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Abstract—State monitoring is widely used for detecting critical
events and abnormalities of distributed systems. As the scale of
such systems grows and the degree of workload consolidation
increases in Cloud datacenters, node failures and performance
interferences, especially transient ones, become the norm rather than
the exception. Hence, distributed state monitoring tasks are often
exposed to impaired communication caused by such dynamics on
different nodes. Unfortunately, existing distributed state monitoring
approaches are often designed under the assumption of always-
online distributed monitoring nodes and reliable inter-node com-
munication. As a result, these approaches often produce misleading
results which in turn introduce various problems to Cloud users who
rely on state monitoring results to perform automatic management
tasks such as auto-scaling.

This paper introduces a new state monitoring approach that
tackles this challenge by exposing and handling communication
dynamics such as message delay and loss in Cloud monitoring
environments. Our approach delivers two distinct features. First,
it quantitatively estimates the accuracy of monitoring results to
capture uncertainties introduced by messaging dynamics. This
feature helps users to distinguish trustworthy monitoring results
from ones heavily deviated from the truth, yet significantly improves
monitoring utility compared with simple techniques that invalidate
all monitoring results generated with the presence of messaging
dynamics. Second, our approach also adapts to non-transient mes-
saging issues by reconfiguring distributed monitoring algorithms
to minimize monitoring errors. Our experimental results show that,
even under severe message loss and delay, our approach consistently
improves monitoring accuracy, and when applied to Cloud applica-
tion auto-scaling, outperforms existing state monitoring techniques
in terms of the ability to correctly trigger dynamic provisioning.

I. INTRODUCTION

State monitoring is a fundamental building block for many
distributed applications and services hosted in Cloud datacenters.
It is widely used to determine whether the aggregated state
of a distributed application or service meets some predefined
conditions [1]. For example, a web application owner may use
state monitoring to check if the aggregated access observed
at distributed application-hosting servers exceeds a pre-defined
level [2]. Table I lists several common applications of state
monitoring.

Most existing state monitoring research efforts have been
focused on minimizing the cost and the performance impact of
state monitoring. For example, a good number of state monitoring
techniques developed in this line of works focus on the threshold
based state monitoring by carefully partitioning monitoring tasks
between local nodes and coordinator nodes such that the overall
communication cost is minimized [3][2][4][1]. Studies along this
direction often make strong assumptions on monitoring-related
communications, such as 100% node availability and instant
message delivery.

These assumptions, however, often do not hold in real Cloud
deployments. Many Cloud systems and applications utilize hun-
dreds or even thousands of computing nodes to achieve high
throughput and scalability. At this level of scale, node/network
failures, especially transient one, are fairly common [5][6].
Furthermore, resource sharing techniques and virtualization in
Cloud often introduce performance interferences and degradation,
and cause computing nodes to response slowly or even become
temporarily unavailable [7][8]. Such unpredictable dynamics in
turn introduce message delay and loss to monitoring related
communications. Monitoring approaches designed without con-
sidering such messaging dynamics would inevitably produce
unreliable results. Even worse, users are left in the dark with-
out knowing that the monitoring output is no longer reliable.
For instance, state monitoring techniques assuming 100% node
availaiblity or instant message delivery [3][1] would wait for
messages from failed nodes indefinitely without notifying users
about potential errors in monitoring results. Consequently, actions
performed based on such unreliable results can be harmful or even
catastrophic [9]. Furthermore, simple error-avoiding techniques
such as invalidating monitoring results when messaging dynamics
exist do not work well either, as certain issues such as perfor-
mance interferences can last fairly long and the scale of Cloud
monitoring tasks makes failures very common. For example, even
if the probability of one node failing is 0.001, the probability
of observing messaging dynamics in a task involving 500 nodes
would be 1−(1−0.001)500 ≈ 0.4. Invalidating monitoring results
whenever problems exist would render 40% monitoring results
useless.

In this paper, we present a new state monitoring framework that
incorporates messaging dynamics in terms of message delay and
message losses into monitoring results reporting and distributed
monitoring coordination. Our framework provides two fundamen-
tal features for state monitoring. First, it estimates the accuracy of
monitoring results based on the impact of messaging dynamics,
which provides valuable information for users to decide whether
monitoring results are trustworthy. Second, it minimizes the
impact of dynamics whenever possible by continuously adapting
to changes in monitoring communication and striving to produce
accurate monitoring results. When combined, these two features
shape a reliable state monitoring model that can tolerate com-
munication dynamics and mitigate their impact on monitoring
results.

To the best of our knowledge, our approach is the first state
monitoring framework that explicitly handles messaging dynam-
ics in large-scale distributed monitoring. We perform extensive
experiments, including both trace-driven and real deployment



Applications Description
Content Delivery Monitoring the total access to a file mirrored at multiple servers to decide if serving capacity is sufficient.
Rate Limiting [2] Limiting a user’s total access towards a cloud service deployed at multiple physical locations.

Traffic Engineering [10] Monitoring the overall traffic from an organization’s sub-network (consists of distributed hosts) to the Internet.
Quality of Service [11] Monitoring and Adjusting the total delay of a flow which is the sum of the actual delay in each router on its path.

Fighting DoS Attack Detecting DoS Attack by counting SYN packets arriving at different hosts within a sub-network.
Botnet Detection [12] Tracking the overall simultaneous TCP connections from a set of hosts to a given destination.

TABLE I: Examples of State Monitoring

ones. The results show that our approach produces good ac-
curacy estimation and minimizes monitoring errors introduced
by messaging dynamics via adaptation. Compared with existing
monitoring techniques, our approach significantly reduces prob-
lematic monitoring results in performance monitoring for Cloud
application auto-scaling [13] with the presence of messaging
dynamics, and improves application response time by up to 30%.

The rest of this paper is organized as follows. In Section II,
we introduce the problem of reliable state monitoring. Section III
presents the details of our approach. We discuss our experimental
evaluation in Section IV. Section V summarizes related work and
Section VI concludes this paper.

II. PROBLEM DEFINITION

Most existing state monitoring studies employ an instantaneous
state monitoring model, which triggers a state alert whenever a
predefined threshold is violated. Specifically, the instantaneous
state monitoring model [3][14][15][16][17] detects state alerts by
comparing the current aggregate value with a global threshold.
Given the monitored value on monitor i at time t, xi(t), i ∈ [1, n],
where n is the number of monitors involved in the monitoring
task, and the global threshold T , it considers the state at time t to
be abnormal and triggers a state alert if

∑n
i=1 xi(t) > T , which

we refer to as a global violation.
To perform state monitoring, the line of existing works employs

a distributed monitoring framework with multiple monitors and
one coordinator (Figure 1). The global threshold T is decomposed
into a set of local thresholds Ti for each monitor i such that∑n

i=1 Ti 6 T . As a result, as long as xi(t) 6 Ti, ∀i ∈ [1, n],
i.e. the monitored value at any node is lower or equal to its
local threshold, the global threshold cannot be exceeded because∑n

i=1 xi(t) 6
∑n

i=1 Ti 6 T . In this case, monitors do not need
to report their local values to the coordinator. When xi(t) > Ti on
monitor i, it is possible that

∑n
i=1 xi(t) > T (global violation).

Hence, monitor i sends a message to the coordinator to report
a local violation with the value xi(t). The coordinator, after re-
ceiving the local violation report, invokes a global poll procedure
which notifies other monitors to report their local values, and then
determines whether

∑n
i=1 xi(t) 6 T . The focus of existing works

is to find optimal local threshold values that minimize the overall
communication cost. For instance, if a monitor i often observes
relatively higher xi, it may be assigned with a higher Ti so that
it does not frequently report local violations to the coordinator
and trigger expensive global polls.

A. Reliable State Monitoring and Challenges

Existing state monitoring works [3][14][15][16][17][1] often
share the following assumptions: 1) nodes involved in a moni-
toring task is perfectly reliable in the sense that they are always
available and responsive to monitoring requests; 2) a monitoring
message can always be reliably and instantly delivered from one

node to another. These two assumptions, however, do not always
hold in Cloud datacenters. First, Cloud applications and services
are often hosted by a massive number of distributed computing
nodes. Failures, especially transient ones, are common for nodes
of such large-scale distributed systems [5], [6]. Second, Cloud
datacenters often employ virtualization techniques to consolidate
workloads and provide management flexibilities such as virtual
machine cloning and live migration. Despite its benefits, virtu-
alization also introduces a number of challenges such as perfor-
mance interferences among virtual machines running on the same
physical host. Such interferences could introduce serious network
performance degradation, including heavy message delays and
message drops [7], [8]. Note that reliable data delivery protocols
such as TCP cannot prevent monitoring message loss caused
by failures of monitoring nodes or networks, nor can it avoid
message delay.

To provide robustness against messaging dynamics, Jain et
al. [9] recently proposed to employ a set of coarse network perfor-
mance metrics to reflex the status of monitoring communication,
e.g., the number of nodes contributed to a monitoring task. The
intention is to allow users to decide how trustworthy monitoring
results are based on values of such metrics. While this approach
certainly has its merits in certain monitoring scenarios, it also has
some limitations.

First, it considers the status of a monitor as either online or
offline, and overlooks situations involving message delays. For
instance, a monitor node may appear online, but it may introduce
considerable latencies to messages sent to or received from it.
Such message delays are as important as message loss caused
by offline nodes, because they may also lead to mis-detection
of anomalies. In fact, anecdotal evidences [18] suggest that
communication latency caused by virtual machine interferences
in virtualized Cloud datacenters is a common and serious issue.

Second, it is difficult for users to interpret the impact of
reported network level issues on monitoring accuracy. If one of
the nodes fails to report its local monitoring data, does the corre-
sponding monitoring result still reliable? The scale of distributed
Cloud monitoring exacerbates the problem as message delay or
loss can be quite common given the number of participating
nodes, e.g. hundreds of web servers for large Cloud applications,
and even thousands of servers for Hadoop clusters. If we simply
invalidate the monitoring results whenever message delay or loss
occurs, we would end up with frequent gaps in monitoring data
and low monitoring utility. On the contrary, if we choose to use
such monitoring results, how should we assess the accuracy of
monitoring results given the observed message delay and loss?

Figure 1 shows a motivating example where a distributed
rate limiting monitoring task involves one coordinator and six
monitors. As a Cloud service often runs on distributed servers
across multiple datacenters, service providers need to perform
distributed rate limiting to ensure that the aggregated access rate
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Fig. 1: A Motivating Example

of a user does not exceed the purchased level. The task in Figure
1 continuously checks the access rate of an user (xi) on all 6
servers (A to F) and triggers a state alert when the sum of the
access rates on all 6 sites exceed the global threshold T = 300.
The numbers under each monitor indicate the range of values
observed by the monitor. Such range statistics can be obtained
through long-term observations. For simplicity, we assume local
thresholds employed by all monitors have the same value 50, i.e.
TA = TB = TC = TD = TE = TF = 50.

Estimating monitoring accuracy based on messaging dynamics
information is difficult. Simply using the scope of message
delay or loss to infer accuracy can be misleading. For example,
if monitor A, B, and C (50% of total monitors) all fail to
response in a global poll during a transient failure, one may
come to the conclusion that the result of global poll should
be invalidated as half of the monitors do not contribute to
the result. However, as monitor A, B and C observe relatively
small monitored values (e.g., most users access server F which
is geographically closer), the corresponding global poll results
may still be useful. For instance, if the global poll suggests
that xD + xE + xF = 100, we can conclude that there is no
global violation, i.e.

∑i={A...F}
i xi 6 300 with high confidence,

because the probability of
∑i={A...C}

i xi 6 180 is fairly high
given observed value ranges of A, B and C. On the contrary,
if monitor F fails to response, even though F is only one node,
the uncertainty of monitoring results increases significantly. For
example, if

∑i={A...E}
i xi = 150, it is hard to tell whether a

global violation exists due to the high variance of F’s observed
values.

An ideal approach should provide users an intuitive accuracy
estimation such as “the current monitoring result is correct with
a probability of 0.93”, instead of simply reporting the statistics
of message delay or loss. Such an approach must quantitatively
estimate the accuracy of monitoring results. It should also be
aware of state monitoring algorithm context as the algorithm has
two phases, the local violation reporting phase and global poll
phase.

Third, accuracy estimation alone is not enough to provide
reliable monitoring and minimize the impact of messaging quality
degradation. Resolving node failures may take time. Network
performance degradation caused by virtual machine interferences
often lasts for a while until one virtual machine is migrated
to other hosts. As a result, messaging dynamics can last for
some time. Without self-adaptive monitoring to minimize the
corresponding accuracy loss, users may lose access to any mean-
ingful monitoring result during a fairly long period, which may
not be acceptable for Cloud users who pay for using Cloud
monitoring services such as CloudWatch [19]. For instance, if
node F continuously experiences message loss, local violation

reports sent from F are very likely to be dropped. Consequently,
the coordinator does not trigger global polls when it receives
no local violation reports. If a true violation exists, e.g. xA =
45, xB = 45, xC = 45, xD = 45, xE = 45, xF = 110 and∑i={A...F}

i xi = 335, the coordinator will mis-detect it.
One possible approach to reduce monitoring errors introduced

by such messaging dynamics is to let healthy nodes, i.e. nodes not
affected by messaging dynamics, to report their local values at a
finer granularity to compensate the information loss on problem
nodes. In the above example, if we reduce local thresholds
on node A, B, C, D, E to 30. the coordinator will receive
local violations from node A, B, C, D and E, and trigger a
global poll. Even if F also fails to response to the global poll,
the coordinator can find that

∑i∈{A,...,E}
i xi = 225. For the

sake of the example, suppose xF is uniformly distributed over
[20, 300]. The coordinator can infer that the probability of a global
violation is high. This is because a global violation exists if
xF > 75 which is very likely (> 0.8) given xF ’s distribution.
Similarly, adaptation can also be used to rule out the possibility
of global violations. For instance, if node E is troubled by
messaging dynamics, we can increase E’s local threshold to 70
so that the probability of detecting local violation on E is trivial.
Correspondingly, we also reduce the thresholds on the rest of the
nodes to 45 to ensure the correctness of monitoring (

∑
i Ti 6 T ).

As a result, as long as
∑i∈{A,...,D,F}

i xi < 230, we can infer that
there is no global violation with high probability, even though
node E is under the impact of messaging dynamics.

While this type of self-adaptation seems promising, designing
such a scheme is difficult and relies on answers to a number
of fundamental questions: how should we divide the global
thresholds when there are multiple problem nodes to minimize the
possible error they may introduce, especially when they observes
different levels of message and delay? In the rest of this paper,
we address these challenges and present details of our reliable
state monitoring approach.

III. RELIABLE STATE MONITORING

State monitoring continuously checks whether a monitored
system enters a critical pre-defined state. Hence, state monitor-
ing tasks usually generate binary results which indicate either
“state violation exists”(positive detection) or “no state violation
exists”(negative detection). Beyond this basic result, our reliable
state monitoring approach also marks the estimated accuracy
of a monitoring result in the form of error probabilities. For
positive detections, the error probability is the probability of
false positives. The error probability is the probability of false
negatives for negative detections.

To perform accuracy estimation, we design estimation schemes
for both local violation reporting and global poll processes re-
spectively. These schemes leverage the information on messaging
dynamics and per-node monitored value distributions to capture
uncertainties caused by messaging dynamics. In addition, we
also examine the unique problem of out-of-order global polls
caused by message delay. The final accuracy estimation results
synthesize the uncertainties observed at different stages of the
state monitoring algorithm.

Besides accuracy estimation, our approach also minimizes er-
rors caused by non-transient messaging dynamics via two parallel
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directions of adjustments on distributed monitoring parameters.
One tries to minimize the chance that troubled nodes deliver
local violation reports to the coordinator. Since they may fail to
deliver these reports, such adjustments essentially minimize the
uncertainties caused by them. The other direction of adjustments
is to configure healthy nodes to report their local monitored values
more often. This allows the coordinator to make better accuracy
estimation which in turn helps to detect or rule out a global
violation with high confidence.

A. Messaging Dynamics

Although a Cloud datacenter may encounter countless
types of failures and anomalies at different levels (net-
work/server/OS/etc.), their impact on monitoring related commu-
nication can often be characterized by message delay and message
loss. For brevity, we use the term messaging dynamics to refer
to both message delay and loss. Depending on the seriousness
of messaging dynamics, the monitoring system may observe
different difficulties in inter-node communication, from slight
message delay to complete node failure (100% message loss rate
or indefinite delay).

The focus of our study is utilizing message delay and loss
information to provide reliable state monitoring functionalities
via accuracy estimation and accuracy-driven self-adaptation. Our
approach obtains message delay and loss information in two
ways. One is direct observation in global polls, e.g., the coor-
dinator knows whether it has received a response from a certain
monitor on time. The other is utilizing existing techniques such
as [9] to collect pair-wise message delay and loss information
between a monitor and the coordinator. Note that our approach
is orthogonal to the messaging quality measurement techniques,
as it takes the output of the measurement to perform accuracy
estimation and self-adaptation. Our approach only requires basic
messaging dynamics information. For message delay, it requires
a histogram that records the distribution of observed message
delays. For message loss, it takes the message loss rate as input.

B. Detection Window

We introduce the concept of detection window to allow users
to define their tolerance level of result delays. Specifically, a
detection window is a sliding time window with length w. We
consider a global violation V detected at time t a correctly
detected one if its actual occurrence time to ∈ [t−w, t]. Note that
multiple global violations may occur between the current time t
and t − w as Figure 2 shows. We do not distinguish different
global violations within the current detection window, as users
often care about whether there exists a global violation within the
detection window instead of exactly how many global violations
there are. The concept of detection window is important for
capturing the dynamic nature of state monitoring in real world
deployment.

C. Accuracy Estimation

Recall that the distributed state monitoring algorithm we intro-
duced in Section II has two stages, the local violation reporting
stage and the global poll stage. As message delay and loss have
an impact on both stages, our analysis on their accuracy impact
needs to be conducted separately. When message delay or loss
occurs during local violation reporting, the coordinator may fail
to receive a local violation report and trigger a global poll in
time. Consequently, it may mis-detect a global violation if one
does exist, and introduce false negative results. To estimate the
monitoring accuracy at this stage, the coordinator continuously
updates the estimated probability of failing to receive one or
more local violations based on the current messaging dynamics
situation and per-monitor value distribution. When message delay
or loss occurs during a global poll, the coordinator cannot collect
all necessary information on time, which again may cause the
coordinator to mis-detect global violation and introduces false
negatives. Hence, we estimate the probability of mis-detecting a
global violation based on collected values during the global poll
and the value distribution of troubled monitors.

Local Violation Reporting. To facilitate the accuracy estima-
tion at the local violation reporting stage, each monitor maintains
a local histogram that records the distribution of local monitored
values. Much previous research [14][16][20][1] suggests that such
distribution statistics of recent monitored values provide good
estimation on future values. Specifically, each monitor maintains
a histogram of the values that it sees over time as Hi(x) where
Hi(x) is the probability of monitor i observing the value x. We
use equi-depth histograms to keep track of the data distribution.
For generality purposes, we assume that the monitored value
distribution is independent of messaging dynamics. To ensure
that the histogram reflects recently seen values more prominently
than older ones, each monitor continuously updates its histogram
with exponential aging. A monitor also periodically sends its local
histogram to the coordinator.

We first look at the probability of monitor i failing to report a
local violation which can be computed as follows,

P (fi) = P (vi)P (mi)

where P (vi) is the probability of detecting a local violation
on monitor i, and P (mi) is the probability of a message sent
from monitor i failing to reach the coordinator due to messaging
dynamics. P (vi) = P (xi > Ti) where xi and Ti are the
monitored value and the local threshold on monitor i respectively.
P (xi > Ti) can be easily computed based on Ti and the
distribution of xi provided by the histogram of monitor i. P (mi)
depends on the situation of message delay and loss. Let P (pi)
be the probability of a message sent from monitor i to the
coordinator being dropped. Let P (di) be the probability of a
reporting message sent from monitor i to the coordinator being
delayed beyond users’ tolerance, i.e. the local violation report
is delayed more than a time length of w (the detection window
size) so that the potential global violation associated with the
delayed local violation report becomes invalid even if detected.
Given P (pi) and P (di), we have

P (mi) = 1− (1− P (pi))(1− P (di))

The rational here is that if a local violation report successfully



reaches the coordinator, it must not being dropped or heavily
delayed at the same time. Both P (pi) and P (di) can be easily
determined based on the measurement output of messaging
dynamics. P (pi) is simply the message loss rate. P (di) can be
computed as P (di) = P (li > w) where li is the latency of
messages sent from monitor i to the coordinator, and P (li > w)
is easy to obtain given the latency distribution of messages.
Clearly, P (mi) grows with P (pi) and P (di) and P (mi) = 0
when messaging dynamics do not exist.

During the local violation reporting phase, the overall proba-
bility of the coordinator failing to receive local violations P (F )
depends on all monitors. Therefore, we have

P (F ) = 1−
n∏
i

(1− P (fi))

where n is the number of monitors and we consider local
violations on different monitors are independent for generality.
Clearly, P (F ) grows with the number of problem monitors. With
P (F ), the probability of false negatives caused by missing local
violation reports Pl can be estimated as Pl = cP (F ) where c
is referred as the conversion rate between local violations and
global violations, i.e., the percentage of local violations leading
to true global violations. The coordinator maintains c based on its
observations on previous local violations and global violations.

Global Polls. Recall that in the original state monitoring
algorithm, when the coordinator receives a local violation report,
it initiates the global poll process, where it requests all monitors
to report their current local monitored values. However, when
message delay and loss exist, the coordinator may receive a
delayed report about a local violation that actually occurs at
an earlier time t. As a result, when the coordinator invokes a
global poll, it requests all monitors to report their previous local
monitored values observed at time t. To support this functionality,
monitors locally keep a record of previous monitored values
observed within the detection window (a sliding time window
with size w). Values observed even earlier are discarded as the
corresponding monitoring results are considered as expired.

Once the coordinator initiates the global poll process, our
accuracy estimation also enters the second stage, where we
estimate the possibility of mis-detecting global violations due to
message delay and loss in the global poll process. The estimation
starts when the coordinator does not receive all responses on time.
Since the coordinator does not report anything until it receives
all monitoring data, the probability of detecting a state violation
given the set of received monitored values is

P (V ) = P{
∑
i∈K

xi > T −
∑
i∈K̄

xi} (1)

where K is the set of monitors whose responses do not reach
the coordinator, and K̄ are the rest of the monitors. The right
hand side of the equation can be determined based on the value
histogram of monitors. At any time point, the probability of
detecting global violation is the probability of detecting global
violation within the time window of delay tolerance.

Out-of-Order Global Polls. Due to the existence of message
delays, local violation reports sent from different monitors may
arrive out-of-order. Accordingly, as new global poll processes
may start before previous global poll processes finish, the coor-
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Fig. 3: Out-of-order Global Polls

dinator may be involved in multiple ongoing global poll processes
at the same time as Figure 3 shows.

When the coordinator receives local violation reports r, it first
checks its timestamp tr (local violation occurring time) to see
if tr > t − w where t is the current time (report receiving
time) and w is the user-specified detection window size. If true,
it ignores the local violation report as the violation report is
expired. Otherwise, it initiates a global poll process and use tr
as its timestamp. As each global poll may take different time to
finish (due to message delay or loss), the coordinator continuously
checks the lifetime of global polls and removes those with tr that
tr > t− w.

For accuracy estimation, users are interested in whether there
exists one or more global violations within the time interval
of [t − w, t]. When there are multiple ongoing global polls, it
means that there are multiple potential global violations requiring
verification. Accordingly, our accuracy estimation should be on
whether there exists at least one ongoing global poll leading to
global violation.

Let Pj(V ) be the probability of triggering global violation in
global poll j. Pj(V ) can be determined based on Equation 1.
The probability Pg of at least one global poll out of M ongoing
ones triggering global violation is

Pg = 1−ΠM
j=1(1− Pj(V ))

Clearly, Pg increases quickly when the coordinator observes
growing number of ongoing global polls. If Pg is sufficiently
high, our monitoring algorithm will report possible state violation.
This is particularly useful for situations with a few monitors
suffering serious message delay or loss, because no global polls
can finish if these nodes cannot send their responses in time and
the coordinator can never trigger a global violation if running
existing state monitoring algorithms.

Combining Estimations of Both Stages. While we have
considered the accuracy estimation problem for local violation
reporting and global poll stages separately, a running coordinator
often experiences both local violation failures and incomplete
global polls at the same time. Hence, combining estimation on
both stages is critical for delivering correct accuracy estimation
results. The overall probability of false negatives can be computed
as β = 1− (1−Pl)(1−Pg) where Pl and Pg are the probability
of false negatives introduced by failed local violation reporting
and global polls respectively. Note that β ̸= Pl+Pg as the event
of miss-detecting a global violation due to failed local violation
reporting, and the event of miss-detecting a global violation due
to failed global polls are not mutually exclusive.

A Balanced State Monitoring Algorithm. The original state
monitoring algorithm invokes global polls only when it receives
local violation reports, and triggers state alerts only after the coor-
dinator collects responses from all monitors. When messaging dy-
namics exist, such an algorithm has two issues. First, it may miss



opportunities to invoke global polls. Second, it never produces
false positive results, but may introduce many false negatives
results. We introduce a balanced state monitoring algorithm that
minimizes the overall monitoring error. The balanced algorithm
is obtained through two revisions on the original algorithm. First,
when P (F ), the probability of failing to receive local violation
reports at the coordinator, is sufficiently large (e.g. > 0.95), the
algorithm triggers a global poll. Second, if the estimated false
negative probability β in the global poll phase raises above 50%,
the monitoring algorithm also reports state violation with a false
positive probability 1−β. The balanced algorithm is more likely
detect global violations compared with the original algorithm,
especially when β is large.

D. Accuracy-Oriented Adaptation

Sometimes monitors may experience long-lasting message loss
and delays. For instance, a Xen-based guest domain continuously
generating intensive network IO may cause considerable CPU
consumption on Domain0, which further leads to constant packet
queuing for other guest domains running on the same host [7][8].
As a result, monitor processes running on troubled guest do-
mains would experience continuous messaging dynamics until the
performance interference is resolved. Reliable state monitoring
should also adapt to such non-transient messaging dynamics and
minimize accuracy loss whenever possible.

Recall that the distributed state monitoring algorithm employs
local thresholds to minimize the amount of local violation reports
sending to the coordinator. This technique, however, introduces
extra uncertainties when messaging dynamics exist, because the
coordinator cannot distinguish the case where a monitor does not
detect local violation from the case where a monitor fails to report
a local violation. Our approach minimizes such uncertainties
through two simultaneous adjustments of local thresholds. First, it
adjusts local thresholds on troubled monitors to reduce its chance
of detecting local violations, as the corresponding reports may
not arrive the coordinator which in turn introduces uncertainties.
Second, it also adjusts local thresholds on healthy monitors to
increase their local violation reporting frequencies to maximize
the information available to the coordinator so that it can provide
good accuracy estimation. The adjustment on healthy monitors
is also important for monitoring correctness where we ensure∑n

i Ti 6 T .
As the impact of message delay and loss to local violation

reporting can be measured by the expected number of failed
local violation reports E(fr), we formulate the local threshold
adjustment problem as a constrained optimization problem as
follows,

min E(fr) = Σn
i P (vi|Ti)P (mi)

s.t. Σn
i Ti 6 T

where P (vi|Ti) is the conditional probability of reporting local
violation on monitor i given its local threshold Ti and P (mi) is
the probability of failing to send a message to the coordinator.
Since we do not have a closed form for P (vi|Ti) = P (xi > Ti)
(only histograms of xi), we replace P (vi|Ti) with its upper
bound P (vi|Ti) by applying Markov’s inequality (Chebyshev’s
inequality does not yield a closed form) where P (|xi| > Ti) 6
E(|xi|)

Ti
. Since xi is positive in most scenarios and E(|xi|) can be

obtained through xi’s histograms, applying this approximation
and Lagrange multiplier leads us to a closed form solution.
We find the resulting adjustments perform well in practice. In
addition, we invoke adaptation only when at least one node
experiences relatively long-lasting (e.g. 5 minutes) messaging
dynamics to avoid frequent adaptation.

IV. EVALUATION

Our experiments consist of both trace-driven simulation and
real system evaluation. The trace-driven experiment evaluates the
performance of our approach with access traces of WorldCup
1998 official website hosted by 30 servers distributed across
the globe [21]. We used the server log data consisting of 57
million page requests distributed across servers. We evaluate the
monitoring accuracy achieved by our approach for a variety of
messaging dynamics in this set of experiments. The other part of
our experiments leverages our monitoring techniques to support
auto-scaling of Cloud applications where server instances can be
added to the resource pool of an application dynamically based on
the current workload [13]. We deploy a distributed RUBiS [22],
an auction web application modeled after eBay.com for perfor-
mance benchmarking, and use state monitoring to trigger new
server instance provisioning. For the real system evaluation, we
are interested in the impact of improved monitoring accuracy on
real world application performance.

A. Results
Figure 4 shows the state violation detection percentage of dif-

ferent monitoring approaches under different levels and types of
messaging quality degradation. Here the y-axis is the percentage
of state violation detected by the monitoring algorithm over state
violation detected by an oracle which can detect all violations in
a given trace. In our comparison, we consider four monitoring
algorithms: 1) Oblivious, the existing instantaneous monitoring
algorithm which is oblivious to inter-node messaging quality; 2)
Est, the instantaneous monitoring algorithm enhanced with our
accuracy estimation techniques; 3) Adpt, the instantaneous mon-
itoring algorithm enhanced with our accuracy-oriented adaptation
techniques; 4) Est+Adpt, the instantaneous monitoring algorithm
enhanced with both estimation and adaptation techniques.

We emulate a distributed rate limiting monitoring task which
triggers state violations whenever it detects the overall request
rate (the sum of request rate on all monitors) exceeds a global
threshold (set to 3000 per second). The task involves 30 monitors,
each of which monitors the request rate of one server by reading
the corresponding server request trace periodically. Furthermore,
we set the detection window size to be 15 seconds, which means
a state violation is considered as successfully detected if the time
of detection is at most 15 seconds later than the occurrence time
of the state violation.

Figure 4(a) illustrates the performance of different algorithms
under increasing message delay. Here the x-axis shows the levels
of injected message delay. For delay on level k(k = 0, 1, 2, 3, 4),
we pick 20× k% of messages of a problem monitor and inject a
delay time randomly chosen from 5 to 60 seconds. By default, we
randomly pick 10% of monitors to be problem monitors. While
there are many ways to inject message delays, we use the above
injection method for the sake of simplicity and interpretation.
The detection rate of the oblivious algorithm drops quickly as
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Fig. 4: State Violation Detection Rate: (a) under increasing level of delay; (b) under increasing level of message loss; (c)under
increasing level of mixed message delay and loss; (d) with increasing number of problem monitors

delay level increases, primarily because its global poll process
always waits until messages from all monitors arrive and the
resulting delay on the violation reporting often exceeds the delay
tolerance interval. The Est algorithm performs much better as
it can estimate the probability of a state violation based on
incomplete global poll results, which allows the Est scheme
to report state violation when the estimated probability is high
(above 0.9 in our experiment). For instance, when an incomplete
global poll yields a total request rate close to the global threshold,
it is very likely that a state violation exists even though responses
from problem monitors are not available. The Adpt scheme,
however, provides limited improvement when used alone. This is
because accuracy-oriented adaptation by itself only reduces the
chance of a problem monitor reporting local violation. Without
accuracy estimation, the Adpt scheme still waits for all responses
in global polls. With both accuracy estimation and adaptation, the
Est+Adpt scheme achieves significantly higher detection rate.

In Figure 4(b), we use different levels of message loss to
evaluate the performance of different algorithms. Similar to
the injection of delay, we randomly pick 20 × k% message
of a problem node to drop for a k-level message loss. The
relative performance of the four algorithms is similar to what
we observed in Figure 4(a), although the detection rate achieved
by each algorithm drops slightly compared with that in Figure
4(a) as delayed messages often still help to detect state violation
compared with completely dropped messages.

For the rest of experiments, we inject mixed message delay
and loss, instead of mess delay or loss alone, for comprehensive
reliability evaluation. Similarly, the k level delay and loss means
that 10% messages are randomly chosen to drop and another 10%
messages are randomly chosen to add delays. Figure 4(c) shows
the violation detection performance of different algorithms given
increasing levels of mixed message delay and loss. We observe
similar results in this figure and the performance achieved by
our approach lies between those achieved in the two previous
figures. In Figure 4(d), we vary the scope of problem nodes from
20%(the default case) to 80%. The result suggests that our ap-
proach consistently improves monitoring accuracy. Nevertheless,
when problem monitors becomes dominant, its performance is
relatively worse that that in the three previous figures.

Figure 5(a) shows the corresponding percentage of false posi-
tives (reporting state violations when none exist) produced. Recall
that the original monitoring algorithm does not produce false
positives (0 false positive for Oblivious in Figure 5(a)) as its
global polls reports state violations only when the completely
collected responses confirms state violations, which, however,
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Fig. 6: Accuracy Improvement Breakup: (a) with increasing
message loss and delay levels; (b) with increasing percentage
of problem monitors.

causes high false negative rate (shown in Figure 5(b)). Figure
5(b) shows the false negatives (reporting no state violation when
at least one exists) rates of all schemes. All of our three schemes
achieve fairly low false positive and false negative rates.

Figure 6 illustrates the three key efforts our approach makes
to improve monitoring accuracy and the corresponding portion
of correctly reported state violations that are missed by the
original monitoring algorithm. Here Adaptation refers to the
effort of reconfiguring local threshold, Soft-Global-Poll refers to
the effort of triggering global polls when the estimated local
violation reporting probability is high (instead of receiving a local
violation), and Estimated-Alert refers to the effort of reporting
state violation when the estimated probability is sufficiently high.
Note that multiple efforts may contribute to a correctly reported
state violation at the same time. Among the three efforts in both
Figure 6(a) and Figure 6(b), Estimated-Alert clearly contributes
the most as incomplete global polls are the main reason for false
negatives in the original monitoring algorithm.

Figure 7 shows the performance difference of RUBiS with
auto-scaling enabled by different monitoring schemes. We deploy
a PHP version of RUBiS in Emulab [23] where it has a set of web
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Fig. 7: Impact on Cloud application auto-scaling: (a) comparison
of response time; (b) comparison of timeouts.

servers and a database backend. Each web server runs in a small
footprint XEN-based virtual machine (1 vCPU) and the database
runs on a dedicated physical machine. This is to ensure that
the database is not the performance bottleneck. We periodically
introduce workload bursts to RUBiS, and use state monitoring to
check if the total number of timeout requests on all web servers
exceeds a given threshold, i.e., one monitor runs on one web
server to observe local timeout requests. RUBiS initially runs with
5 web servers. When violations are detected, we gradually add
new web servers one by one to absorb workload bursts until no
violation is detected (auto-scaling). Similarly, when no violations
are detected for 5 minutes, we gradually remove dynamically
added web servers one by one.

We introduce messaging delay and loss to monitor-coordinator
communication in the same way as that in the trace-driven
experiments. The y-axis of Figure 7 shows the average response
time and the timeout request number of RUBiS requests which
are normalized by those of the oblivious scheme. Clearly, as our
enhanced schemes detect more state violations, they can more
reliability trigger auto-scaling when there is a workload burst,
which in turn reduces response time and request timeout by up to
30%. In addition, accuracy estimation achieves higher detection
rate compared with self-adaptation does. This is because monitors
on load balanced web servers often observe similar timeouts and
accuracy estimation can often confirm global violations based on
partial monitoring data.

V. RELATED WORK

Most existing state monitoring works [3][16][15][17][1] study
communication efficient detection of constraint violation. These
approaches often assume reliable inter-node communication, and
are subject to producing misleading results with the presence
of messaging dynamics that are common in Cloud monitoring
environments. Jain and et al. [9] studies the impact of hierar-
chical aggregation, arithmetic filtering and temporary batching
in an unreliable network. They propose to gauge the degree of
inaccuracy based on the number of unreachable monitoring nodes
and the number of duplicated monitoring messages caused by
DHT overlay maintenance. While this work provides insight for
understanding the interplay between monitoring efficiency and
accuracy given message losses, it also has several limitations as
we mentioned in Section II-A such as not considering delay and
difficulties in assessing application level monitoring accuracy.
Our work is complementary to [9] as we try to move forward
the understanding of monitoring reliability by studying accuracy
estimation and self-adaptation in state monitoring.

VI. CONCLUSION AND FUTURE WORK

We have presented a reliable state monitoring approach that
enables estimation of monitoring accuracy based on observed
messaging dynamics, and self-adaption to disruptions. We built
a prototype system based presented techniques and evaluated
the system in various settings. The results suggested that the
system can effectively deliver reliable monitoring results and
accuracy estimation. As part of our ongoing work, we are
working on safeguarding multiple state monitoring tasks. We
are also studying providing reliability features to other types of
monitoring.
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