarm region. Second, we describe a baseline
approach for spatial alarm processing by exploiting two types of filters. We use subscription filter and Euclidean lower bound filter to
reduce the amount of shortest path computations required in both computing alarm hibernation time and performing alarm checks at
the server. Last but not the least, we develop a suite of optimization techniques using motion-aware filters, which enable us to further
increase the hibernation time of mobile clients and reduce the frequency of wakeups and alarm checks, while ensuring high accuracy of
spatial alarm processing. Our experimental results show that the road network-aware spatial alarm processing significantly outperforms
existing Euclidean space-based approaches, in terms of both the number of wakeups and the hibernation time at mobile clients and
the number of alarm checks at the server.

Index Terms—Spatial alarms, road networks, motion behavior, optimization, scalability.
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1 INTRODUCTION

MANY of us use time-based alarms daily to remind
us the arrival of some predefined time points of

interest in the future, such as getting up in the morning
and attending an important business meeting. Spatial
alarms extend the concept of time-based alarms to spatial
dimension and remind us when we enter some prede-
fined locations of interest in the future. An example of
spatial alarms is “alert me when I am within 2 miles of
the dry clean store in Buckhead”. Spatial alarms are basic
building blocks for many location-based services, such as
location-based advertisements, factory danger zone alert
system, and sex offender monitoring system. Since the
number of smart devices including smart-phones and
tablets is rising steeply , scalable processing of spatial
alarms is becoming increasingly important in mobile
applications and location-aware computing.
Characterization of spatial alarms. A spatial alarm is
defined by four components: a focal point representing
the alarm target, a spatial distance representing the
alarm region, an owner (or a publisher) of the alarm and
a set of alarm subscribers. Spatial alarms are categorized
into three groups by their ownership: private, shared and
public. A private alarm has only one subscriber who is
also the publisher of the alarm. A shared alarm has a
publisher and several subscribers approved by the pub-
lisher. In terms of a public alarm, its publisher does not
set any restriction on subscribers and thus anyone can
be a subscriber of the alarm. Public alarms are typically
classified by alarm interests, such as traffic alerts and
coupons from grocery stores and restaurants. Spatial
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alarms can also be categorized by the motion behavior
of their subscribers and their monitoring targets: moving
objects with static targets, static objects with moving targets
and moving objects with moving targets. Typical examples
of spatial alarms having moving objects with static targets
are “alert me when I am within 5 miles of a Whole Foods
Market in Buckhead” (private) and “notify anyone en-
tering I85 North from Spaghetti Jct. in Atlanta” (public).
“The Macy’s store at Lenox Square sends advertisements
to its customers who are within 10 miles of its store
location” (i.e., Macy’s customers are spatial alarm targets
for the Macy’s store and the store will be notified when
its customers are within a specified spatial range from
the store) is an example of spatial alarms having static
objects with moving targets. “Alert Lucy when her car is
1 mile apart from her friends’ vehicles on the way to
Walt Disney World in Orlando” is an example of moving
objects with moving targets.
Challenges of spatial alarm processing. Spatial alarms
are essential for many location-based services, rang-
ing from location-based advertisement to location-based
personal reminders. Negligent management of spatial
alarms can lead to excessive energy consumption of
mobile devices, especially when spatial alarm processing
relies on continuous tracking of mobile devices, which
is known to be prohibitively expensive. We argue in
this paper that intelligent techniques can be developed
for scalable processing of spatial alarms by minimizing
the amount of continuous monitoring of mobile users
locations. Furthermore, the performance of spatial alarm
processing can be affected by a number of factors, such
as frequency of wakeups � how often mobile devices
should wake up because of possible alarm hits and
frequency of alarm checks � how many spatial alarms
should be evaluated at each wakeup. Since frequent and
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Fig. 1: Spatial alarms

possibly unnecessary wakeups and alarm checks not
only reduce battery life of mobile devices considerably
but also increase the loads of a spatial alarm processing
server, we need efficient spatial alarm processing that
can reduce the number of unnecessary wakeups and
alarm checks at each wakeup. Finally, the spatial alarm
processing system should scale to a large number of
spatial alarms and mobile users while meeting the high
accuracy goal by minimizing the alarm miss rate.

Existing approaches on spatial alarm processing can
be categorized into two groups by their criteria for
controlling the frequency of wakeups: time-based ap-
proaches (such as periodic wakeups) and distance-based
approaches (such as safe period [1], [2] and safe region
[3], [4]). Most existing techniques define spatial alarms
using Euclidean distances and thus a rectangular region
is typically used to represent the spatial alarm region.
Fig. 1(a) shows an example rectangular alarm, which
has five intersecting points with the underlying road
network. Such an alarm can be triggered even though its
subscribers’ current location is far away from the alarm
target c based on road network distance. For example,
if a mobile subscriber of the alarm is located on b1,
the alarm should be triggered because the subscriber
is within the rectangular alarm region. However, even
though b1 is the nearest intersecting point to the alarm
target c based on the Euclidean distance, its road net-
work location is far away from the alarm target c based
on the road network distance and thus the subscriber
can save its battery energy by sleeping for a longer time.
This example illustrates the problem of using Euclidean
distance to define spatial alarms and highlights the
potential benefit of road network-aware spatial alarm
processing. To the best of our knowledge, no existing
research has taken into account spatial constraints on
road networks in optimizing spatial alarm evaluation.
Contributions and organization of the paper. In this
paper, we present ROADALARM � a road network-aware
spatial alarm processing system. By taking into account
spatial constraints on road networks and mobility pat-
terns of mobile subscribers, ROADALARM can reduce
the frequency of wakeups and increase hibernation time
of mobile clients and, at the same time, minimize the
computation cost of alarm checks by filtering out those
spatial alarms that are irrelevant or far away from the
current location of their mobile subscribers. Concretely,
we define road network-aware spatial alarms using
network distances (e.g., segment length-based or travel
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time-based). Instead of using a rectangular region, a
road network-aware spatial alarm is defined as a star-
like subgraph with an alarm target as the center of the
star. We define the scope of an alarm region by the set
of border points of the star. In addition, we formulate
our baseline approach to road network-aware spatial
alarm processing by exploiting subscription filtering and
Euclidean lower bound filtering. The former can filter
out those spatial alarms that are clearly irrelevant by con-
sidering only subscribed spatial alarms. The latter can
reduce the number of the network distance computations
without loss of accuracy. Furthermore, we develop a
suite of motion-aware filters as optimization techniques
to further reduce the frequency of wakeups as well as the
frequency of alarm checks while ensuring high accuracy
by considering mobility patterns of mobile subscribers.
To the best of our knowledge, ROADALARM is the first
systematic approach to exploring road network-aware
and motion-aware filters to reduce the search space
and computation cost of road network-aware alarm
processing. Our experimental results show that ROAD-
ALARM outperforms existing Euclidean distance-based
techniques and can scale to a large and growing number
of spatial alarms as well as mobile subscribers.

The rest of the paper is organized as follows: We give
an overview in Section 2 and present the baseline ap-
proach in Section 3. We improve the performance of the
baseline approach by developing a suite of optimization
techniques in Section 4. We evaluate the performance of
ROADALARM in Section 5, outline the related work in
Section 6, and conclude the paper in Section 7.

2 OVERVIEW

In this section, we describe the system architecture of
ROADALARM and define road network-aware spatial
alarms, alarm miss and hibernation time. A spatial alarm
system typically consists of a spatial alarm processing
engine and a location server where the locations of
moving objects (mobile clients) and the locations of
static objects (such as gas stations, restaurants, and so
on) are managed. The spatial alarm processing engine
communicates with the location server to obtain the
current road network locations of mobile subscribers
as well as the road network locations of alarm targets
for all alarms maintained in its database. The location



IEEE TRANSACTIONS ON MOBILE COMPUTING 3

server uses localization techniques (such as GPS, WiFi
or any hybrid localization technology) to keep track of
the current positions of moving objects. Fig. 2 presents
a sketch of the ROADALARM system architecture.

We assume that moving objects can be any devices
(e.g., smart-phones, tablets, navigation systems) with
any localization technology such as GPS and WiFi lo-
calization. ROADALARM adopts the client-server archi-
tecture for spatial alarm processing. Concretely, mobile
objects may install (publish) their spatial alarms at the
location server as private, shared or pubic alarms. In
addition to their own private alarms, mobile objects can
subscribe to any public alarms and a subset of shared
alarms authorized by other alarm owners. Mobile objects
need to install the thin client of ROADALARM as a mobile
application on their devices. Each mobile subscriber will
obtain an initial hibernation time at the commit of her
alarm subscription. Upon the expiration of its old hiber-
nation time, the mobile client will automatically contact
the alarm server on behalf of the mobile subscriber to
obtain its new hibernation time. We assume that the
mobile clients are able to communicate with the server
through wireless data channel. During the hibernation
time, the ROADALARM application is hibernated at the
mobile client, and the alarm server consumers zero alarm
processing cost for this mobile client.
Road network model. A road network is represented
by a directed graph G = (V, E), composed of the road
junction nodes V = {n0, n1, . . . , nN

} and directed edges
E = {n

i

n

j

|n
i

, n

j

2 V}. We refer to an edge n

i

n

j

as a
road segment connecting the two road junction nodes
n

i

and n

j

with direction from n

i

to n

j

. When a road
segment is bidirectional, we use edge n

i

n

j

and edge
n

j

n

i

to denote the two directions of the same road seg-
ment. For each road segment, road-related information
can be maintained, such as segment length (e.g., 1.2
miles), speed limit (e.g., 55 mph), current traffic data
(e.g., average speed is 35 mph), and direction (e.g., one-
way road). The length and speed limit of a road seg-
ment n

i

n

j

are denoted by seglength(n
i

n

j

) in miles and
speedlimit(n

i

n

j

) in miles per hour respectively. Other
road-related information such as direction and current
traffic data, if available, can be easily incorporated to
provide more accurate travel time.

Let n1 and n2 denote two road junction nodes and
n1n2 /2 E . We define a path from n1 to n2 as a sequence
of road segment edges, one connected to another,
denoted as n1ni1 , n

i1ni2 , . . . , ni

k�1ni

k

, n
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k

n2 (k > 0).
The length of a path h between n1 and n2, denoted
by pathlength(h), is computed as seglength(n1ni1) +
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road junctions n1 and n2, since there can be more than
one path from n1 to n2, we use PathSet(n1, n2) to denote
the set of all paths from n1 to n2. We define a segment
length-based shortest path from n1 to n2, denoted
by sl shortestpath(n1, n2), as {h

sl

|pathlength(h
sl

) =
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h2PathSet(n1,n2) pathlength(h)}. The travel time of a
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)
speedlimit(n
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) and thus
the travel time of a path h, denoted by traveltime(h),
is calculated as seglength(n1ni1 )

speedlimit(n1ni1 )
+
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. The travel time-based shortest

path from n1 to n2, denoted by tt shortestpath(n1, n2),
is defined as {h

tt

|traveltime(h

tt

) =

min

h2PathSet(n1,n2) traveltime(h)}.
A road network location, denoted by L = (n

i

n

j

, p), is
a tuple of two elements: a road segment n

i

n

j

and the
progress p along the segment from n

i

to n

j

. The road
network distance between two road network locations
L1 = (n

i1ni2 , p1) and L2 = (n

j1nj2 , p2) is the length of the
shortest path between L1 and L2 in terms of either seg-
ment length or travel time. The segment length-based
road network distance, denoted by sldistance(L1, L2),
and travel time-based road network distance, denoted
by ttdistance(L1, L2), are formally defined respectively
as follows:

sldistance(L1, L2) = seglength(ni1ni2)� p1 + p2

+pathlength(sl shortestpath(ni2 , nj1))

ttdistance(L1, L2) =
seglength(ni1ni2)� p1

speedlimit(ni1ni2)

+
p2

speedlimit(nj1nj2)
+ traveltime(tt shortestpath(ni2 , nj1))

Even though the segment length-based distance is
the most commonly used distance measure on road
networks, it may not provide sufficient and accurate
distance information in terms of actual travel time from
the current location to the destination, considering that
highway road segments are usually much longer but
also with much higher speed limits and thus may have
relatively shorter travel time compared to some local
road segments. To ensure high accuracy and high per-
formance of spatial alarm processing, we use the travel
time-based distance as default road network distance
measure in ROADALARM.
Road Network-Aware Spatial Alarms. In ROADALARM,
we define a road network-aware spatial alarm as a
star-shaped subgraph centered at the alarm focal point,
denoted as SA

RN

(p

f

, r, S) where p

f

is the alarm target or
the alarm focal point (a road network location), r is the
alarm monitoring region, represented by a spatial range
(segment length or travel time) from p

f

, and S is a set
of subscribers. Consider Fig. 1(b) that shows three star-
shaped alarms with focal points f1, f2 and f3. The road
network-aware spatial alarm with focal point f1 has a
range of 5 miles based on the segment length. The road
network-aware spatial alarm with focal point f2 has a
range of 10 minutes based on the travel time. We call
those points on the road network which bound a star-
shaped spatial alarm border points. For example, b12 is
one of the four border points of the alarm with focal
point f1.
Alarm Miss and Hibernation Time. We define an alarm
miss as a case when a spatial alarm is not triggered
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as it should be even though a mobile subscriber of
the alarm enters or passes through the alarm region.
Consider Fig. 1(b): moving objects m1,m2,m3 and m5

should each receive a spatial alarm alert and m4 should
get two alerts from the spatial alarms with alarm targets
f1 and f2 sequentially. If any one of those alarms is
not triggered during the course of travel for the five
subscribers, the alarm miss has happened. Opposite to
alarm miss, an alarm hit refers to the case when a spatial
alarm is triggered when one of its mobile subscribers
enters the alarm region.

As mentioned earlier, in ROADALARM we compute
a hibernation time for each mobile subscriber, dur-
ing which the mobile subscriber hibernates the ROAD-
ALARM thin client on her device. We define a hibernation
time for each moving object, which is a time interval
during which the moving object does not need to wake
up and the alarm server does not need to perform
alarm checks for this mobile subscriber. A hibernation
time of a moving object is specified by a time interval
consisting of its start time and end time. If the current
time is between them, the moving object’s current status
is hibernation; otherwise, it is alive. Upon expiration of the
current hibernation time, the mobile client wakes up, and
communicates with the spatial alarm server to obtain a
new hibernation time. The alarm server examines the
current location of the mobile subscriber and the set
of alarms subscribed by this subscriber to determine
the new hibernation time. If the new hibernation time
is smaller than a system-defined threshold �, a spatial
alarm is triggered and the mobile subscriber is notified.
Otherwise, a new hibernation time will be sent to the
mobile subscriber.

We would like to note that the timeliness of alarm
triggering is also important, especially when spatial
alarms are defined with some quality of service (QoS)
guarantee. For example, it is possible that based on the
current hibernation time for the moving object m5 in
Fig. 1(b), m5 may receive the spatial alarm alert when
it approaches the focal point f3 or just before leaving
the spatial alarm through the border point b31. Thus, in
ROADALARM we use a stronger definition of alarm miss:
if a moving object’s current status is hibernation when
it enters alarm region of a spatial alarm by crossing a
border point of the alarm, we treat it as an alarm miss.

The alarm success rate is the percentage of spatial alarm
alerts which are not missed, and is defined as follows:

alarm success rate = 1� Total number of alarm misses
Total number of actual alarm hits

For example, if there are 9 alarm hits and 1 alarm miss
(actual hit but not triggered), the success rate is 90%.

3 SPATIAL ALARM PROCESSING

In this section we present the design consideration of
the ROADALARM baseline algorithm for efficient pro-
cessing of spatial alarms. We first describe the Euclidean
distance-based approach and the conventional network

expansion-based approach to process road network-
aware spatial alarms and analyze the problems with
these two approaches. Then we introduce the baseline
algorithm for ROADALARM by incorporating subscrip-
tion filter and Euclidean lower bound filter.

3.1 Euclidean Distance-based Approach

The Euclidean distance-based approach is often consid-
ered as the most intuitive baseline approach to imple-
menting spatial alarm processing. Concretely, for every
mobile object m, upon the expiration of its hibernation
time, m wakes up and contacts the spatial alarm server
to obtain its new hibernation time. The alarm server
first retrieves the index of all spatial alarms and obtains
the set of border points for each active spatial alarm.
Then the alarm server computes the Euclidean distance
between the current location of m and each of the border
points for all spatial alarms and selects the border point
that is the nearest to the current location of m, denoted
by b

nearest

, and calculates the new hibernation time for
m based on the Euclidean distance and a velocity met-
ric that is representative, such as the global maximum
speed (V

max

) or the expected speed of m (V
expected

). For
example, if there are 35 mph, 55 mph and 65 mph road
segments on the road network, the global maximum
speed is 65 mph. Although using the global maximum
speed is too pessimistic to calculate the hibernation time,
it ensures high alarm success rate. The end time of the
new hibernation time for m based on this Euclidean
distance-based method using the global maximum speed
is defined as current time + eucdistance(m,b

nearest

)
V

max

where
eucdistance(m, b

nearest

) is the Euclidean distance be-
tween m and b

nearest

. The object m will be in the
hibernation status during the above hibernation time.

In general, the Euclidean distance-based method using
the global maximum speed is the most conservative
technique since not all mobile objects are traveling at the
maximum speed. Thus an alternative metric we adopted
in the first prototype of ROADALARM is the expected
speed calculated using the current location of m, the
previous location, the previous expected speed and the
previous maximum speed [2]. The end time of the new
hibernation time for m based on this Euclidean distance-
based method using the expected speed is defined as
current time+ eucdistance(m,b

nearest

)
V

expected

(m) where V

expected

(m) is
the expected speed of m.

Although the Euclidean distance-based approach is
simple to implement, it suffers from a number of fatal
weaknesses. First, the hibernation time is computed
using the Euclidean distance rather than road network
distance, thus the hibernation time is unnecessarily
short. Consequently, mobile objects need to wake up fre-
quently, making ROADALARM consuming higher battery
energy than necessary. Second, for each mobile object m,
the nearest spatial alarm may not be subscribed by m,
thus the hibernation time computed using the Euclidean
distance to the nearest spatial alarm is misleading. This
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is especially true when all the spatial alarms subscribed
by m is far away from the current location of m.

3.2 Network Expansion-based Approach
Another intuitive baseline approach to evaluating road
network-aware spatial alarms is to use Dijkstra’s net-
work expansion algorithm [5]. We present two methods
using different road network distances: one is using the
segment length-based distance (NE-S) and the other is
using the travel time-based distance (NE-T).

When a moving object m wakes up, NE-S and NE-
T first retrieve a set of spatial alarms (A

m

) subscribed
by m. For each spatial alarm a

i

2 A

m

, the set of border
points of a

i

are obtained. NE-S and NE-T take the current
location of m and each border point of a

i

as input to
calculate the segment length-based shortest path and the
travel time-based shortest path respectively, using Dijk-
stra’s network expansion algorithm. After computing the
shortest path from m’s current location to every border
point of all alarms in A

m

, NE-S selects the shortest
path with the smallest segment length-based distance,
denoted by p

sl

, to compute the new hibernation time
for m. Similarly, NE-T chooses the shortest path having
the smallest travel time-based distance, denoted by p

tt

,
to compute the new hibernation time for m. Thus, we
can compute the end time of the hibernation time for m

based on NE-S and NE-T as follows:
HT

NE�S

(m) = current time + traveltime(p

sl

)

HT
NE�T

(m) = current time + traveltime(p

tt

)

Recall that traveltime(p) computes the travel time of a
path p as described in Section 2.

The network expansion-based approach is simple and
straightforward to implement. However, the computa-
tion cost of this approach is extremely high since it exam-
ines all border points of every spatial alarm subscribed
by a mobile object m at each wakeup. The shortest path
computation cost to calculate the hibernation time of m
increases rapidly as the number of alarms subscribed
by the mobile object m increases and most of the sub-
scribed alarms are far away from the current location
of m. This is because the computation cost of Dijkstra’s
network expansion algorithm primarily depends on the
size of underlying road network, the distance between
the source location and the destination location, and the
number of shortest path computations to be performed.
If the destination is far away from the source, it is highly
costly to compute the shortest path using the Dijkstra’s
network expansion algorithm because it exhaustively
expands too many unnecessary nodes and edges.

3.3 ROADALARM Baseline Approach
Bearing in mind the problems with the Euclidean
distance-based approach and network expansion-based
approach, we design the baseline approach of ROAD-
ALARM by introducing two simple and yet effective
filters. We use the subscription filter to scope the com-
putation of the hibernation time for each mobile object

to only those alarms that are subscribed by the mobile
object. In addition, we use Euclidean lower bound (ELB)
as another type of filter to minimize the number of
shortest path computations required to compute the hi-
bernation time upon each wakeup by filtering out some
irrelevant border points of subscribed spatial alarms. The
concept of Euclidean lower bound refers to the fact that
the segment length-based shortest path distance between
two network locations L1 and L2 is at least equal to
or longer than the Euclidean distance between L1 and
L2. By combining the subscription filter and ELB filter,
the ROADALARM baseline approach (BA) can minimize
the number of shortest path computations required for
computing hibernation time for each mobile subscriber
while maintaining the accuracy of alarm evaluation.
We present two methods using the segment length-
based and the travel time-based road network distance,
denoted by BA-S and BA-T respectively.

Concretely, instead of computing shortest paths from
the current location L

m

of the mobile subscriber m

to every border point of all alarms subscribed by m,
BA-S computes the new hibernation time of m in five
steps: First, for every alarm subscribed by m, denoted
by a

i

2 A

m

, we find the border point that has the
shortest distance from L

m

. Instead of computing shortest
paths from L

m

to every border point of alarm a

i

, we
compute the Euclidean distance between L

m

and every
border point of a

i

and sort the set of border points based
on their Euclidean distances from L

m

in an ascend-
ing order using the Incremental Euclidean Restriction
(IER) algorithm [6], [7], [8]. Second, let b

nn

denote the
border point that has the smallest Euclidean distance
from L

m

. We compute the shortest path from L

m

to
b

nn

using the segment length-based distance. Third, we
use a binary search algorithm to examine the sorted
list of border points and remove those border points
whose Euclidean distance from L

m

is bigger than sld-
istance(L

m

,b
nn

). Fourth, for each remaining border point
b

j

, BA-S computes the shortest path from L

m

to b

j

. If
sldistance(L

m

,b
j

) < sldistance(L
m

,b
nn

) holds, we assign b

j

to be b

nn

. Thus, for a given mobile object and an alarm
a

i

2 A

m

, the nearest border point b
nn

of a
i

will be used
as the reference border point of a

i

to compute the hiber-
nation time for m. Finally, BA-S examines every alarm
a

i

2 A

m

and its nearest border point b
nn

and chooses the
border point whose segment length-based distance from
L

m

is the smallest. Let b

min

denote this nearest border
point and p

min

denote the shortest path from L

m

to b

min

.
Thus we compute the end time of the new hibernation
time for m as current time + traveltime(p

min

).
Now we illustrate the working of the baseline ap-

proach using the example in Fig. 1(b). We have three
spatial alarms a1, a2, a3 with focal points f1, f2, f3 re-
spectively and two moving objects m11 and m12. Let
us assume that m11 subscribes to a1 and a3 and m12

subscribes to a1 and a2. Let L

m11 and L

m12 denote
the current location of m11 and m12 respectively. When
m11 and m12 wake up upon the expiration of their
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hibernation time, without the subscription filter and
ELB filter, we will need to compute the shortest paths
from L

m11 and L

m12 to all 13 border points and then
choose the nearest border point which has the shortest
network distance (either segment length-based or travel
time-based) from L

m11 and L

m12 respectively. With the
subscription filter, we can filter out alarm a2 for m11 and
alarm a3 for m12 when computing the new hibernation
time. By the ELB filter, to find the new hibernation time
for m12, we only need to perform one shortest path com-
putation from L

m12 to b13. This is because by Euclidean
distance, b13 is the nearest border point of a1 from L

m12

and b26 is the nearest border point of a2 from L

m12 .
Given that eucdistance(L

m12 ,b13) < eucdistance(L
m12 ,b26),

b13 is the nearest border point for m12. Now we compute
the network distance (either segment length-based or
travel time-based) from L

m12 to b13, denoted by sldis-
tance(L

m12 ,b13). By comparing sldistance(L
m12 ,b13) with

the Euclidean distance from L

m12 to all other border
points of a1 and a2, we find that the following con-
dition eucdistance(L

m12 ,b
k

) > sldistance(L
m12 ,b13) holds

(k = 11, 12, 14, 21, 22, 23, 24, 25, 26, 27). Thus the ELB
filter effectively removes the unnecessary shortest path
computations when computing the new hibernation time
for m12.

We below show that the network location of the
mobile object has significant impact on the effectiveness
of the ELB filter. Consider the mobile object m11 and the
two alarms a1 and a3 subscribed by m11 in Fig. 1(b).
For the alarm a3, we do not need to compute the
shortest path from L

m11 to the border point b31 since
the Euclidean distance between L

m11 and b31 is longer
than the segment length-based distance from L

m11 to b32.
However, for the alarm a1, the list of border points sorted
in ascending order of their Euclidean distance from L

m1

is {b12, b11, b14, b13}. Clearly, the segment length-based
network distance from L

m11 to its nearest border point
b12, denoted by sldistance(L

m11 , b12), is longer than the
Euclidean distance between L

m11 and each of the last
three border points in the list and thus none of the three
border points are filtered out for alarm a1.

BA-T finds the nearest border point of a moving object
m using the travel time-based road network distance.
For BA-T, we cannot directly use the ELB filtering as
done in BA-S since the Euclidean lower bound property
does not hold for the travel time-based distance. For
example, when the Euclidean distance and the segment
length-based distance between a border point and the
current location of a mobile object m are 5 miles and 10
miles respectively, there could be another border point
in which the Euclidean distance and the segment length-
based distance are 12 miles and 15 miles respectively,
but it has shorter travel time-based distance since there
is a freeway connecting the border point and the current
location of m. Therefore, we extend the ELB filtering for
the travel time-based distance. Instead of using only seg-
ment lengths, BA-T defines the travel time-based Euclidean
lower bound as the travel time multiplied by the global

maximum speed limit on the entire road network. For
example, if the travel time from the current location of
m to an alarm border point is 1 hour and the global
maximum speed limit is 70 mph, the travel time-based
ELB in BA-T is 70 miles (1h x 70mph). BA-T excludes
border points whose Euclidean distance is longer than
70 miles since the moving object m cannot get to those
border points within 1 hour even if it travels at the
global maximum speed. Since BA-T is using the global
maximum speed limit to calculate the travel time-based
ELB, the search space of BA-T is usually larger than
that of BA-S, i.e., BA-T considers more border points
of alarms subscribed by m to find the nearest one. The
remaining steps of BA-T are the same as those in BA-S.
In the first prototype of ROADALARM we use the global
maximum speed limit for travel time-based ELB in order
to ensure the high accuracy of alarm evaluation. It would
be interesting to use some less conservative speed or
motion metrics to see if we can further reduce the search
space needed for computing the hibernation time for
mobile objects at the cost of a small and affordable
accuracy loss.

4 MOTION-AWARE OPTIMIZATIONS
Compared to the Euclidean distance-based approach and
the conventional network expansion-based approach,
the ROADALARM baseline approach (BA) improves the
efficiency of road network-aware alarm processing along
two dimensions. First, it uses the subscription filter to
narrow down the set of spatial alarms to be considered
for computing the hibernation time upon wakeup of
each mobile subscriber. Second, it utilizes the ELB filter
to cut down the number of border points to be exam-
ined for shortest path computation while achieving high
alarm success rate.

However, the ELB filter is not always effective. In some
cases, the number of border points after applying the
ELB filter remains to be high. Recall the case of m11 in
Fig. 1(b) in which the ELB filter can filter out one border
point (b31) for alarm a3. For alarm a1, the Euclidean
distance from L

m11 to b12 is the shortest and thus the
road network-based distance from L

m11 to b12 is first
calculated. Because this road network distance is longer
than the Euclidean distances from L

m11 to all the other
border points (b11, b13, b14), the ELB filter filters out none
of border points for alarm a1.

In this section we introduce a suite of motion-aware
filters to further reduce the search space and the compu-
tation time of the ROADALARM baseline approach (BA),
especially for those moving objects which subscribe
many spatial alarms and their alarms are scattered in a
large geographical area. The main idea of the motion-
aware filters comes from the observation that mobile
objects traveling on road networks typically exhibit some
degree of steady motion. First, a moving object traveling
on a spatially constrained road network can move only
by following the predefined road segments connected to
the current road segment it resides. Thus, its movement
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cannot be changed drastically. For example, if a moving
object is marching on a road segment, its current moving
direction cannot be changed until it reaches a road
junction. Furthermore, even if it reaches a road junction,
it has high probability to follow the road segment in the
same or similar direction at the junction node. We refer
to such motion behavior as steady motion.

In this section, we present five types of steady motion-
based filters. Our first three optimization techniques
use steady motion degree ⇥ to capture the constrained
motion characteristics of moving objects traveling on a
road network. For each mobile object, its steady motion
degree ⇥ models the direction of its movements along
the road network. If a sharp turn occurs at a junction
node, a new ⇥ value will be computed for the mobile
object based on the characteristics of underlying road
networks and past movement history of the mobile
object. We can also view this ⇥ as a confidence indicator.
When a mobile object moves on the road network by
following its current direction, a large ⇥ value indicates
possible sharp turns and sudden travel direction changes
whereas a small ⇥ value indicates high probability of
steady motion along the current direction. When a mo-
bile object is traveling on the road network with a clear
destination in mind, this ⇥ angle can be determined
based on the current location of the mobile object and
the destination location.

4.1 Current Direction-based Motion-aware Filter

The first motion-aware filter is based on the current
direction of moving objects and their steady motion
degree ⇥. This filter selects only those border points
which reside in the ⇥ region anchored at the current
location of the mobile object. The ⇥ degree is determined
based on the current travel direction of the mobile object.
One popular way to define the current direction of a
moving object is to use the current direction vector in
which we use the last reported location as the initial
point and the current location as the terminal point of
the vector. Let (p1, p2) and (c1, c2) denote the previous
location and the current location of a moving object
m respectively. The current direction vector of m is
defined as v =<c1 � p1, c2 � p2>. Based on this current
direction vector, when a mobile object m wakes up, this
filter limits the search space using the steady motion
degree ⇥ and selects only those border points of m

that reside within this reduced search space, as shown
in Fig. 3(a). For example, let (xb1, xb2) denote a border
point. To check if the border point is within the ⇥

reduced search space, this filter first defines another
vector w =<xb1 � p1, xb2 � p2> and then calculates the
degree of the border point from the current direction
vector v using the following equation:

sm degree(v, w) = arccos(

v · w
|v||w| )

If sm degree(v, w) > ⇥, this border point is removed
since it is outside the constrained search space. For

Θ

Current

Previous

(a) Current direction-based

Θ

Current

Destination

(b) Destination-based

Fig. 3: Vector-based motion-aware filters

the remaining unfiltered border points, our approach
calculates the new hibernation time by executing the
ROADALARM baseline approach.

The current direction-based motion-aware filter is
good when the hibernation time is relatively short and
the time window in which the mobile object moves
steadily is relatively low as well, since the current di-
rection vector changes each time when the mobile object
wakes up due to the expiration of its current hibernation
time. Furthermore, the current direction-based motion-
aware filter may be suitable for some mobile clients who
do not want to disclose their destination information due
to privacy reasons. However, if the destination is given
(or can be inferred by using Calendar), then it is more
effective to use a destination-based motion filter.

4.2 Destination-based Motion-aware Filter
The destination-based motion-aware filter utilizes both
the current location and the destination information of
moving objects. Destination information can be directly
given by the mobile clients, such as those using car
navigational systems or can be extracted from mobile
clients’ calendar applications. In this filter, the degree ⇥

indicates how confident the moving object will march
toward its destination. The destination-based motion-
aware filter chooses only border points which reside in
the ⇥ region defined based on the current location of
moving objects to their destination. We define a destina-
tion vector to represent the direction toward the destina-
tion, in which the current location and the destination
location are used as the initial and terminal point of the
vector respectively. Let (c1, c2) and (d1, d2) denote the
current location and the destination of a moving object
m respectively. The destination vector of m is defined as
v =<d1�c1, d2�c2>. When m wakes up, the destination-
based motion-aware filter restricts the search space using
the destination vector v and ⇥ and then selects only the
border points within this ⇥ restricted search space, as
shown in Fig. 3(b). For example, let (yb1, yb2) denote a
border point. To check if the border point is within the
reduced search space, this filter first computes another
vector w =<yb1 � c1, yb2 � c2> and then calculates
the degree of this border point in terms of this new
vector and the destination vector v using the equation
sm degree(v, w). We remove those border points whose
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Fig. 4: Caching-based motion-aware filters

sm degree(v, w) values are higher than the specific ⇥

defined by m or calculated by the system in the absence
of user-defined ⇥. Our approach calculates the nearest
border point by examining all the unfiltered border
points and then computes the new hibernation time for
m by invoking our ROADALARM baseline algorithm.

4.3 Caching-based Motion-aware Filter
Both the current direction-based motion-aware filter and
the destination-based motion-aware filter can reduce the
computation cost of finding the nearest border point for
each mobile object upon its wakeup. This computation
reduction is achieved by reducing the number of candi-
date border points and thus the search space through
a combination of the steady motion degree ⇥ with
current direction or destination information. However,
those two filters also suffer from a couple of inherent
problems. First, if a mobile object m takes a short detour
due to traffic and moves slightly out of the scoped
spatial region defined by ⇥ and the current direction
or destination, there could be an alarm miss. Consider
Fig. 4(a): a moving object m has moved slightly outside
the scoped spatial region and there exists an spatial
alarm which resides just outside the scoped region and
is very close to the current location of m. Unfortunately,
this alarm will be missed if we use the current direction-
based motion-aware filter or destination-based motion-
aware filter. Another weak point is that those two filters
recalculate the search space and thus the set of candidate
border points at every wakeup of each moving object.
This causes not only unnecessarily frequent and possibly
duplicate computation of the candidate border points
but also adds some unnecessary susceptibility to small
detour-like movements of mobile objects. Concretely,
if a moving object changes its direction slightly, for
example, due to traffic directed detour, the selection of
the candidate border points found at the current wakeup
could be very different from the selection at the previous
wakeup. Therefore, the two filters may miss some spatial
alarms which have high probability to be a hit due to this
unnecessarily sensitive susceptibility.

To address this problem, we propose another motion-
aware filter, called caching-based motion-aware filter, based
on the observation that moving objects will move toward
their destination constantly and persistently even though
they may change their direction opposite to (or deviate
quite bit from) the destination for a short period of time.
Initially, this filter selects the candidate border points for

each moving object based on its current location, its des-
tination location and its ⇥ using the destination-based
motion-aware filter. This filter then stores the selected
candidate border points with the calculated destination
vector for each moving object. When a moving object m
wakes up the next time, instead of recomputing the ⇥

region and the set of candidate border points as done in
the destination-based motion-aware filter, this caching-
based motion-aware filter retrieves the stored candidate
border points of m and then finds the nearest border
point to the current location of m by examining the
stored border points using our ROADALARM baseline
approach. Finally, this approach calculates the hiberna-
tion time using the nearest border point in the same way
as is done in the baseline approach.

Even though the caching-based filter is proposed to
handle the susceptibility to small changes, continuous
small changes can make a big change as shown in Fig.
4(b). To address this problem, this filter has a mechanism
to check whether the stored border points are obsolete
and thus to calculate new candidate border points. When
a moving object wakes up, this filter calculates the
degree of the moving object’s current location from the
stored destination vector. If the degree is larger than ⇥

(i.e., the object went out of the scoped search space),
then this filter recalculates the search space based on the
object’s current location as shown in Fig. 4(c).

4.4 Shortest Path-based Motion-aware Filter
Even though the caching-based filter avoids unnecessar-
ily frequent filtering of border points, it still needs to
examine too many border points in order to find the
nearest one, especially when ⇥ is large and many alarms
are subscribed by moving objects. Consider Fig. 3(b): the
border points on the bottom far left or far right corner
are unlikely to be hit by the moving object since it is
far away from the object’s destination. Motivated by this
observation, we propose the shortest path-based motion-
aware filter based on a natural assumption that moving
objects will follow the shortest path to the destination.
Initially, this filter calculates the shortest path (p

min

)
from the current location to the destination for each mov-
ing object and then selects some border points within a
boundary distance d from the shortest path, as shown in
Fig. 5(a). The distance d indicates the level of steadiness:
if a moving object follows the calculated shortest path, a
small value of d is sufficient. For example, let b denote a
border point of the moving object. To check if b is within
the boundary distance d from the shortest path p

min

,
this filter calculates the perpendicular distance from the
border point to all road segments of p

min

and then finds
the minimum value as follows:

min

b,p

min

= min

n

p

i

n

p

i+12p

min

pdistance(b, n

p

i

n

p

i+1)

where n

p

i

n

p

i+1 is a constituent road segment of the
path p

min

and pdistance(b, n

p

i

n

p

i+1) is the perpendicular
distance from border point b to road segment n

p

i

n

p

i+1 . If
min

b,p

min

is less than d, the border point is selected as a
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Fig. 5: Shortest path-based motion-aware filter

candidate border point of the moving object. The shortest
path-based motion-aware filter then stores the selected
candidate border points with the calculated shortest path
for each moving object. When a moving object m wakes
up, this filter retrieves the stored candidate border points
of m and then finds the nearest border point, among
the retrieved border points, using the ROADALARM
baseline algorithm. Finally, this approach calculates the
hibernation time using the nearest border point in the
same way as is done in the baseline approach.

Like the caching-based filter, the shortest path-based
filter also has a mechanism to handle moving objects
which go out of our reduced search space based on
the shortest path as show in Fig. 5(b). When a moving
object wakes up, this filter calculates the distance from
the stored shortest path of the object and if the distance
is larger than d, recalculates the search space based on
the object’s current shortest path to the destination.

4.5 Selective Expansion-based Motion-aware Filter
The shortest path-based motion-aware filter selects bor-
der points which have high probability to be hit based
on the shortest path from the current location of moving
objects to their destination. Even though it reduces the
computation time to calculate the hibernation time by
considering fewer (but more relevant) border points
compared to the ROADALARM baseline approach and
the other steady motion-based approaches, it still needs
at least two shortest path computations: one for calcu-
lating the shortest path from the current location to the
destination to select candidate border points and the
other for choosing the nearest border point among the
selected border points. These computations will increase
the server loads when the destination is far away from
the current location of a moving object and there is no
nearby spatial alarm from the current location. To reduce
the computation cost, we propose a selective expansion-
based motion-aware filter in which an exact shortest path
computation is not needed. The selective expansion-
based filter expands only road segments which have
high probability to be passed by a moving object. To
select target road segments to be expanded, we uti-
lize the destination of moving objects and apply the
concept of Simulated Annealing (SA) to the expansion.
SA probabilistically finds a good approximation to the

global optimal solution in a large solution space by
giving high randomness in early stages and almost no
randomness in ending stages. Using this basic concept of
SA, the selective expansion-based filter expands most of
road segments in early steps even though some of them
have opposite direction to the destination. In following
steps, this filter incrementally strengthens the condition
of the expansion and thus only road segments whose
direction points toward the destination are expanded.
This expansion is terminated if it satisfies one of three
cases: 1) the expansion arrives at the destination, 2) the
expansion meets any spatial alarm of the moving object
and 3) there is no more road segment which satisfies the
condition of the expansion. Since this filter expands only
relevant road segments which have high probability to
be hit from the current location to the destination and
it terminates the expansion process even though there is
no found border point (case 3), it considerably reduces
the computation cost to calculate the hibernation time
compared to other processing methods which require
shortest path computations. In addition to the reduced
computation cost, since it expands most of road seg-
ments in early steps, the selective expansion-based filter
can cover common cases in which moving objects move
in the opposite direction from the destination to take
faster roads such as freeways.

The algorithm of the selective expansion-based filter
is formally defined as follows. Like other processing
methods we propose, this filter starts when a moving
object m wakes up. Let L

m

and d

m

denote a current
location and a current destination of m respectively.
We define T (i) which denotes a time-varying parameter
at step i and E(n

p

, i) which denotes an energy of an
expansion node on a road junction n

p

at step i. A smaller
energy of a road junction means that the road junction
has higher probability to be visited by m compared
to other road junctions having a larger energy. A road
segment n

p

n

q

connected to n

p

is expanded if a new
energy E(n

q

, i+1), defined as follows, is less than T (i).
E(n

q

, i+ 1) = E(n

p

, i)⇥ dv(n

p

n

q

, d

m

)

where dv(n

p

n

q

, d

m

) represents a deviability of n

p

n

q

from the destination d

m

. Road segments whose direction
points toward the destination have a small dv value and,
on the other hand, road segments in which their direc-
tion is opposite to the destination have a large dv value.
Therefore, road segments in which their direction points
toward the destination will have higher probability to be
expanded since their dv value is small. The deviability
is defined as follows:

dv(n

p

n

q

, d

m

) =

degree(

��!
n

p

n

q

,

���!
n

p

d

m

)

180

� ⇥ 1

w(speedlimit(n

p

n

q

))

where w(speedlimit(n

p

n

q

)) is a weight based on the
speed limit of n

p

n

q

. By giving more weights to faster
roads such as freeways, it makes such faster roads have
higher probability to be expanded than slower roads. If
degree(

��!
n

p

n

q

,

���!
n

p

d

m

) is 0

� (i.e. n
p

n

q

exactly points toward
the destination), we use 1

� instead of 0� to continue the
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selective expansion.
T value gradually decreases as steps increase to

strengthen the expansion condition and is defined as
T (i) =

T0
k

i

where k is a parameter that controls the expan-
sion rate and T0 is an initial value for the expansion. For
a large k, the T value becomes smaller rapidly as steps
increase and thus more road segments are excluded from
the expansion, compared to a small k. A large T0 value
makes more road segments to be expanded. We use 1 as
T0 value to ensure that all road segments are expanded
regardless of the k value and their dv value at first step.

The selective expansion-based filter starts with ex-
panding the road junction n0, where the current location
L

m

of m is located, with its initial energy 1 (E(n0, 0)).
If L

m

is located on the road segment n

p

n

q

, this filter
treats L

m

as a road junction n0 and n0np

and n0nq

as
road segments connected to n0. For each road segment
n0nj

connected to n0, this filter calculates E(n

j

, 1) using
the above formula and then expands n0nj

if E(n

j

, 1) is
less than T (0). While expanding n0nj

, this filter stops the
whole expansion process if there is a border point of m or
the destination d

m

on n0nj

. If n0nj

is expanded without
encountering any border point or d

m

, n

j

is inserted
into the expansion list for the next step with its energy
E(n

j

, 1). After checking all road segments connected to
n0, this filter moves to the next step and expands road
junctions in the expansion list using the above process.
This expansion process is terminated if there is no road
junction for the next step or any border point or d

m

is
encountered during the expansion.

To calculate the hibernation time for m, if a border
point or d

m

is encountered during the expansion, this
filter uses the travel time, from L

m

to the encountered
border point or d

m

, as the hibernation time. Since this
filter keeps the accumulated travel time from L

m

to each
expanded road junction, no additional computation is
needed to calculate the hibernation time for m. If the
expansion is terminated because there is no more road
junction to be expanded, this filter chooses a terminal
road junction (i.e., in which no connected road segment
is expanded) having the smallest travel time among
selected candidate terminal road junctions and then uses
the travel time to the terminal road junction as the
hibernation time for m. To select the candidate terminal
road junctions, we introduce another confidence degree
⇥

SESM

. The selective expansion-based filter checks only
terminal road junctions within ⇥

SESM

based on the
vector from L

m

to d

m

and then chooses a terminal
road junction having the smallest travel time among the
candidate terminal road junctions. If ⇥

SESM

value is too
large, it ensures high success rate, but its hibernation
time is unnecessarily short because some terminal road
junctions which are terminated at earlier steps and thus
have short travel time are included in the search space.
On the other hand, if ⇥

SESM

value is too small, it cannot
ensure high success rate because only terminal road
junctions which survived until last steps are included in
the search space and thus the selected travel time is too

long. Since this filter also keeps and updates the smallest
travel time based on ⇥

SESM

during the expansion,
no additional computation is needed to calculate the
hibernation time.

One disadvantage of the above synchronous (i.e., all
target road junctions are expanded at the same step) se-
lective expansion on road networks is that, even though
a border point or the destination d

m

is encountered
during the expansion, the point could be reached by
other road segments having shorter travel time at later
steps. Furthermore, nearby border points could not be
reached during the expansion if there are many short
road segments from L

m

to the border points. Therefore,
spatial alarms can be missed due to the long travel time
calculated by ignoring some nearby border points or
faster road segments connecting to the border points.
To solve this problem, we use an asynchronous version
in which a road junction having the smallest segment
length (SESM � S) or travel time (SESM � T ) is
expanded first, regardless of its current step, using a
priority queue.

In summary, ROADALARM provides five motion-
aware filters to reduce the search space and the com-
putation time of the ROADALARM baseline approach.
The current direction-based and the destination-based
filters are based on steady motion degree ⇥ to take into
account the constrained motion characteristics of moving
objects traveling on a road network. The caching-based
filter extends the destination-based filter for improved
accuracy by capturing small detour-like movements of
mobile objects. To further reduce the number of border
points evaluated by ROADALARM, we develop the short-
est path-based filter to select only border points that are
close to the shortest path to the destination. Last but
not the least, we further reduce the computation cost
in ROADALARM by introducing the selective expansion-
based filter, which avoids exact shortest path computa-
tion by expanding only road segments that have high
probability to be passed by a mobile user.

5 EXPERIMENTAL EVALUATION
In this section we evaluate the performance of our
ROADALARM methods through four sets of experiments.
We use gt-mobisim simulator [9] to generate mobility
traces on real road networks downloaded from U.S.
Geological Survey (USGS [10]). For the first three sets
of experiments, the mobility traces are generated on a
map of northwest Atlanta, which covers about 11 km
(6.8 miles) by 14 km (8.7 miles), using the random trip
model [11]. The road networks consist of four different
road types: residential roads and freeway interchange
with 30 mph speed limit (48 km/h), highway with 55
mph limit (89 km/h) and freeway with 70 mph limit
(113 km/h). Ranges of spatial alarms are chosen from a
Gaussian distribution with a mean of 50 m and standard
deviation of 10 m. We use 50 m as the boundary distance
d of the shortest path-based motion-aware filter. For
the selective expansion-based motion-aware filter, we
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Fig. 6: Segment length-based vs Travel time-based approaches

empirically use 4 as the k value and 90

� as the ⇥

SESM

value to select not too short and not too long travel
time. We give 1, 2 and 3 to 30 mph, 55 mph and 70
mph road segments respectively as their speed weights
in order to give faster roads more chances of expansion.
All experiments were conducted on a desktop having
one Intel i5-2300 quad-core processor, 6GB of RAM, and
one 1TB 7200 rpm hard disk.

5.1 Comparison with existing methods
We first compare segment length-based approaches and
travel time-based approaches as shown in Fig. 6. These
experiments use 15,000 objects (and about 72,000 spatial
alarms) and 180� as the ⇥ value of the current direction-
based, destination-based and caching-based motion-
aware filters. Each object has different number of spatial
alarms, given by Zipf distribution with five alarms as
the most common value (i.e., rank 1). We exclude the
results of network expansion-based methods since they
cannot scale to 15,000 moving objects. The alarm success
rate for travel time-based approaches is higher than
the corresponding segment length-based approaches as
shown in Fig. 6(a). This is primarily because segment
length-based approaches select the segment length-based
shortest path in which spatial alarms can be missed if
moving objects follow paths having shorter travel time.
On the other hand, the average hibernation time of each
travel time-based approach is shorter than that of its
corresponding segment length-based approach since the
travel time on the segment length-based shortest path is
always equal to or longer than that on the travel time-
based shortest path for the same source and destination
location. Without loss of generality, in the rest of the
experiments, we include the results of only travel time-
based approaches for simplicity.

The first set of experiments compares our approaches
with existing Euclidean space-based methods in Fig. 7.
This set of experiments uses a moving object population
with size ranging from 5,000 to 15,000 and each object
has different number of spatial alarms, given by Zipf
distribution with five alarms as the most common value.
Alarm success rate. The success rates for different ap-
proaches are shown in Fig. 7(a). The shortest path-based
and selective expansion-based motion-aware filters have
almost the same success rate as the Euclidean distance-
based approach using the global maximum speed and
the ROADALARM baseline approach. The caching-based
filter has more than 5% better success rate than the
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Fig. 7: Comparison with Euclidean space-based approaches

destination-based filter. This confirms our assumption
that moving objects will move toward their destination
constantly even though they may change their direc-
tion opposite to the destination for a short time. The
Euclidean distance-based approach using the expected
speed has the lowest success rate since it fails to consider
spatial constraints of moving objects.

Hibernation time. Fig. 7(b) shows the average hiberna-
tion time of moving objects. The longer the hibernation
time is, the more energy the mobile clients can conserve.
The hibernation time of the shortest path-based filter is
three times longer than that of the Euclidean distance-
based approach using the global maximum speed and
40% longer than that of the ROADALARM baseline ap-
proach. This result also shows that the shortest path-
based filter ensures high success rate in the same way as
the Euclidean distance-based approach and the ROAD-
ALARM baseline approach even though moving objects
of the shortest path-based filter can conserve much more
energy. The selective expansion-based filter has 45% and
25% shorter hibernation time than the shortest path-
based filter and the ROADALARM baseline approach
respectively since it calculates the hibernation time even
though there is no found border point. It, however, still
has 80% longer hibernation time than the Euclidean
distance-based approach using the global maximum
speed. The Euclidean distance-based approach using the
global maximum speed has the shortest hibernation time
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Fig. 8: Effect of the steady motion degree ⇥

since it pessimistically utilizes the Euclidean distance
and the global maximum speed to calculate the hiber-
nation time.
The number of wakeups. Fig. 7(c) shows that the
number of wakeups is inversely related to the hiber-
nation time. The smaller number of wakeups indicates
the lower server loads since the server computes the
hibernation time whenever a moving object wakes up.
Computation time. Fig. 7(d) shows the total computa-
tion time to calculate the hibernation time. The shortest
path-based filter has 45% faster computation time than
the ROADALARM baseline approach since it has smaller
number of wakeups of moving objects. The selective
expansion-based filter has the smallest computation time
among the road network-based approaches since it does
not need shortest path computations to calculate the
hibernation time. Its computation time is just 24% and
45% of that of the ROADALARM baseline approach and
the shortest path-based filter respectively. The Euclidean
distance-based approaches need only a little computa-
tion time since the computation cost to calculate the
Euclidean distance is negligible, compared to the road
network distance calculation, even though the number
of wakeups is more as shown in Fig. 7(c).
The number of border points. Even though there is only
about 20% difference between the shortest path-based
filter and the ROADALARM baseline approach in terms
of the number of wakeups, there is about 45% difference
in terms of the computation time. Furthermore, even
though all motion-aware filters have similar number of
wakeups, only the shortest path-based filter has better
computation cost than the others. This is because the
shortest path-based filter considers the smallest number
of border points to calculate the hibernation time, as
shown in Fig. 7(e).
Alarm checking time. Fig. 7(f) shows the total pro-
cessing time to check whether moving objects hit any
alarms. We use a hash map to store spatial alarms. The
result confirms that our approach checks spatial alarms
efficiently.

5.2 Effect of the steady motion degree
We investigate the effect of different settings of the
steady motion degree ⇥ on success rate and hibernation
time with 15,000 moving objects and about 72,000 spatial
alarms. The results are shown in Fig. 8 with ⇥ values
set to 90�, 135� and 180�. The success rate for the

current direction-based, destination-based and caching-
based filters increases as ⇥ values increase, because more
border points are selected as shown in Fig. 8(a). Fig. 8(b)
shows that the average hibernation time decreases with
growing ⇥ values. This is because border points having
shorter travel time are newly selected to calculate the
hibernation time as the search space increases.

5.3 Effect of growing number of objects and alarms
Fig. 9(a) and Fig. 9(b) evaluate the scalability of our
approaches by increasing the number of moving objects.
Total 300,000 spatial alarms are deployed for this set of
experiments and the number of moving objects increases
from 15,000 to 45,000. Each object has zero to 30 spatial
alarms, given by Zipf distribution with 15 alarms as the
most common value, and all spatial alarms are private.
We think this setting deploying 45,000 moving objects
is realistic on this road network of northwest Atlanta,
in which the total length of all road segments is 1384
km (865 miles), since there is a mobile user every 31
m (10 feet) on average. We include the measurement
results of only the ROADALARM baseline approach, the
shortest path-based filter and the selective expansion-
based filter as they have high success rate compared to
other methods. Fig. 9(a) confirms that our approaches
ensure the high success rate with growing number of
moving objects. The selective expansion-based filter has
slightly lower success rate than the others since it does
not try to find the nearest border point if there is no
nearby border point. In terms of the total computation
time, there is no increase from 30,000 to 45,000 objects
since with fixed alarms, many objects have no spatial
alarms as shown in Fig. 9(b). The selective expansion-
based filter’s computation time is only 23% and 9% of
that of the shortest path-based filter and the ROAD-
ALARM baseline approach respectively while ensuring
similar success rate.

Fig. 9(c) and Fig. 9(d) show the scalability of our
approaches by increasing the number of spatial alarms
with 15,000 moving objects. We increase the most com-
mon value of Zipf distribution from 10 to 20 and thus
the total number of alarms grows from about 147,000
to 297,000. Fig. 9(c) verifies that our approaches ensure
the high success rate with increasing number of spa-
tial alarms. Note that the success rate of the selective
expansion-based filter increases as the number of spatial
alarms grows. This is because, if a moving object has
more spatial alarms, there is a higher probability that a
border point of the object is found during the selective
expansion. Fig. 9(d) shows that the computation time
of the shortest path-based filter increases only slightly
with the growing number of spatial alarms. This is
primarily because the shortest path-based filter selects
only border points having high probability to be hit
and thus the increased number of spatial alarms has
no huge impact on the selected border points by the
shortest path-based filter. Even though the computation
time of the ROADALARM baseline approach has more
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Fig. 9: Effect of growing number of objects and alarms
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Fig. 10: Comparison of urban, suburban and rural performance

increase than that of the shortest path-based filter, it does
not increase linearly with the growing number of spatial
alarms. The computation time of the selective expansion-
based filter even decreases as the number of alarms
increases because the selective expansion of the filter is
terminated earlier with the fewer number of expanded
road segments due to the higher probability that a border
point is found.

5.4 Effect of different road networks
This set of experiments measures the performance of our
approaches using different types of road networks. In ad-
dition to the map of northwest Atlanta as an urban road
network, we choose the map of Duluth, GA and the map
of Helen, GA as a suburban and a rural road network
respectively. All three road networks cover almost same

size (i.e., 6.8 miles by 8.7 miles) but have totally different
number of road segments and road junctions. The total
numbers of road segments of the urban, suburban and
rural road network are 9,187 (average length is 150.7 m),
1,600 (258.3 m) and 765 (356.3 m) respectively. The total
numbers of road junctions are 6,979, 1,486 and 711 for
the urban, suburban and rural road network respectively.
The urban road network has 431 and 681 road segments
having 70 mph and 55 mph speed limit respectively. The
other road segments have 30 mph speed limit. 24 and
218 road segments of the suburban road network have
70 mph and 55 mph as their speed limit respectively. The
rural road network has 27 and 66 road segments having
70 mph and 55 mph speed limit respectively.

Fig. 10 shows the experimental results for the three
different road networks. This set of experiments uses
15,000 moving objects and total about 72,000 spatial
alarms. Each object has different number of spatial
alarms, given by Zipf distribution with five alarms as
the most common value. Fig. 10(a) confirms that our
approaches ensure the high success rate for different
types of road network. The selective expansion-based
filter has slightly lower success rate on the rural road
network since moving objects are more likely to use road
segments whose direction does not point toward the
destination and thus not expanded, due to the limited
number of road segments. On the rural road network,
the computation times is about 8% of that on the urban
road network as shown in Fig. 10(b). This is primarily
because of the high complexity (i.e., 12 time more road
segments and 10 times more road junctions than the
rural road network) of the urban road network. Fig. 10(c)
shows that moving objects on the suburban and rural
road networks have longer hibernation time than those
on the urban road network even though the number of
spatial alarms for each moving object and the focal point
and the range of each spatial alarm are given by same
distributions for all three road networks. Since the urban
road network has 12 times more segments and 16 times
more segments having 70 mph speed limit compared
to the rural road network, it has more probability to
have a path having shorter travel time between two
locations. As shown in Fig. 10(d), less border points
are considered to calculate the hibernation time on the
suburban and rural road networks than on the urban
road network because spatial alarms on complex road
networks usually have more border points.

In summary, our experimental results show that the
shortest path-based motion-aware filter outperforms the
rest in most cases since this approach ensures high
success rate while reducing the computation cost of
servers and conserving energy of mobile clients. Since
the selective expansion-based filter considerably reduces
the computation cost while ensuring high success rate,
it is suitable for spatial alarm processing servers which
should compute the hibernation time quickly for a huge
number of moving objects while ensuring longer hiber-
nation time than the Euclidean space-based approach to
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save the energy of moving objects. For those applications
in which high success rate is required, both the ROAD-
ALARM baseline approach and the the shortest path-
based motion-aware filter are good options. Especially,
for some applications in which the battery power of
mobile clients is not a serious problem, the ROADALARM
baseline algorithm may be a better choice since it has
a slightly higher success rate than the shortest path-
based motion-aware filter. The current direction-based
filter, the destination-based filter and the caching-based
filter are appropriate for those applications in which
reducing the computation cost of servers and the battery
consumption of mobile clients are top priorities while
maintaining the acceptable success rate (about 90%).

6 RELATED WORK

There are many existing studies on continuous spatial
queries to find objects within a predefined range or
k nearest objects from a query center point [12], [13],
[14], [15], [16], [17]. Some of them are based on road
networks [18], [19] or land surface [20]. However, spa-
tial alarms are fundamentally different from continuous
spatial queries in terms of their purposes as well as
target applications. Continuous queries such as “find 3
nearest Starbucks stores while driving to Miami” require
continuous query evaluation as I am driving on the
US highway. On the other hand, spatial alarms have a
predefined location of interest, such as “alert me when
I am within 5 miles of the public library in Buckhead”
and thus require alarm evaluation only when subscribers
are in the vicinity of the spatial alarms. Even when the
mobile subscribers are moving on the road, their spatial
alarms may not need to be evaluated if those alarm
targets are located far away from the current locations
of their subscribers. This is the fundamental reason why
spatial alarms deserve to be processed more efficiently
using a different set of algorithms and optimizations.

Existing research on spatial alarms and location re-
minders mainly focus on the Euclidean space. [1] pro-
poses an approach to process spatial alarms in the
Euclidean space by combining spatial indexes such as
R-tree and Voronoi Diagram with the maximum speed-
based safe period. [3] develops a safe region-based ap-
proach for spatial alarm processing in the Euclidean
space. Different shapes of safe regions are proposed and
compared in [3]. [4] pointed out the high cost of safe
region-based approach and proposed the Mondrian tree
index that can index both spatial alarms and alarm free
regions within a uniformed framework.

7 CONCLUSION

We have presented ROADALARM � an efficient and
scalable approach to processing road network-aware
spatial alarms. By utilizing spatial constraints on road
networks and mobility patterns of mobile objects, the
ROADALARM approach can provide longer hibernation
time of mobile clients while ensuring high success rate.

To the best of our knowledge, all existing results on spa-
tial alarms are based on the Euclidean space. This paper
is the first one that develops efficient algorithms and
optimizations for scaling road network-aware spatial
alarm processing in ROADALARM, with a preliminary
result in [21] and a software demo in [22].

Our research on ROADALARM continues along sev-
eral directions, including distributed version of ROAD-
ALARM, efficient indexing of spatial alarms, and privacy
preserving management of spatial alarms.
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