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Abstract— The proliferation of Location Based Services
(LBSs) and Geo Social Networks (GSNs) significantly increase
the exposure risks of location information leading to leakage
of sensitive information. Location privacy preserving methods
are designed to provide a specified level of privacy based on
some pre-defined privacy guarantees such as k-anonymity and
ε-differential privacy. In certain situations, we note that users
would need different privacy protection levels based on their
relationships and trust associated with the users of the exposed
location data. For instance, users of a location-based social
network may need a lower privacy protection level during
their interactions with their close friends and a higher privacy
protection level when they interact with public users. In this
paper, we propose a privacy aware access control model that
provides different location privacy protection levels for users
based on their needs. The proposed model also provides an
efficient mechanism for grant and revoke of authorizations.

I. INTRODUCTION

The recent prevalent use of mobile devices and the
availability of high-resolution spatio-temporal data sensing
devices have popularized the use of Location-Based Services
(LBSs) and Location-based Geosocial Networks (GSNs).
These location-based systems (e.g. Foursquare, Yelp, Google
Latitude, and Facebook Places) provide services based on the
location of their users. In a Location-Based Social Network
(LBSN), users publish their location information through
check-ins, share them with their friends and other users of
the system. In addition, users can explore places around
their current location and take advantage of the feedback
and reviews provided by their friends and other users of the
system. These introduce new security and privacy challenges
in a LBS. For example, knowing user’s check-ins at a specific
hospital, an adversary may be able to infer the users disease
or other sensitive health information about the user.

In a LBS, there are different kinds of privacy issues such
as Location Privacy, Absence Privacy, Co-Location Privacy
etc., that may cause serious privacy risks for the users [1].
Puttaswamy et al. in [2] report several incidents of location
privacy leakage that have resulted in serious consequences
for the users of location-based services. Besides users’ online
information that may invade their privacy, location-based
service providers may publish their datasets for academic
or industrial purposes which can lead to the disclosure of
user’s sensitive information. Naively anonymizing Geosocial
Network datasets will not preserve users’ privacy as they are

subject to the risk of re-identification. Attackers may take ad-
vantage of their background knowledge (e.g. Top m locations
of a user [3], location trajectory of a user, and location-based
information of friends of a user) for re-identifying users in a
GSN dataset. Differential privacy provides a more rigorous
guarantee by bounding the adversary’s ability to infer the
sensitive information from the exposed differentially private
information.

Although there have been several studies that tried to solve
the location privacy problem, existing solutions have been
designed to provide one specific level of location privacy
protection to all users of the system without considering
different levels of relationships and trusts that may exist
between the users. For example, in an online social network,
a user may have various categories of other users connected
on the social network such as Close Friends, Friends, Family,
Public, etc., with each of them having different levels of
access to the user’s information. A straight-forward privacy
preserving mechanism may provide only a specific location
privacy level without considering the access control imposed
to the users in these lists. However, in such scenarios, users
may prefer to reveal their exact location to Close Friends,
an approximate location with small noise to other friends,
and an approximate location with a larger amount of noise
to Public users.

In this paper, we present a location privacy aware ac-
cess control model that provides different levels of location
privacy protection based on access control privileges of
the users. We consider policy updates which may result in
grant/revoke of authorizations and we present an analysis
of the security properties and performance of the proposed
model.

II. PRIVACY AWARE ACCESS CONTROL MODEL

In this section, We first briefly introduce the notion of
differential privacy and then present our privacy aware access
control model.

Differential Privacy [5] is a notion from the domain of
statistical databases that preserves an individual’s privacy
when publishing aggregate information. Differential privacy
bounds the adversary’s ability to infer a single user’s data
in a dataset. This can be achieved by adding a controlled
amount of noise to the query result. Differential privacy is
formally defined as follows:
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Definition 1: A randomized function M gives ε-
differential privacy if for all data sets D1 and D2 differing
on a single user, and all S⊆ Range(M),

Pr[M(D1) ∈ S]< exp(ε)×Pr[M(D2) ∈ S]

Differential privacy can be also extended to support location
privacy. For example, Andrs et al. in [17] introduce the
notion of geo-indistinguishability and presents a mechanism
for achieving it by adding a controlled amount of noise to
the users’ location.

We next present our proposed privacy aware access control
model that is inspired by [4] and is founded on Chinese
Remainder Theorem (CRT) [7] for managing access to a
piece of information which is intended to be shared among
authorized users. In our model, the list of authorized users
is specified by the access control list (ACL) of the owner
of the information. We assume that a user’s exact location
l is represented by a rectangular region which is shown by
a 4-tuple l =< x,y,w,h >, in which x and y are latitude and
longitude of the top left corner of the region, and w and h
are width and height of the region. A differentially private
location privacy preserving mechanism may publish an ap-
proximate location of the user, l′ =< x′,y′,w′,h′ > by adding
some amount of noise to the exact location, here the noise
can be shown by ε =< |x− x′|, |y− y′|, |w−w′|, |h− h′| >.
Based on different parameter settings in privacy preserving
model, different approximate locations of the user’s exact
location can be published.

We assume a GSN in which each user has three access
control list: Closed Friends, Friends, and Public Users.
The user may prefer to publish his exact location to his
Close Friends, but he may prefer to publish his approximate
location (l′) with a small amount of noise (i.e. ε) to his
Friends, and he may want to publish another approximate
location (l′′) with larger amount of noise (e.g ε ′) to Public
Users. A simple solution in this scenario is shown below:

The user publishes his approximate location l′′ to all the
users of the system and he will send ε and ε ′ to all of his
Friends and his Closed Friends, respectively. In this way,
his Friends can calculate his approximate location which
contains small amount of noise (i.e. l′ = l′′ − ε) and his
Closed Friends can calculate his exact location (i.e. l =
l′′− ε ′). We note that this is not an efficient solution and
it may force high communication overload to the users of
the system. Instead, by using CRT in the following way, the
amount of communication overhead can be reduced using
the following protocol:

Assume that one of the access control list of the user
U is his Close Friends which is shown by: ACLU

ClsFrnd =
{u1,u2, . . . ,ur}. We also assume that each user ui of the
system has been assigned a public and private key pairs
(puki, prki), and a moduli ni. Then, user U can solve the
system of simultaneous congruences in (1), and publish the
solution xε besides publishing his approximate location l”:


xε ≡ Epuk1(ε) mod n1

xε ≡ Epuk2(ε) mod n2

. . .

xε ≡ Epukr(ε) mod nr

(1)

If any of the U’s Close Friends (e.g. ui ∈ ACLU
ClsFrnd)

needs to access ε , he/she can calculate it as follows:

Epuki(ε)≡ xε mod ni (2)

ε = Dprki(Epuki(ε)) (3)

As an illustrative example, let us consider that Alice (A)
has two Close Friends: Bob (B) and Carol (C) and two more
Friends: Dave (D) and Edward (E). The exact location of
Alice is lA =< x,y,w,h > and the differentially private pri-
vacy preserving method has generated two approximates of
her location lA′=< x′,y′,w′,h′> and lA′′=< x′′,y′′,w′′,h′′>.
εA = lA− l′A and ε ′A = lA− l′′A are two noises related to
these approximations where εA < ε ′A. Alice wants Public
Users to have access to l′′A, her Friends to have access to
l′A and her Close Friends to have access to lA. She will
publish l′′A as an approximation of her location which is
accessible by all users of the LBS. In addition, she needs to
calculate and publish shared information xε ′A and xε ′′A using
CRT systems of simultaneous congruences shown in (4) and
(5). Here ε ′′A = l′A− l′′A = ε ′A− εA.{

xε ′A ≡ EpukB(ε
′
A) mod nB

xε ′A ≡ EpukC(ε
′
A) mod nC

(4)


xε ′′A ≡ EpukB(ε

′′
A) mod nB

xε ′′A ≡ EpukC(ε
′′

A) mod nC

xε ′′A ≡ EpukD(ε
′′

A) mod nD

xε ′′A ≡ EpukE (ε
′′

A) mod nE

(5)

If Bob wants to get the exact location of Alice, he has
access to both l′′A and xε ′A . He needs to calculate ε ′A using
equations in (6) and (7) and then he can get the exact location
of Alice by calculating lA = ε ′A + l′′A.

EpukB(ε
′
A)≡ xε ′A mod nB (6)

ε
′
A = DprkB(EpukB(ε

′
A)) (7)

In the same way, Dave can access l′A by solving equations
(8) through (10):

EpukD(ε
′′

A)≡ xε ′′A mod nD (8)

ε
′′

A = DprkD(EpukD(ε
′′

A)) (9)

l′A = ε
′′

A + l′′A (10)

On the other hand, Dave cannot access the exact location
of Alice (lA) as he has access to neither prkB nor prkc.
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A. Policy Updates

In any information system, updating access control poli-
cies is a probable practice. These updates may be done
through Grant and Revoke operations. In a GSN, it is
common that users modify their relationships with other
users. They may add a user to their Friend list (Grant)
or on the other hand, they may remove a user from the
list (Revoke). In both situations, the users access control
list has been changed. The straightforward solution is to
recalculate the shared information using CRT according to
new access control list. However, when policy updates occur
frequently in a LBS, these calculations may impose high
overhead to the users of the system. Kong et al. in [4] suggest
an efficient approach for updating policies. We discuss the
method through an example.

In our previous example, if Alice (A) wants to add Frank
(F) to her Close Friends, he can have access to her exact
location and as a result, he should be able to calculate ε ′A
having access to both l′′A and xε ′A . For this purpose, Alice
needs to calculate and publish x′ε ′A which is the solution of
the CRT systems of simultaneous congruences in (11).{

x′ε ′A ≡ xε ′A mod nBnC

x′ε ′A ≡ EpukF (ε
′
A) mod nF

(11)

On the other hand, if Alice wants to remove Edward (E)
from her Friend list, he should not be able to calculate ε ′′A
anymore. For this purpose, Alice has to calculate the new
shared information x′ε ′′A as follows:

x′ε ′′A = xε ′′A mod nBnCnD (12)

We refer the interested readers to [4] for details on the
security analysis of Grant and Revoke operations. Using this
technique, users of a LBS system can easily modify their
lists and hence update their access control policies.

III. PERFORMANCE AND SECURITY ANALYSIS

Based on Menezes et al [8], Garners Algorithm is an effi-
cient algorithm for computing Chinese Remainder Theorem
which has the time complexity of O(kl2) assuming that in
Equation (1) each modulus ni has l bits and the CRT solution
xε has lk bits.

As we discussed in the previous section the grant oper-
ation needs a solution to a CRT with two equations to be
calculated. Hence the complexity of grant operation is of
O(l2). The revoke operation can be done with one modular
operation which has the complexity of O(kl2).

Size of the CRT solution has a direct relationship with
the number of equations (k) and the size of the modulus
(l) in the system of simultaneous congruences in (1). As
0 ≤ x ≤ n = n1n2 . . .nk, the CRT solution is at most lk bits.
As a result, in the proposed model, communication overhead
which is due to transferring shared information (xε ′A or xε ′′A )
is impacted by the size of access control list of the user and
the size of each modulus. As in the CRT, 0 ≤ ai < ni and
size of each modulus should be greater than each ciphertext.
If we choose a RSA cryptosystem in which the ciphertext

has 1024 bits size, then the CRT moduli should also be of
1024 bits size and so the communication overhead will be
1024r, here r is the size of access control list of the user.

The proposed model preserves the confidentiality of au-
thorization policies of the users of the system, as knowing
the shared information and moduli does not reveal any
information about the access control list of the user. However,
as the moduli in equation (1) are not private, the model may
suffer from known plain text attacks, so it is important to
employ an encryption algorithm which can protect against
this kind of attacks.

IV. RELATED WORK

Different approaches have been proposed to provide pri-
vacy preserving mechanisms for Location Based Services
and Location-based geo-social Networks. Obfuscation or
cloaking methods try to hide the exact location of the user
through spatial cloaking algorithms [9]–[12]. The techniques
based on k-anonymity and l-diversity build cloaking region
by providing k-anonymity and l-diversity guarantees [13]–
[16].

Differential Privacy is another approach for obfuscating
users’ location by adding a carefully calibrated noise [17],
[18]. Some studies try to employ encryption techniques to
provide location privacy [19]–[21]. Use of secret sharing [22]
and TTP (Trusted Third Party) [23] are other mechanisms for
preserving the privacy of users in a LBS.

Some studies try to provide security for users of a LBS
through access control models and mechanisms. Common
approaches are based on extending RBAC model [24]–[26].
Zue et. al. propose a cryptographic access control framework
for a fine-grained spatio-temporal access control for Location
Based Systems [27]. Tarameshloo’s access control model is
based on primitive spatial relations between users’ locations
in the system [28]. These techniques do not consider altering
privacy parameters according to access control policies. Few
works in the past consider dynamic privacy for relational
databases, in which according to role’s permissions (that
are specified through queries), privacy parameters are set
[29], [30], however, they are not applicable to the location
privacy problem in the context of location based services as
permissions are not defined by queries in these systems.

V. CONCLUSIONS

Despite the popularity of location based services and
location-based geo-social networks, privacy issues in these
systems remains an open challenge. In this work, we pro-
posed a privacy preserving access control model which
provides various location privacy protection levels based on
different access privileges of users in a LBS. In addition,
the model efficiently allows the users of the system to grant
authorization to new users and revoke authorization from the
existing ones.
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