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ABSTRACT
Cloaking-based location privacy preserving mechanisms have been
widely adopted to protect users’ location privacy while traveling on
road networks. However, a fundamental limitation of such mecha-
nisms is that users in the system are inherently trusted and assumed
to always report their true locations. Such vulnerability can lead to
a new class of attacks called location injection attacks which can
successfully break users’ anonymity among a set of users through
the injection of fake user accounts and incorrect location updates.
In this paper, we characterize location injection attacks, demon-
strate their effectiveness through experiments on real-world geo-
graphic maps and discuss possible defense mechanisms to protect
against location injection attacks.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Se-
curity, integrity, and protection; H.2.8 [Database Management]:
Database Applications—Spatial databases and GIS

General Terms
Experimentation, Security

Keywords
Location Cloaking, Location Privacy, Location k-Anonymity, Lo-
cation Injection Attack

1. INTRODUCTION
Location privacy threats refer to the risks that an adversary can

obtain unauthorized access to raw location data by locating a trans-
mitting device and identifying the subject (person) using the mobile
device. Examples of such risks include spamming users with un-
wanted advertisements, drawing sensitive inferences from victims’
visits to clinics and doctors’ offices and learning one’s religious
activities and political beliefs. Location privacy is a system-level
capability of location-based systems, which control the access to
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Figure 1: Trusted anonymizer architecture.

location information at different spatial granularities and different
temporal and continuity scales, rather than stopping all access to
location information.

In the past, cloaking-based location privacy preserving mecha-
nisms (CLPMs) have been proposed as one of the most effective
location privacy preserving mechanisms for users traveling on the
road networks [1, 2, 4]. As shown in Figure 1, when a user requests
a location-based service (e.g. searching for the nearest coffee shop)
from a Location-based Service Provider (LSP), he first sends the
request to a trusted Anonymization Server (AZ) which launches a
location cloaking algorithm to reduce the precision of the user’s
location and generates a cloaked region under the required granu-
larity level. The AZ then sends the cloaked location to the LSP to
obtain the required location-based service. Here, the LSP can be a
potential adversary and can be either curious or malicious.

In general, any cloaking-based location privacy preserving mech-
anism (CLPM) guarantees the in-distinguishability of a given user
among a set of other users. Location k-Anonymity [1] refers to
the property that ensures that the location of a given subject (user)
is indistinguishable from that of k − 1 other users. In addition
to location k-Anonymity, several extensions to the basic CLPMs
have been proposed to strengthen the privacy guarantees includ-
ing POI (points of interest) l-Diversity [1] which ensures the in-
distinguishability of a user’s location from a set of POIs and Seg-
ment s-Diversity [4] which guarantees the in-distinguishability of a
user’s location from a set of road segments. However, in all exist-
ing CLPMs, a fundamental limitation is that all users are inherently
trusted by the AZ and assumed to always report their true locations.
In this work, we show that such vulnerability can lead to a new class
of attacks called location injection attacks which can successfully
violate users’ privacy in terms of in-distinguishability among a set
of users. In this paper, we first characterize the location injection
attack and then demonstrate its effectiveness for CLPMs through
experiments on real-world geographic maps (Section 2). Finally,
we discuss the potential solutions which can be utilized to identify
and mitigate location injection attacks (Section 3).



2. LOCATION INJECTION ATTACK
In this section, we illustrate the location injection attack with an

intuitive example and formally define the attack and propose the
attack schemes.

Illustrative example: We consider the example shown in Figure
2 where we find six real users u1, u2, u3, u4, u5 and u6 travel-
ing in a road network and an adversary creates six fake users fu1,
fu2, fu3, fu4, fu5 and fu6 and reports their locations in the road
segments around the road junction, Jun1. Assuming user u1 has a
location k-Anonymity requirement, ku1 = 6 and without the pres-
ence of fake users, AZ would generate a cloaked region containing
users u1, u2, u3, u4, u5 and u6. In this case, the probability of
identifying the exact location of u1 from that of others is 1/6. How-
ever, when the adversary launches a location injection attack, AZ
may generate a cloaked region including segments Seg1 and Seg3
where there are only two real users (u1, u2) and four non-real attack
users (fu2, fu4, fu5, fu6). Since the adversary (who is launching
the attack) can distinguish fake users in the generated cloaked re-
gion, the probability of identifying u1 from others is now reduced
to 1/2, which violates the location k-Anonymity requirement of u1.
Hence, the adversary now has a higher probability to identify u1’s
exact location (for e.g., u1 could be traveling in the Seg1, Seg2,
Seg3, Seg4 or Seg11 without the attack but when the location in-
jection attack is launched, u1 should be in either Seg1 or Seg3).

2.1 Attack Definition
We assume that there is a road network G(VG, EG) where VG

represents the set of road junctions and EG represents the set of
road segments between the junctions. We consider that there is
an authentic user u who travels in G while requesting the location
service from a location-based service provider (LSP) through an
Anonymization Server (AZ). u has a privacy setting ku for loca-
tion k-Anonymity and AZ guarantees ku in the generated cloaked
region. We also assume that the adversary is part of LSP who tries
to violate u’s privacy setting of ku. Here, we also assume that the
adversary (LSP) knows u’s coarse location (l0u) before launching
the attack. This information can be obtained by the cloaked regions
that u used for his recent queries to LSP.

Adversary’s Actions: The adversary intelligently manipulates a
number of fake user locations to be similar and close to l0u and as
a result, AZ generates a cloaked region Ru for u and sends with
associated users (including u) in Ru to the LSP. We define the set
U(Ru) as a set containing all users in Ru and a set U(Ru)′ denot-
ing the set of fake users in Ru.

Successful Location Injection Attack: We say that user u is a
victim of a location injection attack, when |U(Ru)| − |U(Ru)′| <
ku. Here |U | indicates the number of users in a user set U.

We note that not every location injection attack is successful and
we consider that the attack is successful only when the number of
authentic users is less than that required. For example, in Figure
2, if the anonymity requirement ku1 of the user u1 is 2, then u1’s
privacy requirement is not violated even under the location injec-
tion attack. We also note that a location injection can be targeted
at multiple users simultaneously and the attack can be used to infer
a targeted user’s trajectory when the continuous location injection
attacks for the targeted user are successful.

2.2 Attack Costs
In general, there are two types of costs associated with the ad-

versary to launch location injection attacks:

• Cost of creating non-real user account: there is a cost to
create non-real users and we define such cost as costF (n)
where n denotes number of non-real users created.

Figure 2: An instance of a location injection attack.

• Cost of the anonymity service from AZ: we assume that there
is a cost for a user u whenever u requests the anonymity ser-
vice from AZ. We assume the cost of the anonymity service
for each user is equal and we denote it as costu(m) where m
indicates times the anonymity service is requested by user u.

Hence, the total cost costA of a location injection attack can be
calculated as the sum of the fake user creation cost and cost of
users’ anonymization requests:

cos tA = cos tF (n) +
∑i=n

i=1
cos tui(mui)

2.3 Attack Schemes
We define two types of attack schemes for location injection at-

tacks namely:

• Random Injection (RI) attack: Given a targeted user u, an
adversary can randomly choose a number of fake users and
has no limitation on how their locations are manipulated. For
instance, a fake user in the random injection attack may travel
10 miles within 10 seconds through location manipulation by
the adversary and we assume that the AZ may not be aware
of abnormal traveling activities.

• Trajectory-based Injection (TI) attack: In trajectory-based
injection attacks, an adversary creates normal trajectories for
fake users by simulating these trajectories similar to a tar-
geted user’s trajectory.

Intuitively, the attack cost of the RI attack is less than that of the
TI attack since the fake user accounts can be significantly reused
in the RI attack. Also, the RI attack is even more cost-effective
when the adversary targets multiple users at the same time. Next,
we experimentally evaluate and demonstrate the effectiveness of
location injection attacks under these two attack schemes.

2.4 Attack Simulations
We use the GT Mobile simulator [3] to generate a trajectory of

5000 users moving in Northwest Atlanta regions of Georgia. We
assume that all of these 5000 users are authentic. We implement the
Anonymization Server (AZ) using the road network-aware XStar
cloaking algorithm [4] to preserve users’ privacy requirements in
terms of location k-Anonymity and segment s-diversity. For each
authentic user u, we set ku as a randomly chosen value from 2 to



Figure 3: Attack results of both attack schemes.

12 and su (Segment s-Diversity [4]) is randomly chosen from 2 to
10. We assume that each user in the road is active and he or she
requests the location-based service from the location-based service
provider (LSP) every second. Out of the 5000 authentic users, we
randomly choose 800 users in the road network as targets. For each
target, the adversary conducts both the RI attacks and TI attacks
every time a target has a location-based query. We evaluate the
attack effectiveness by injecting 5000, 10000 and 50000 fake users
for both attack schemes. We note that in our experiments, the total
attack cost is the same for both the RI attack and TI attack in terms
of the same number of fake users injected.

We use the attack success rate as the metric to show the effective-
ness of the attacks. When a location injection attack is successful
for a target, it indicates that a target’s privacy requirement of lo-
cation k-Anonymity is violated (less than k − 1 authentic users in
the cloaked region). Figure 3 shows the observed success rate of
the attacks where X-axis represents the location k-Anonymity re-
quirements of targeted users and Y-axis refers to the average attack
success rate for the targeted users. For example, K=5 refers to a
group of the targets who specify their privacy requirements of lo-
cation k-Anonymity to be 5. As shown in the Figure, the average
attack rate is around 90% in RI attacks when 5000 fake users are
utilized. From the Figure 3, we can see that an adversary can have
a more successful attack when a target has a larger value for loca-
tion k-Anonymity. The average attack success rates also gradually
increase with the increase in the number of injected fake users in
both attack schemes. Additionally, we find that the average attack
success rates of the RI attacks are usually much higher than those
of the TI attacks in terms of the same number of fake users injected.

We also note that location injection attacks do not violate a user
Segment s-Diversity su as the XStar cloaking algorithm typically
ensures segment s-diversity independent of location k-Anonymity.
However, a larger value of could possibly decrease the effectiveness
of the attack. When there are more segments in a cloaked region, it
is more likely to include many authentic users and thus, a cloaking
algorithm without the Segment s-Diversity guarantee would be even
more vulnerable to location injection attacks.

3. DISCUSSIONS
In this section, we discuss some possible defense mechanisms

and our on-going research on developing solution techniques to
identify and mitigate location injection attacks. Intuitively, if an ad-
versary has limited privilege to arbitrarily assign locations to fake
users, an adversary needs more efforts and a higher cost to launch
location injection attacks. Therefore, a straight-forward defense ap-
proach would be to identify and blacklist users who do not follow a
normal trajectory. In this case, it is more difficult for an adversary

to reutilize a part of fake users whose previous locations are not
close to the current location of a targeted user. This approach can
significantly mitigate Random Injection attacks. However, it is still
ineffective for the Trajectory-based Injection attacks as fake users
in this attack follow a normal trajectory.

To defend against Trajectory-based Injection attacks, a poten-
tial solution is to detect possible suspicious traveling activities of
the fake users (e.g., circle a location for a long time) and black-
list them. When a user has a suspicious trajectory, the user can
be blacklisted and may not be included in the effective anonymity
set of the cloaked region. However, with such an approach, the
key challenge is to identify and effectively characterize all suspi-
cious traveling activities on a road network which may be difficult
in practice. Also, the detection approach needs to be updated when-
ever a new characteristic of a fake user activity is identified. In ad-
dition, we also note that some authentic users may get blacklisted
as part of false negatives (e.g., an authentic user circles a stadium
to find a parking slot and the detection mechanism may incorrectly
identify him as a fake user.) and will experience some form of de-
nial of service.

In our ongoing and future work, we are working on developing
a trust-based defense mechanism for identifying and blacklisting
suspicious user activities on road networks. The objective of the
solution is to minimize the attack effectiveness by significantly in-
creasing the cost of an effective attack while incurring zero or min-
imal impact on the service quality to the authentic users.
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