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Abstract—Cloud computing and its pay-as-you-go model con-
tinue to provide significant cost benefits and a seamless service
delivery model for cloud consumers. The evolution of small-scale
and large-scale geo-distributed datacenters operated and man-
aged by individual cloud service providers raises new challenges
in terms of effective global resource sharing and management of
autonomously-controlled individual datacenter resources. Earlier
solutions for geo-distributed clouds have focused primarily on
achieving global efficiency in resource sharing that results in
significant inefficiencies in local resource allocation for individual
datacenters leading to unfairness in revenue and profit earned.
In this paper, we propose a new contracts-based resource sharing
model for federated geo-distributed clouds that allows cloud
service providers to establish resource sharing contracts with
individual datacenters apriori for defined time intervals during
a 24 hour time period. Based on the established contracts,
individual cloud service providers employ a cost-aware job
scheduling and provisioning algorithm that enables tasks to com-
plete and meet their response time requirements. The proposed
techniques are evaluated through extensive experiments using
realistic workloads and the results demonstrate the effectiveness,
scalability and resource sharing efficiency of the proposed model.

Index Terms—federated cloud; geo-distributed cloud; resource
sharing; resource sharing contracts

I. INTRODUCTION

In the age of Big Data, we are witnessing a massive data
growth in scale, volume and velocity [1]. Cloud computing
and its pay-as-you-go model continue to provide significant
cost benefits and a seamless service delivery model for cloud
consumers. The recent growth of large-scale data and the
impact that big data analytics brings to enterprises and enter-
prise customers create an ever-increasing trend for adopting
cloud technologies and moving applications to the cloud [2].
The evolution of small-scale and large-scale geo-distributed
datacenters operated and managed by individual cloud service
providers raises new challenges in terms of effective global
resource sharing and management of autonomously controlled
individual datacenter resources. Individual datacenters have
capacity limitations in terms of available server capacity and
dynamically varying electricity prices that determine the cost
and profitability of the datacenters at various electricity pricing
and workload conditions. Cloud federation [3]–[5] aims at
extending the capacity of the datacenter resources by leverag-
ing resources in remote datacenters that are underutilized or
available at a reduced cost. Thus, the federation can be used
to handle burstiness in workloads, fluctuations in electricity

price and respond to emergency datacenter failures for high
availability applications. It also provides an opportunity for
datacenters to share resources to maximize revenue by lever-
aging remote datacenter resources that may be available at a
lower cost due to dynamic electricity pricing.

Earlier solutions for geo-distributed clouds have focused
primarily on achieving global efficiency in resource sharing.
Several mechanisms have been proposed to achieve higher
utility and overall global profit [6]–[9]. Most geo-distributed
resource allocation techniques proposed in the past [6]–[12]
have considered a completely co-operative model of a shared
pool of geo-distributed resources that are allocated to optimize
the global resource usage cost. Such schemes although try to
optimize the global resource usage, they result in significant
inefficiencies in local resource allocation with respect to the
revenue earned before and after the federation.

In this paper, we propose a new contracts-based resource
sharing model for federated geo-distributed clouds that allows
cloud service providers to establish resource sharing contracts
with individual datacenters apriori for defined time intervals
during a 24 hour time period. Based on the established con-
tracts, individual cloud service providers employ a cost-aware
job scheduling and provisioning algorithm that enables tasks
to complete and meet their response time requirements. We
first develop an optimal contract establishment algorithm that
produces the optimal design of resource sharing contracts for
the proposed model considering the size and type of resources.
Next, we develop an auction-based contract allocation mech-
anism that ensures both fairness and revenue maximization
for the individual datacenter providers. Finally, our proposed
techniques employ efficient job scheduling over the established
contracts to minimize the resource usage cost of individual
cloud service providers. We evaluate the proposed techniques
and the results demonstrate the effectiveness, scalability and
resource sharing efficiency of the proposed model.

The remainder of this paper is organized as follows. Sec-
tion II provides a background of various resource sharing
models for geo-distributed clouds and motivates the proposed
contracts-based model. In Section III, we present our tech-
niques for optimal contracts designing and briefly discusses
the cost-aware resource job-scheduling techniques. Section IV
evaluates the performance of the contracts-based resource
allocation mechanism in comparison with conventional geo-
distributed clouds using real-world datacenter workload traces.
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Section V discusses the related work and we conclude in
Section VI.

II. BACKGROUND & MOTIVATION

In this section, we briefly review the background concepts
related to various models of operating a geo-distributed cloud
and discuss their merits and demerits.

The conventional cloud computing model operates as
“stand-alone” clouds in which every datacenter of the cloud
provider operates on its own. In the “stand-alone” model,
even when a cloud service provider has multiple datacenters,
resources are not shared between them for optimizing the
resource allocation and management. Thus, this centralized
single-site resource management model has the benefit of
easier resource management as each datacenter is managed
independently of each other, providing higher autonomy and
control for individual datacenters. However, this model may
result in sub-optimal resource allocation with respect to global
resource management considering all datacenter resources
jointly in a federated geo-distributed cloud scenario. For
instance, the dynamic electricity price data from National-
Grid [13] suggests that there are significant short-term price
variations even on a single day besides the notable long-term
(e.g., one year) fluctuations: the highest per-day pricing on
a given day can be as much as six times the lowest price
observed on the same day. Thus, “stand-alone” clouds that
have neither complete nor partial co-operation between the
individual datacenters can operate very sub-optimally forcing
individual datacenters to run entire workloads locally at higher
electricity prices even though resources for which may be
available at remote datacenters at a possibly lower electricity
consumption cost.

In contrast to the “stand-alone” model, when computing
resources are shared across data centers, there is an oppor-
tunity for significant improvement in terms of both resource
utilization and minimizing operating cost. To achieve resource
sharing efficiency among multiple geo-distributed datacenters,
several mechanisms have been proposed in the past, which can
be classified into two broad categories:
• Virtual Geo-distributed Clusters: Virtual geo-distributed

clusters provide a mechanism for users to use computing
resources across geo-distributed datacenters as a single
virtual cluster. Virtual geo-distributed clusters help opti-
mize resource management including data placement [10]
[11], service latency [11] [6] [12] and electricity cost [6]
[9].

• Federated Cloud: Federated clouds enable a resource
sharing mechanism for CSPs to share computing re-
sources federated in different datacenters. Here, each CSP
is assumed to manage its datacenters autonomously and
there is often a centralized Cloud Exchange Institution
fetching all the infrastructure information from the data-
centers. It provides a platform for the CSPs to discover
the resources from the members of the federated cloud
which can then be used to accept the dynamically arising
requests [3] [4] [5].

Both the mechanisms we discussed above either enable the
free use of the resources in the pool of the virtual cluster
or through a centralized broker to schedule the jobs across
all the datacenters based on some criteria such as resource
pricing, network delay and cost. Since in this model, all of
the resources in the geo-distributed datacenters can be used
by all the other members or users in the system, we refer to
it as Federated clouds with complete cooperation. However,
this model suffers from a few key drawbacks which include
(i) lack of fairness for datacenters managed by competing
CSPs, i.e., since the global resource optimization objective
of this approach does not lead to locally optimized profits for
individual datacenters, the individual profit of each datacenter
may be even lower than the profits they can get by operating
stand-alone, without participating in the federation process
and (ii) limited scalability - as it is difficult for all the geo-
distributed datacenters to globally synchronize the information
necessary for sharing, provisioning and allocating resources in
a real-time manner for job scheduling.

In this paper, we propose a new contracts-based resource
sharing architecture for CSPs to share resource across the
globally geo-distributed datacenters. The demerits of the com-
plete cooperation model lead us to a more flexible and
limited sharing mechanism that provides a controlled cost-
aware resource sharing opportunity that finds suitable tradeoffs
between traditional clouds without federation and that with
the complete cooperation as illustrated in Figure 1. The figure
shows the architecture with five CSPs (the nodes represent
the CSPs and the edges represent the co-operation among
the CSPs to share resources). Compared with the traditional
“stand-alone” cloud model where each CSP vertex in the
graph representation has an edge connected to itself and the
complete cooperation model which can be represented as a
complete graph where every vertex connects with all the other
vertices, the contracts-based model can be represented by a
partial graph as shown in Figure 1. Here, each CSP is not
required to necessarily share resources with every other CSP
in the federation. Each edge can be a resource sharing contract
between the CSPs to handle the resource allocation problem.
The resource sharing contracts mandate the CSPs to share
the committed resources during the contract time duration
at the negotiated price in the contract. For the proposed
contracts-based resource sharing mechanism, the CSPs design
and trade the resource sharing contracts with each other. The
contract may be predetermined and established apriori before
the effective time. Both the estimated workload pressure and
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Fig. 2. Contracts-based Federated Cloud Example

the fluctuating operating cost are considered in the contract
design during the trading time.

An example of the proposed contracts-based resource shar-
ing mechanism is shown in Figure 2. Here, the negotiations
are based on the demands and supplies from the CSPs and
the contracts are established through a trusted coordinator as
Step 1© illustrated in Figure 2. The resource sharing contracts
could be agreed by the CSPs with the help of the coordinator
to share the committed resources during the time duration at
the negotiated price in the contract as Step 2© illustrated in
Figure 2.

The establishment of the contracts in the proposed resource
sharing mechanism involve two major challenges: the first
involves the design and establishment of the contracts which
can guarantee the individual profit for each CSP; the second
deals with scheduling the jobs using the contracts to maximize
the overall utility and minimize cost.

The design of the contract involves contract establishment
decision and optimization problems as Step 1© and 2© il-
lustrated in Figure 2 requiring the coordinator to decide the
effective contract time, the type and amount of resources, the
price of resources and the agreement on both sides in the
contract.

We present an example in Figure 2 to illustrate how the
contracts-based federated cloud resource sharing operates in
the trading process:

1) As illustrated in Figure 2, CSP2 which has workload
demands beyond its capacity needs 50K servers at least
to run the workload but only has 40K servers, which
means it has to either delay or drop some jobs in the
workload. Alternately, within the federated cloud, it can
lend resources from other CSPs to fulfill the demand.
Here CSP2 lends 10K servers from CSP1 to fulfill the
50K server demand.

2) As described in Figure 2, CSP3 currently has a higher
electricity cost of $120. Even though it has only 10K
workloads, it also wants to outsource some workload to
other CSPs to decrease the operating cost. It therefore
lends 10K servers from CSP1 which has an electricity
cost of $30. The contracts can save at most 75% operating
cost for CSP3.

As discussed above, we find that contracts-based resource
sharing provides additional opportunities and flexibility to

achieve a more efficient resource allocation while minimizing
the cost for each individual datacenter. However, this requires
new techniques for optimal contract establishment and efficient
job scheduling that can realize the full potential of the model.
In the next section, we model the problem formally, analyze
and develop algorithms for contract establishment and discuss
our proposed job scheduling technique to efficiently and cost-
effectively share resources between CSPs.

III. CONTRACTS-BASED RESOURCE MANAGEMENT

Our proposed contracts-based resource management com-
prises of two components namely (i) the model and solution
for establishing contracts among the CSPs and (ii) techniques
for scheduling the jobs using resources in the established
contracts to minimize cost.
A. Resource Sharing Contracts Establishment

We design an auction-based mechanism to model and solve
the contracts establishment problem. Intuitively, the contract
establishment problem fits the essence of auctions which are
efficient to match the demands and supplies in the market [14].
In addition, in situations when every participant is selfish and
aims to maximize its own benefit, auction mechanisms are
very suitable and perform efficiently.

We first model the contracts establishment problem as a
sealed-bid double auction problem. In a sealed-bid double
auction [15], there are three kinds of participants: first are
the buyers who have the demands for the goods; second
are the sellers that can supply the goods; the third is the
auctioneer which is responsible for conducting the auction.
In the contracts establishment problem, the CSPs can be both
buyers and sellers based on their profiles. The coordinator of
the federated cloud which is a trusted third party acts as the
auctioneer. The traded goods in the auction are the rights to
use a certain amount of cloud resource in a certain period
of time (time slot). We use dedicated resource types [16]
[17] to represent a cloud resource. The dedicated resource
can be considered as a bundle of servers isolated from other
resources in the data center. It is defined by k ∈ {1, 2, ...,K}.
Each type-k resource may contain several servers which can
be represented by a list Dk and each server d ∈ Dk has a
capacity V dk and the overall capacity of a type-k resource
is Vk =

∑
d∈Dk

V dk . We note that the resource types are
sorted by the resource capacity which means that if k1 > k2,
Vk1 > Vk2 .

We model the contracts establishment problem using dis-
crete time slots. We use τ ∈ {1, 2, ..., T} to denote the contract
time slots. We consider a federated cloud with N CSPs, each
of which wants to maximize the profit and minimize the cost.
We assume that every CSP operates only one datacenter for
the sake of modeling simplicity. Each CSP i ∈ {1, 2, ..., N}
can be either a buyer or a seller in different time slots for
different types of resources. We assume that each datacenter
has several types of servers. There is a server list Mi(τ)
which contains all the servers controlled by the CSP i in time
slot τ . The server list can be modified in each time slot τ
by adding or removing the servers which are controlled by



the cloud manager of the CSP. These operations simplify the
representation of the resources that change during each time
slot under different contracts established in the time slots.
The capacity of each server m ∈ Mi(τ) is Cmi . Therefore,
the capacity of CSP i in time slot τ can be represented by
Ci(τ) =

∑
m∈Mi(τ)

Cmi . Each CSP serves its customers by
providing resources for running their jobs. The job requests
are sent to the CSP, which are pushed into a job queue. The
jobs in the queue are processed in a FIFO (First In First Out)
manner. We assume that the demand for each time slot τ is
λi(τ) for CSP i which can be determined by predicting the
upcoming workloads through mechanisms such as ARIMA
[18] or Hidden Markov Modeling (HMM) [19]. The profit
earned by the CSPs is computed as the difference between
the sum of the payments from the users and the operating cost
and the penalty. We use %i to denote the unit price charged
from the users for one unit resource. The unit resource denotes
the smallest amount of resource that the users can request
for running their jobs. We assume that the request for the
resources can only be in multiples of unit resources. Therefore,
the capacity for each server Cmi and V dk can also represent
the number of unit resources that can be run on the server.
The trades between the CSPs use dedicated resources such
as [16] [17] as the type of resource. We use Costki (τ) to
denote the operating cost of CSP i to operate and manage the
type-k dedicated resource. For the operating cost, we primarily
consider electricity cost as the dynamic component which
varies in different locations from time to time. Other costs
such as space rental and labour remain relatively fixed for a
long time so they are just included as a constant in Costki (τ).

The contract establishment problem for one particular time
slot τ and a particular type-k resource can be defined as
a sealed-bid double auction in the following manner. Every
CSP bids with a buy bid bki (τ) and a sell bid ski (τ) based
on their bidding strategies we describe later. The auctioneer
considers all the buy and sell bids, Bk(τ) = {b1, b2, ..., bN}
and Sk(τ) = {s1, s2, ..., sN}, to decide the winning buyers
and sellers for a particular time slot and particular resource
type-k. The results for the auction are denoted by Xk

b (τ) =
{xb1 , xb2 , ..., xbN } and Xk

s (τ) = {xs1 , xs2 , ..., xsN }. When
xbi = 1, it means that bki (τ) wins the auction and similarly
xsi = 1 denotes that ski (τ) wins the auction. The clear price
of the auction is denoted by πks (τ) which is the sell price
that decides the payment to the sellers and πkb (τ) which is
the buy price that determines the payment from the buyers.
The contracts are established between the winning buyers and
sellers for the time slot considered in the auction. Thus, the
contracts establishment problem is modeled into an instance
of the sealed-bid double auction problem with the above
descriptions.

We next present the algorithm for determining the winners
in the auction. As shown in Algorithm 1, the winner decision
algorithm is an instance of McAfee auction mechanism [20]
that guarantees both truthfulness and weak budget balance.
Here, truthfulness guarantees that every bidder can maximize
its own utility by only bidding with the true valuation of the

goods and weak budget balance ensures that the auction result
will not cause the auctioneer to subsidize in the auction. The
proposed algorithm (Algorithm 1) first sorts the buy bids in
the descending order and the sell bids in the ascending order.
Then, it finds the break-even index h which is the index of
the last profitable trade such that bh ≥ sh. It then decides the
winners using the McAfee mechanism [20]. We note that the
time complexity of Algorithm 1 is O(N logN). Here the key
time-consuming operation is the initial sorting operation.

Algorithm 1: Algorithm for winner selection
Input : Type of dedicated resource : k;
Time slot: τ ;
Buy bids: Bk(τ) = {b1, b2, ..., bN};
Sell bids: Sk(τ) = {s1, s2, ..., bN};
Output: Clearing Buy Price: πk

b (τ) Clearing Sell Price: πk
s (τ);

Auction decision: Xk
b (τ) = {xb1

, xb2
, ..., xbN

};
Xk

s (τ) = {xs1
, xs2

, ..., xsN
}

1 Sort Bk(τ) in descending order by bi and Sk(τ) in ascending order by si;
2 Initially, set current buy price b as the first buy bid (highest price) in Bk(τ) and

current sell price s as the first sell bid (lowest price) in Sk(τ). current bid
indicator h = 0;

3 while b ≥ s do
4 s = sh;
5 b = bh;
6 h = h+ 1;
7 if h is larger than N break;
8 end
9 ρ = (bh+1 + sh+1)/2;

10 if bh ≥ ρ ≥ sh then
11 Xk

b (τ) = {xb1
= 1, ..., xbh

= 1, xbh+1
= 0, ..., xbN

= 0};
12 Xk

s (τ) = {xs1
= 1, ..., xsh

= 1, xsh+1
= 0, ..., xsN

= 0};
13 π(

sτ) = π
(

b
τ) = ρ;

14 end
15 else
16 Xk

b (τ) = {xb1
= 1, ..., xbh−1

= 1, xbh
= 0, ..., xbN

= 0};
17 Xk

s (τ) = {xs1 = 1, ..., xsh−1
= 1, xsh

= 0, ..., xsN
= 0};

18 πk
s (τ) = sh, πk

b (τ) = bh;
19 end

Next, we present the optimal bidding strategies for the CSPs
in the auction. As the McAfee auction mechanism guarantees
the truthfulness, the optimal strategy for the sellers is to bid at
the true valuation of the goods. The true valuation corresponds
to the true utility of goods in the auction. Here, the utility for
each provider can be defined in two aspects namely the profit
it can gain from running the tasks on the resources purchased
through the contracts or the profit it can gain from selling the
resources to other CSPs in the auction.

First, we define the utility function based on the profit a
provider i can get from renting type-k resources from other
providers to execute jobs that cannot be run locally:

uki (τ) = %imin{Res(λi(τ))− Ci(τ), Vk} − πkb (τ) (1)

where Res() is a function that estimates the resource usage
for the workload. The function Res() is an estimate of the
resource usage which can be computed through estimation
mechanisms such as the ones discussed in [21] [22].

Secondly, even if resources for servicing the workload
demands are available locally but when the operating cost of
the local resources is higher, the CSP may choose to participate
in the auction to increase the utility by running some part



of the workload on other CSPs’ resources to minimize cost.
Under this circumstance, the utility function is:

uki (τ) = Costki (τ)− πkb (τ) (2)

There is only one condition in which the CSPs would want
to sell their resources to others. That is when there are idle
servers. Thus, the utility for a CSP that wants to sell type-k
resources to others can be represented by:

uki (τ) = πks (τ)− Costki (τ) (3)

From the above discussion, we can get the bidding strategies
for the CSPs. The provider i can set the sell bid as:

ski (τ) =


Costki (τ) if Res(λi(τ)) > Ci(τ)− Vk

and Dk ⊂Mi(τ)

NULL otherwise
(4)

where “NULL” represents a null bid. Here, we note that the
condition, Dk ⊂ Mi(τ), checks whether the available server
list, Mi(τ), contains the type-k resource, Dk, or not.

A buyer that wants to buy a type-k dedicated resource
will typically bid in two conditions namely (i) when the pre-
dicted service demand is higher than the capacity of currently
available servers and (ii) another is when the expected local
operation cost is relatively high in the time slot τ . The bidding
strategy can be represented as follows:

bki (τ) =


%imin{Res(λi(τ))− Ci(τ), Vk}

if Res(λi(τ)) > Ci(τ)

Costki (τ) otherwise
(5)

Based on the winner decision algorithm and the bidding
strategies described above, we can summarize the contracts
establishment process as a sequence of four steps for each
type-k dedicated resource for each time slot τ . First, the
CSPs set the buy and sell bids using the bidding strategies
represented in Equation (4) and (5) and send the sealed bids
to the coordinator. Second, the coordinator decides the winners
based on Algorithm 1. Third, the CSPs agree to the contracts
based on the result of the auction. Each contract contains six
attributes: a buyer CSP i, a seller CSP j, the buy price πkb (τ),
the sell price πks (τ), the effective time slot τ and the server
list Dk for the type-k resource agreed in the contract. Finally,
each CSP updates the list of the servers that are controlled
by it, namely Mi(τ), by removing the servers that are sold
to other CSPs in the auction and by adding the servers that
are purchased in the auction. The capacity Ci(τ) is updated
corresponding to the updated value of Mi(τ). The above four
steps are iteratively performed for each time slot τ = 1
to τ = T and for each resource type, type-1 to type-K.
Therefore, for every time slot τ , we have k auctions, one for
each of the type-k resource type in the auction market.

We note that the optimized contracts provide the CSPs with
a set of available remote resources in a cost-effective manner.
However, the individual CSPs need to employ intelligent job
scheduling techniques that understand the cost implications of
the underlying contract structure to effectively leverage the

remote resources available to the CSPs. We discuss them in
the next subsection.
B. Contracts-based Cost-aware scheduling

In this section, we present our proposed contracts-based
cost-aware mechanism (ConBCA) to schedule jobs using the
extended resources provided to the CSPs through the resource
sharing contracts. We note that the contract-based scheduling
problem can be reduced to a bin packing problem, which is
known to be NP-hard [23]. Therefore, we adopt a heuristic
solution for scheduling the jobs based on the contracts using
a real-time scheduling algorithm.

Compared with an intuitive solution which schedules the
jobs to the local resource first (ConBLF), ConBCA acts in
a cost-aware manner: in every time slot t, the scheduler in
each CSP first sorts all the contracts by their unit buy price
and separates them into two sets: lower cost contracts that
have lower cost than the local resource; higher cost contracts
that have higher cost than the local resource. The higher
cost contracts are only used when the workload resource
requirement is beyond the capacity of the previous two sets of
resources. Here, the provider schedules the jobs based on the
priorities by using lower cost contracts before local resources
and uses higher cost contracts only when other resources are
entirely utilized.

IV. EVALUATION
In this section, we present the results of our experimental

study on the performance of our contracts-based resource
management algorithms using simulations with a real-world
datacenters trace.
A. Setups

1) datacenters: We consider that each provider has one
datacenter in our evaluation and we use the default config-
uration shown in Table I for each datacenter. The default

TABLE I
DATACENTERS’ DEFAULT CONFIGURATION

# of providers 25
# of servers / provider 600

# of cores per server 12
MIPS per Core 3067

GB of memory per Server 16
GB of bandwidth per Server 1

PUE 1.2
Maximal response time in SLA (s) 600
Prepaid ratio for reserved resource 0.5

server has the same performance as the IBM server x3550 (2 x
[Xeon X5675 3067 MHz, 6 cores], 16GB). The different load
power consumption of the server provided in [24] is shown
in Table II. The locations of the datacenter are chosen from
Amazon’s AWS datacenters’ locations with the profile of the
timezone and the location.

The price model uses the AWS EC2 On-Demand price
model, which can be estimated by a linear model calculated
by the normal EC2 on-demand instances with the CPU and
memory resources (EC2 Compute Unit (ECU) number and
memory size as the input and we obtain the instance price per
hour). The actually model is: β0+β1 ∗ECU +β2 ∗Memory,



TABLE II
IBM SERVER X3550 XEON X5675 POWER CONSUMPTION WITH DIFFERENT WORKLOAD

Workload 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Power Consumption(Watts) 58.4 98 109 118 128 140 153 170 189 205 222
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Fig. 3. Evaluation results for different number of servers per datacenter

from the linear regression, we get β0 = 0.0005884, β1 =
0.0093460, β2 = 0.0076067. One ECU equals to 1000
MIPS(Million Instructions Per Second) in our definition. The
unit of the memory is gigabyte.

2) Real electricity price: The electricity price is generated
based on the hourly real-time electricity price from [13]. We
get the distribution of the data in 2015 from NationalGrid’s
hourly electricity price and use this price distribution to
simulate the fluctuation of the real electricity market. In our
simulation, we use the distribution of the electricity price
dataset and randomly choose each day’s price from it by
shifting the time based on datacenters’ time zone offsets.

3) Workload: We simulate the workload demands which
are the replay of the Google cluster trace [25]. We choose
Google trace because it provides detailed information of the
CPU usage, memory usage and the duration of the tasks
which are essential in simulating the allocation and scheduling
algorithms. We randomly choose 40% of the tasks in the first
two days’ tasks of the trace to make the number of the tasks’
resource requirements suit the default setting of the datacenter.
In the simulator, we replay the trace to simulate the realistic
workload. Each task in the trace is sent to one of the cloud
service providers with the time zone offsets which are used to
simulate the different peak loads for different geo-locations.

4) Dedicated resource type: The resource type which is
used in the contract trading is the dedicated resource. We
set the dedicated resource types with a hierarchy which
respectively have 256, 128, 64, 32, 16, 8, 4 servers. The types
also can be set to have another amount of resources. The
dichotomous division of each dedicated resource type is for
reducing the computation complexity in the simulation.

5) Algorithms: The reference algorithms include: (i) no
federation (NF), which does not share any resources and
workload with others and the scheduler try their best to
delay the job to decrease the electricity cost; (ii) contract-
based scheduling algorithm with no optimization and use the
local resource first (ConBLF); (iii) contract-based scheduling
algorithm with contract cost-aware (ConBCA) scheduling; (iv)
the last candidate approach for comparison is a less realistic
approach which optimizes the operating cost across all the
datacenters without considering the individual datacenter’s

profits. We refer to it as real-time complete cooperation
scheduling (RT).

6) Metrics: We measure the electricity cost (a significant
component of the operating cost), the success rate and the
utilization of the servers in the first two experimental scenarios
which represents the impact of the amount of resources (num-
ber of servers) and the prediction errors. For the electricity
cost, we compare ConBLF, ConBCA and RT with NF. The
success rate represents the fraction of the successful tasks
which excludes the number of failed tasks. The utilization is
calculated as the average utilization of running servers during
the evaluation time. The idle servers are not included in the
calculation.

B. Experimental Results
For illustrating the performance of our contracts-based

algorithms, we perform three sets of experiments: first, we
study the impact of increasing the number of servers in
the datacenters; second, we add different amount of errors
to the prediction of the workloads and study its impact;
finally, we evaluate the fairness of our algorithm compared
to traditional approaches. For the first two experiments, we
perform and analyze three metrics: the electricity consumption
cost per successful task, the success rate and the average server
utilization. For the fairness evaluation, we compare each CSP’s
profit which is normalized by the profit it can earn when
running the service without cloud federation.

1) Impact of Number of Servers: We test the performance
of our mechanisms with a various number of servers per
datacenter first. The number of servers increases from 200
to 1000 per datacenter in the evaluation. As shown in Figure
3a, the y-axis is the normalized electricity cost per successful
task compared with no federation. The x-axis is the number
of servers per datacenter. We can get that with the ability to
share the resources in the Cloud Federation, the electricity
cost compared with no federation has been optimized from
about 10% to 40% with increasing the number of servers. Our
cost-aware mechanism (ConBCA) gets the result which is near
the result of real-time complete cooperation mechanism (RT).
Compared with ConBLF, ConBCA increases the utilization
of the low-cost contracts which can potentially decrease the
operating cost per successful task. As shown in Figure 3b, the
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(c) Average Server Utilization

Fig. 4. Evaluation results for different average errors of the workload predictions

success rate increases with increasing the number of servers.
The priority of sharing the resources are mainly reflected
when the resources are scarce. The difference can be as much
as more than 10%. If the resource is scarce, the result can
be better. The RT mechanism gets the best result, which is
about 4% better than our mechanism. As shown in Figure 3c,
we can get that the contracts-based mechanisms (ConBLF
and ConBCA) and the RT mechanism get better results than
NF, because the sharing mechanisms make the workload
more balanced among the datacenters. The RT mechanism is
worse than our contracts-based mechanisms, because in our
mechanism, the prediction of the workload takes effect in the
contracts, so the utilization of the resource in the contracts are
increased so as the overall average utilization.

When ConBLF and ConBCA schemes are compared, we
can see that ConBLF performs better as it uses the local
resources which is more available than the resources in
the contract. Here, larger number of resources increases the
possibility to get a better match in the first-fit provisioning
mechanism.

From the above experiments with increasing number of
servers, we can see that contracts-based algorithms perform
significantly better than NF in terms of operating cost, the
success rate and server utilization. The performance is close
to RT in the three observations.

2) Impact of Prediction Errors: We then test the perfor-
mance of our mechanisms with prediction error which is added
to the workload demand prediction. The distribution of the
added error is white noise. The average amount of error is
increased from 10% to 50%. As shown in Figure 4a, the y-
axis is the same as the previous evaluation. The x-axis is the
number of prediction errors. We can get that with the ability to
share the resources in the federated cloud, the electricity cost
compared with NF has been optimized from about 18% to 20%
regardless of the prediction errors. The result shows that the
prediction errors do not influence the result significantly (2%
with 50% added error) because the error only influences the
predicted volume of the workload. As the resource is traded
between the providers with the true value, the error in the
predicted volume does not influence the true value evaluation
in the bid. As shown in Figure 4b, the success rate is also
not influenced significantly by the prediction error. We also
notice in Figure 4c that the influence on utilization is not
visibly significant as well. From the above experiments with
different prediction errors, we can see that our contracts-based
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Fig. 5. The gain or lose ratio of the profit for each individual CSP

mechanisms perform better than NF overall.
3) Fairness: In this set of experiments, we evaluate the

fairness of the approaches by comparing the individual profit
of each CSP with different mechanisms. The result is observed
with the setup of 200 servers per datacenters. The other
settings are the default. As shown in Figure 5, the y-axis
is the gain or loss ratio of the normalized profit which is
the difference between the profit which can be earned with
federated cloud and the profit which can be earned without
cloud federation. When the number is larger than 0, it means
the provider earns more with cloud federation compared to
not using cloud federation. The x-axis represents the index
for each CSP which is sorted by the normalized profit in RT.
From the figure, we can see that, when the federated cloud
is operated by RT, there are eight CSPs (CSP1-8) of the total
25 CSPs losing profits. The mechanisms which are contracts-
based perform better except for CSP15 which gets a little
less (less than 8%) than the profit it can earn without cloud
federation. From the observations above, we can see that the
RT optimizes the operating cost but makes some of the CSPs
lose profits. It demonstrates that our proposed contracts-based
mechanisms perform better than the RT scheme with respect
to fairness.

V. RELATED WORK

Cloud Federation has gained significant focus from the
cloud computing research community in the recent past. Most
of the work related to cloud federation primarily focuses on
two aspects. The first set of research efforts focus on the
architecture and the system model for enabling and deploying
federated clouds and the second class of existing works
optimize the performance of federated cloud through effi-
cient job scheduling, task migration and resource allocation.
Rochwerger et al. [4] proposed an architecture which is called
RESERVOIR to enable cloud providers to deal with each other
in a P2P manner. Buyya et al. [5] proposed a centralized



architecture named InterCloud which provides a market for
the CSPs or cloud brokers to share their resources. Carlini
et al. [3] proposed a centralized architecture providing single
sign-on for building the federated cloud.

Li et al. [26] proposed a model which makes it possible
for a cloud federation to consider both the workload and the
electricity price and maximize the profit through an auction
mechanism. Xu et al. [6] proposed a technique that com-
bines the alternating direction method of multipliers (ADMM)
method with the problem of how to place cloud services with
minimized electricity cost and latency to the client. However,
the work is based on the geo-distributed cloud assumption
which assumes that all the services’ and users’ information
can be obtained by the provider, which is not applicable
for generic federated clouds with CSPs having competing
interests, such as the one considered in our work. To the best
of our knowledge, the work proposed in this paper is the first
research effort aimed at developing a contracts-based approach
to allocating resources in a federated cloud environment. As
shown in the experimental evaluation, the proposed model
achieves a high degree of fairness compared to existing models
while simultaneously achieving high performance in terms of
success rate and resource utilization.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a contracts-based mechanism for

resource sharing between CSPs in a federated cloud. We de-
velop an auction-based mechanism for contract establishment
and a cost-aware scheduling technique that maximizes the
local profits of the CSPs while meeting the individual job
requirements. We evaluate the performance of the proposed
approach using a trace-driven simulation study with realistic
workload traces and electricity pricing. The contracts-based
solution achieves good performance and performs significantly
better than the traditional model in terms of fairness while
achieving similar operational costs and success rate properties
as existing methods.

In the future, we plan to address a few limitations of our
current work. First, in addition to computationally intensive
tasks considered in this work, we plan to consider data
intensive workloads in the resource allocation model. With
data-intensive workloads, job migration across datacenters will
become expensive. Such scenarios demand a migration cost-
aware approach to workload offloading and scheduling over
the core contracts establishment framework presented in this
work. Another direction of our future work will focus on
considering additional SLA requirements in the resource allo-
cation framework including additional performance, reliability
and fault-tolerant requirements.
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