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Abstract—Traditional privacy-preserving data disclosure so-
lutions have focused on protecting the privacy of individual’s
information with the assumption that all aggregate (statistical)
information about individuals is safe for disclosure. Such schemes
fail to support group privacy where aggregate information about
a group of individuals may also be sensitive and users of the
published data may have different levels of access privileges
entitled to them. We propose the notion of εg-Group Differential
Privacy that protects sensitive information of groups of individuals
at various defined privacy levels, enabling data users to obtain
the level of access entitled to them. We present a preliminary
evaluation of the proposed notion of group privacy through
experiments on real association graph data that demonstrate the
guarantees on group privacy on the disclosed data.

I. INTRODUCTION

In the age of Big Data, organizations and governments can
obtain rich information and insights by mining large volumes
of data that get generated at an unprecedented velocity, volume
and scale. Data privacy becomes a critical barrier in effectively
leveraging large-scale data analytics due to serious privacy
risks. Publishing and maintaining data that contains sensitive
information about individuals is a challenging problem. Such
sensitive datasets may include private information such as
medical information, patient records, census information or
sales transactions made by customers. Private data often arise
in the form of associations between entities in real world
such as the drugs purchased by patients in a pharmacy store
or the movies rated by viewers in a movie rating database
or the publications authored by authors in a double-blind
review conference [1]. Such associations are best captured as
bipartite association graphs with nodes representing the entities
(e.g., drugs and patients) and the edges correspond to the
associations between them (e.g., Patient Bob purchased the
Insulin drug).

Differential privacy [2], [3] provides a model to quantify
the disclosure risks by ensuring that the published statistical
data does not depend on the presence or absence of an individ-
ual record in the dataset. In the past, data privacy schemes [2],
[3], [4] have largely focused on applying differential privacy
to protect the privacy of individuals’ information while sup-
porting aggregate (statistical) queries on groups of individuals.
Such schemes were developed with an intrinsic assumption
that all aggregate(statistical) information about individuals
are safe for disclosure and therefore, become inapplicable
in scenarios when the aggregate information itself can be

sensitive and needs protection. In general, we consider that
sensitive information may arise as: (i) an individual sensitive
value indicating an individual’s private information (e.g., did
buyer ‘Bob’ purchase the drug ‘insulin’?) or (ii) a statistical
value representing some sensitive statistics about a group/sub-
group of individuals (e.g., the total number of ’Psychiatric’
drugs made by buyers in a given neighborhood represented by
a zipcode). While traditional privacy preserving mechanisms
have solely focused on protecting individual’s sensitive values,
our work takes a new perspective on privacy-preserving data
publishing focusing the problem of privacy protection when
aggregate (statistical) information about a group of individuals
is private and needs protection.

In this paper, we propose the notion of εg-group differen-
tial privacy that provides guaranteed protection of aggregate
information of a group of individuals in a given dataset. We
present a preliminary evaluation of the proposed notion of
group privacy on real association graph data that demonstrate
the guarantees on group privacy on the disclosed data.

II. GROUP DIFFERENTIAL PRIVACY

In this section, we review the definition of conventional
individual differential privacy and present the proposed notion
of εg-group differential privacy.

A. Individual Differential Privacy
Differential privacy is a classical privacy definition [2],

[3] that makes very conservative assumptions about the ad-
versary’s background knowledge and bounds the allowable
error in a quantified manner. In general, differential privacy is
designed to protect a single individual’s privacy by considering
adjacent data sets which differ only in one record. A data set
D can be considered as a subset of records from the universe
U , represented by D ∈ N|U |, where N stands for the non-
negative set and Di is the number of element i in N. For
example, if U = {a, b, c}, D1 = {a, b, c} and D2 = {a, c} can
be represented as {1, 1, 1} and {1, 0, 1} respectively. Based
on this representation, it is appropriate to use l1 distance
(Manhattan distance) to measure the distance between data
sets, which leads us the notion of adjacent data sets as follows.

DEFINITION 1 (ADJACENT DATA SET): Two data sets
D1, D2 are adjacent if ||D1 −D2||1 = 1.

ε - differential privacy is designed to protect the privacy
between adjacent data sets which differ only in one record.
In other words, it protects the individual-level privacy and we
define εi - individual differential privacy as:



DEFINITION 2 (INDIVIDUAL DIFFERENTIAL PRIVACY):
A randomized algorithm A guarantees εi-differential privacy
if for all adjacent data sets D1 and D2 differing by at most
one record, and for all possible results S ⊆ Range(A),

Pr[A(D1) = S] ≤ eεi × Pr[A(D2) = S]

where the probability space is over the randomness of A.

B. Group Differential Privacy

In this work, we extend the conventional notion of in-
dividual differential privacy to protect group privacy at var-
ious group granularity levels. We focus on the scenarios
where one needs to protect group-level privacy in addition
to individual privacy, where a group consists of a set of
individuals. We define the proposed notion of εg - group
differential privacy by considering adjacent data sets from
a group privacy perspective. Specifically, we consider the
universe, U = ∪ni=1Gi is partitioned into n non-overlapping
subgroups G = {G1, ..., Gn} with each record of U joining
only one subgroup Gi ∈ G. Therefore, the overall data set
space can be represented as D = {Di|Di = ∪i∈IGi, Gi ∈
G, I ⊆ {1, ..., n}}. This leads to a number of group-level
adjacent data sets. Formally, group-level adjacent data sets are
defined as:

DEFINITION 3 (GROUP-LEVEL ADJACENT DATA SETS):
Two data sets D1 and D2 are group-level adjacent data sets
of each other if ∃Gi ∈ G such that D1 = D2 ∪Gi.

Thus the notion of εg- group differential privacy based on
group level adjacent datasets is defined as:

DEFINITION 4 (GROUP DIFFERENTIAL PRIVACY): A
randomized algorithm A guarantees εg-group differential
privacy if for all adjacent data sets D1 and D2 differing
by at most one group, Gi ∈ G, and for all possible results
S ⊆ Range(A),

Pr[A(D1) = S] ≤ eεg × Pr[A(D2) = S]

where the probability space is over the randomness of A.

III. GROUP PRIVACY-AWARE DISCLOSURE

In this section, we demonstrate the effectiveness of the
proposed notion of group differential privacy in the context of
bipartite association graphs that capture real world associations
between entities. We apply the notion of group differential
privacy to the disclosure of bipartite graphs with the objective
of releasing different levels of group-level aggregate informa-
tion conforming to group differential privacy guarantees. The
data transformation process consists of two phases. We first
partition the given bipartite graph through several rounds of
specialization to form multiple levels of groups of subgraphs
through Exponential Mechanism [4]. Here, the top level group-
ing consists of all nodes on one side of the graph (left or
right side of the bipartite graph). In the subsequent levels,
the nodes are continuously partitioned into two parts through
an Exponential Mechanism [4]. In the second phase, the
transformation process injects noise to the subgraphs induced
by each group level through a Gaussian Mechanism [3] so that
group differential privacy can be guaranteed.

We present a preliminary experimental evaluation of the
effectiveness of the group differential privacy aware disclosure
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Fig. 1: Impact of εg

scheme using a real association dataset, DBLP (http://dblp.uni-
trier.de/xml/ ), which contains 1295100 authors, 2281341 pa-
pers and 6384117 associations. We partition the entire data set,
represented by a bipartite graph, for nine times to form nine
group levels. Specifically, the group level 9 is the entire dataset
and the group level 1 is the most fine-grained group level. Each
group in level i is split to 4 subgroups in level i−1. Here two
sub groups correspond to the left side nodes of the bipartite
graph and the other two sub groups refer to the right side nodes
of the bipartite graph. The level 0 is the individual user level
where each group contains only one node. Based on a Gaussian
Mechanism [3], different amounts of noises are injected to the
count query result (what is the number of associations in the
dataset?) to protect differential privacy of the different level of
groups, denoted by l9,i, where i ∈ [0, 7]. The performance is
measured by the relative error rate RER = |P−T |

T , where P
and T denotes the perturbed and actual answers respectively.

In Figure 1, we change the privacy budget εg to evaluate
the impact of RER of different group levels. When εg = 0.999,
all the eight levels show small relative error, RER, and level
I9,1 only generates 0.2% RER. The RER increases to 0.33% at
level I9,2 and finally reaches 35% at level I9,7. As can be seen,
the users with lowest privilege, who can only get information
of I9,7, requiring protection of differential privacy of group
level L7, are given highly perturbed information. However, the
RER for I9,6 and I9,5 reduce to 11% and 4% respectively. The
higher the privilege a user has, the more accurate and sensitive
information she can obtain. When εg is decreased, RER for all
the information levels gradually increases. When εg goes down
to 0.1, since the budget is highly restricted, more noise has to
be injected, which makes RER for all the information levels
increase significantly, especially for I9,7 and I9,6. However,
even in this extreme case, the information levels from I9,5
to I9,0 still show acceptable utility with low RER, which
shows that the group differential privacy can be protected for
group levels generated through the specialization, even if the
privacy budget is considerably small. Overall, we infer that
the proposed techniques are effective, scalable and provide the
required guarantees on group privacy.
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