
A Distributed Polygon Retrieval Algorithm using MapReduce

Qiulei Guo Balaji Palanisamy Hassan A. Karimi

School of Information Sciences, University of Pittsburgh
{qiulei, bpalan, hkarimi }@pitt.edu

Abstract—The proliferation of data acquisition devices like
3D laser scanners had led to the burst of large-scale spatial
terrain data which imposes many challenges to spatial data
analysis and computation. With the advent of several emerging
collaborative cloud technologies, a natural and cost-effective
approach to managing such large-scale data is to store and
share such datasets in a publicly hosted cloud service and
process the data within the cloud itself using modern distributed
computing paradigms such as MapReduce. For several key
spatial data analysis and computation problems, polygon retrieval
is a fundamental operation which is often computed under real-
time constraints. However, existing sequential algorithms fail to
meet this demand effectively given that terrain data in recent
years have witnessed an unprecedented growth in both volume
and rate. In this work, we develop a MapReduce-based parallel
polygon retrieval algorithm which aims at minimizing the IO
and CPU loads of the map and reduce tasks during spatial
data processing. The results of the preliminary experiments on a
Hadoop cluster demonstrate that the proposed techniques are
scalable and lead to more than 35% reduction in execution
time of the polygon retrieval operation over existing distributed
algorithms.

I. INTRODUCTION

The proliferation of cost-effective data acquisition devices
like 3D laser scanners has enabled the acquisition of massive
amounts of terrain data at an ever-growing volume and rate.
With the advent of several emerging collaborative cloud tech-
nologies, a natural and cost-effective approach to managing
such large-scale data is to store and share such datasets in
a publicly hosted cloud service and process the data within
the cloud itself using modern distributed computing paradigms
such as MapReduce. Examples of applications that process
such terrain data include urban environment visualization,
shadow analysis, visibility computation, and flood simulation.
Many geo-spatial queries on such large datasets are intrinsi-
cally complex to solve and are often computed under real-time
constraints, thus requiring fast response times for the queries.
However, most existing sequential algorithms fail to meet
this demand effectively given that terrain data in the recent
years have witnessed an unprecedented growth in both volume
and rate. Therefore, a common approach to speed up spatial
query processing is parallelizing the individual operations on
a cluster of commodity servers.

Polygon retrieval is a fundamental geospatial operation
which is often computed under real-time constraints. Polygon
retrieval involves retrieval of all terrain data within an area
of interest [8][9] for further analysis. With the increasing
proliferation of terrain data, real-time processing of such
a large amount of data is not possible through sequential
computations and a distributed parallel computation is needed
to meet the fast response time requirements.

We argue that such large scale spatial datasets can effec-
tively leverage the MapReduce programming model[1] to com-
pute spatial operations in parallel. In this paper, we develop a
MapReduce-based parallel algorithm for distributed processing
of polygon retrieval operation in Hadoop [2]. Our proposed
algorithm first hierarchically indexes the spatial terrain data
using a quad-tree index, with the help of which, a significant
amount of data is filtered out in the pre-processing stage based
on the query object. Our preliminary experiment results on
a 20 node Hadoop cluster show that the proposed algorithm
is scalable and performs faster than existing distributed algo-
rithms.

II. TIN DATA REPRESENTATION AND POLYGON
RETRIEVAL OEPRATION

In this section, we provide the required background and
preliminaries about the spatial data representation format
namely TIN and discuss MapReduce based parallel processing
for large-scale datasets.

A. TIN Data

TIN[3] is a commonly used model for representing spa-
tial data and it consists of irregularly distributed nodes and
lines arranged in a network of non-overlapping triangles.
Traditionally, TINs are stored as a file, in ASCII or the
ESRI TIN dataset file format. To improve the efficiency of
processing large TIN datasets, [5] has proposed new TIN
data structures and operations for spatial databases that allow
storing, querying and reconstructing TINs more efficiently.
However, we note that there are no standards on the data
structures and operations for TIN [4]; Oracle has defined a
proprietary data type and operations for managing large TINs
in their own spatial database [6]. In our work, we adopt the
data format from [4] which comprises of two types of data
entities: TIN Points and TIN Triangles, as shown in Figure 1.
Both types have their unique IDs. The TIN Points type has five
properties and the TIN Triangles entity has three properties.
For the TIN Point, the Adj TriangleID[] array stores the IDs
of its adjacent triangles. For the TIN Triangle, the Point ID
array and Coordinate array contain the IDs and coordinates
for the three vertices of each triangle.

B. Polygon Retrieval

In this subsection, we describe the polygon retrieval prob-
lem using data represented in TIN. Given the boundary of
a simple polygon, the polygon retrieval operation retrieves
all the terrain data, represented by TIN that intersects with
the polygon. As there could be many possible situations of
intersection, in this work, we consider an intersection when

TIN_Point

Point_ID

Latitude

Longitude

Elevator

Adj_TriangleID[]

TIN_Trianlge

Triangle_ID

Point_ID[]

Coordinate[]

Fig. 1: TIN representation

at least one of its vertex of the TIN triangles intersects with
the query area. We note that point-in-polygon algorithms can
be used to determine whether a point is inside or outside
the polygon. One such well-known algorithm is ray tracing
algorithm which is usually referred to as crossing number
algorithm or even-odd rule algorithm in the literature.

III. MAPREDUCE-BASED PARALLEL POLYGON RETRIEVAL

In this work, we focus on MapReduce-based parallel pro-
cessing of TIN for the polygon retrieval operation. We note
that in addition to the programming model, MapReduce [1]
also includes the system support for processing the MapRe-
duce jobs in parallel in a large scale cluster. Apache Hadoop[2]
is a popular open source implementation of the MapReduce
framework. Hadoop is composed of two major parts: storage
model, Hadoop Distributed File System (HDFS) and com-
pute model (MapReduce). A key feature of the MapReduce
framework is that it can distribute a large job into several
independent map and reduce tasks over several nodes of a
large data center and process them in parallel. MapReduce
can effectively leverage data locality and processing on or
near the storage nodes and result in faster execution of the
jobs. The framework consists of one master node and a set
of slave nodes. In the map phase, the master node schedules
and distributes the individual map tasks to the worker nodes.
A map task executing in a worker node processes the smaller
chunk of the file stored in HDFS and passes the intermediate
results to the appropriate reduce tasks executing in a set of
worker nodes. The reduce tasks collect the intermediate results
from the map tasks and combine/reduce them to form the final
output.

We first develop a naive implementation of parallel polygon
retrieval operation using MapReduce and then develop a series
of optimization techniques that significantly improves this
basic polygon retrieval algorithm. Our proposed algorithm
employs a sequence of optimization techniques that aims at
reducing the computation overhead of the map and reduce
tasks. First, our proposed technique divides the whole dataset
stored in HDFS into several chunks of files based on a quad-
tree prefix. Then for each range query, we use a prefix tree to
organize the set of quad-indices whose corresponding grids
intersect the query area. Prior to processing a query, we
employ these indices to filter the unnecessary TIN data as part
of the data filtering stage so that unwanted data processing is
minimized in the map phase. Finally, the proposed approach

pre-tests the relationship between the TIN data and the query
shape through the built prefix tree in the map function in order
to minimize the computation.

IV. EXPERIMENTAL EVALUATION

For our experimental evaluation, we use the LIDAR data
of Pittsburgh city and convert it into TIN format with the
help of the LASTool[22]. The data of Pittsburgh is originally
divided into 5 ∗ 5 equally sized grid cells and each grid cell
represents a terrain of 10000 metes * 10000 meters. There
are 3 million points and 6 million triangles in each grid cell
and the size of each grid’s TIN file is approximately 500 MB.
We conducted our experiments on a cluster of virtual machines
created by OpenStack hosted on a 5-node experimental cluster.
Each server in the cluster has an Intel Xeon 2.2GHz 4 Core
with 16 GB RAM and 1 TB hard drive at 7200 rpm. Each
virtual machine in our setup had 1 VCPU with 2 GB RAM
and 20 GB hard drive with Ubuntu Server 12.04(32 bit).

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 6 8 10 12 14 16 18 20

tim
e

(m
ill

i s
ec

)

Number of VMs

HadoopTIN
SpatialHadoop*

Fig. 2: Execution time

We evaluate the effectiveness of our polygon retrieval
algorithm by varying the size of the Hadoop cluster in terms
of the number of VMs. For comparing our results with exist-
ing distributed polygon retrieval techniques, we use Spatial-
Hadoop[7] as the benchmark. Figure 2 shows the time cost on
various cluster sizes when the query area is 2.7e + 7m2. We
infer that the execution time decreases gradually as the cluster
size becomes larger. Overall, the proposed technique scales
well with the number of nodes in the Hadoop cluster showing
a significant reduction in job execution time with increase in
cluster size.

REFERENCES
[1] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on

large clusters. In OSDI, 2004.
[2] Hadoop. http://hadoop.apache.org.
[3] Peucker, Thomas K., et al. “The triangulated irregular network”. Amer.

Soc. Photogrammetry Proc. Digital Terrain Models Symposium. Vol.
516. 1978..

[4] Karimi, Hassan Ali, Duangduen Roongpiboonsopit, and Haopeng Wang.
“Exploring RealTime Geoprocessing in Cloud Computing: Navigation
Services Case Study”. Transactions in GIS 15.5 (2011): 613-633.

[5] Al-Salami, A. “TIN support in an open source spatial database”. MS
Thesis, International Institute for Geo-information Science and Earth
Observation (ITC), Enschede, The Netherlands (2009).

[6] Kothuri, Ravi, Albert Godfrind, and Euro Beinat. “Pro oracle spatial for
oracle database 11g”. Berkeley: Apress, 2007.

[7] SpatialHadoop: http://spatialhadoop.cs.umn.edu/operations.html
[8] Willard, D.E. “Polygon retrieval”. SIAM Journal on Computing 11.1

(1982): 149-165.
[9] Mark de Berg, O.C., Marc van Kreveld, Mark Overmars. “Simplex

Range Searching”. Computational Geometry,2008

