IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

1265

Cost-Effective Resource Provisioning for
MapReduce in a Cloud

Balaji Palanisamy, Member, IEEE, Aameek Singh, Member, IEEE, and Ling Liu, Senior Member, IEEE

Abstract—This paper presents a new MapReduce cloud service model, Cura, for provisioning cost-effective MapReduce services in a
cloud. In contrast to existing MapReduce cloud services such as a generic compute cloud or a dedicated MapReduce cloud, Cura has a
number of unique benefits. First, Cura is designed to provide a cost-effective solution to efficiently handle MapReduce production
workloads that have a significant amount of interactive jobs. Second, unlike existing services that require customers to decide the
resources to be used for the jobs, Cura leverages MapReduce profiling to automatically create the best cluster configuration for the
jobs. While the existing models allow only a per-job resource optimization for the jobs, Cura implements a globally efficient resource
allocation scheme that significantly reduces the resource usage cost in the cloud. Third, Cura leverages unique optimization
opportunities when dealing with workloads that can withstand some slack. By effectively multiplexing the available cloud resources
among the jobs based on the job requirements, Cura achieves significantly lower resource usage costs for the jobs. Cura’s core
resource management schemes include cost-aware resource provisioning, VM-aware scheduling and online virtual machine
reconfiguration. Our experimental results using Facebook-like workload traces show that our techniques lead to more than 80 percent
reduction in the cloud compute infrastructure cost with upto 65 percent reduction in job response times.

Index Terms—MapReduce, cloud computing, cost-effectiveness, scheduling

1 INTRODUCTION

LOUD computing and its pay-as-you-go cost structure

have enabled hardware infrastructure service pro-
viders, platform service providers as well as software and
application service providers to offer computing services on
demand and pay per use just like how we use utility today.
This growing trend in cloud computing, combined with the
demands for Big Data and Big Data analytics, is driving the
rapid evolution of datacenter technologies towards more
cost-effective, consumer-driven and technology agnostic
solutions. The most popular approach towards such big
data analytics is using MapReduce [1] and its open-source
implementation called Hadoop [15]. Offered in the cloud, a
MapReduce service allows enterprises to analyze their data
without dealing with the complexity of building and man-
aging large installations of MapReduce platforms. Using
virtual machines (VMs) and storage hosted by the cloud,
enterprises can simply create virtual MapReduce clusters to
analyze their data.

In this paper, we discuss the cost-inefficiencies of the
existing cloud services for MapReduce and propose a cost-
effective resource management framework called Cura that
aims at a globally optimized resource allocation to minimize
the infrastructure cost in the cloud datacenter. We note that

e B. Palanisamy is with the School of Information Sciences, University of
Pittsburgh, Pittsburgh, PA. E-mail: bpalan@pitt.edu.

e A. Singh is with Storage Systems, IBM Almaden Research Center 650,
Harry Road, San Jose, CA. E-mail: Aameek.Singh@us.ibm.com.

o L. Liu is with the College of Computing, Georgia Institute of Technology,
Atlanta, GA. E-mail: lingliu@cc.gatech.edu.

Manuscript received 1 July 2013; revised 2 Apr. 2014; accepted 3 Apr. 2014.
Date of publication 24 Apr. 2014; date of current version 8 Apr. 2015.
Recommended for acceptance by |. Wang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2014.2320498

the existing cloud solutions for MapReduce work primarily
based on a per-job or per-customer optimization approach
where the optimization and resource sharing opportunities
are restricted within a single job or a single customer. For
instance, in existing dedicated MapReduce cloud services
such as Amazon Elastic MapReduce [13], customers buy
on-demand clusters of VMs for each job or a workflow
and once the MapReduce job (or workflow) is submitted,
the cloud provider creates VMs that execute that job and
after job completion the VMs are deprovisioned. Here the
resource optimization opportunity is restricted to the per-
job level. Alternately, one can lease dedicated cluster
resources from a generic cloud service like Amazon Elastic
Compute Cloud [14] and operate MapReduce on them as
if they were using a private MapReduce infrastructure.
While this approach enables resource optimization at the
per-customer level, we argue that in such an approach, the
size of the leased dedicated clusters needs to be chosen
based on the peak workload requirements of each customer
and hence, the leased clusters are under-utilized for a large
fraction of the time leading to higher costs. Cura on the
other hand is designed to provide a cost-effective solution
to a wide range of MapReduce workloads with the follow-
ing goals in mind:

First, we observe that existing solutions are not cost-
effective to deal with interactive MapReduce workloads
that consist of a significant fraction of short running jobs
with lower latency requirements. A recent study on the
Facebook and Yahoo production workload traces [29], [8],
[34] reveals that more than 95 percent of their production
MapReduce jobs are short running jobs with an average
running time of 30 sec. Unlike existing per-job services that
require VMs to be created afresh for each submitted job,
Cura deals with such interactive workloads using a secure
instant VM allocation scheme that minimizes the job

1045-9219 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1266

latency. In addition, Cura results in higher cost-effective-
ness compared to an owned cluster in a generic compute
cloud that has high costs due to low utilization.

Second, as discussed earlier, existing cloud solutions are
largely optimized based on per-job and per-customer optimi-
zation which leads to poor resource utilization and higher
cost. Additionally, their usage model requires users to figure
out the complex job configuration parameters (e.g. type of
VMs, number of VMs and MapReduce configuration like
number of mappers per VM etc.) that have an impact on the
performance and thus cost of the job. In contrast to existing
cloud systems, Cura leverages MapReduce profiling to auto-
matically create the best cluster configuration for the jobs and
tries to optimize the resource allocation in a globally cost-
effective fashion. Hence, Cura results in requiring much lesser
cloud resources than that consumed by the current models.

Finally, Cura’s usage model and techniques achieve
higher service differentiation than existing models as Cura
incorporates an intelligent multiplexing of the shared cloud
resources among the jobs based on job requirements. Map-
Reduce workloads often have a large number of jobs that do
not require immediate execution, rather feed into a sched-
uled flow—e.g. MapReduce job analyzing system logs for a
daily/weekly status report. By leveraging such opportuni-
ties and by accurately understanding each job’s perfor-
mance requirements, Cura multiplexes the resources for
significant cost savings.

To the best of our knowledge, Cura is the first effort that
is aimed at developing a novel usage model and resource
management techniques for achieving global resource opti-
mization in the cloud for MapReduce services. Cura uses a
secure instant VM allocation scheme that helps reduce the
response time for short jobs by up to 65 percent. By leverag-
ing MapReduce profiling, Cura tries to optimize the global
resource allocation in the cloud by automatically creating
the best cluster configuration for the jobs. Cura’s core
resource management techniques include cost-aware
resource provisioning, intelligent VM-aware scheduling
and online VM reconfiguration. Overall, in addition to the
response time savings, Cura results in more than 80 percent
savings in the cloud infrastructure cost. The rest of the
paper is organized as follows. In Section 2, we present
Cura’s cloud service model and system architecture. Section
3 discusses the technical challenges of Cura and presents
Cura’s resource management techniques namely VM-aware
scheduling and online VM reconfiguration including a for-
mal discussion of Cura’s scheduling and reconfiguration
problems. We present the experimental evaluation of Cura
in Section 4. We discuss related work in Section 5 and con-
clude in Section 6.

2 CURA: MODEL AND ARCHITECTURE

In this section, we present the cloud service model and sys-
tem architecture for Cura.

2.1 Cloud Operational Model

Table 1 shows possible cloud service models for providing
MapReduce as a cloud service. The first operational model
(immediate execution) is a completely customer managed
model where each job and its resources are specified by the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

TABLE 1
Cloud Operational Models

Model Optimization Providerrisk Potential benefits
Immediate execution Per-job Limited Low

Delayed start Per-job Moderate Low —Moderate
Cloud managed Global High High

customer on a per-job basis and the cloud provider only
ensures that the requested resources are provisioned upon
job arrival. Many existing cloud services such as Amazon
Elastic Compute Cloud [15], Amazon Elastic MapReduce
[14] use this model. This model has the lowest rewards since
there is lack of global optimization across jobs as well as
other drawbacks discussed earlier. The second possible
model (delayed start) [44] is partly customer-managed and
partly cloud-managed model where customers specify
which resources to use for their jobs and the cloud provider
has the flexibility to schedule the jobs as long as they begin
execution within a specified deadline. Here, the cloud pro-
vider takes slightly greater risk to make sure that all jobs
begin execution within their deadlines and as a reward can
potentially do better multiplexing of its resources. However,
specifically with MapReduce, this model still provides low
cost benefits since jobs are being optimized on a per-job
basis by disparate users. In fact customers in this model
always tend to greedily choose low-cost small cluster con-
figurations involving fewer VMs that would require the job
to begin execution almost immediately. For example, con-
sider a job that takes 180 minutes to complete in a cluster of
two small instances but takes 20 minutes to complete using
a cluster of six large instances." Here if the job needs to be
completed in more than 180 minutes, the per-job optimiza-
tion by the customer will tend to choose the cluster of two
small instances as it has lower resource usage cost com-
pared to the six large instance cluster. This cluster configu-
ration, however, expects the job to be started immediately
and does not provide opportunity for delayed start. This
observation leads us to the next model. The third model—
which is the subject of this paper—is a completely cloud
managed model where the customers only submit jobs and
specify job completion deadlines. Here, the cloud provider
takes greater risk and performs a globally optimized
resource management to meet the job SLAs for the custom-
ers. Typically, the additional risks here include the responsi-
bilities of meeting additional SLA requirements such as
executing each job within its deadline and managing the
allocation of resources for each job. While the conventional
customer-optimized cloud model requires only VMs to be
provisioned based on demand, a completely cloud man-
aged model introduces additional role on the cloud pro-
vider for resource management. For instance, an inefficient
allocation of resources to a particular job can result in higher
cost for the cloud provider. Therefore, this model brings
higher risk to the cloud while it has high potential cost bene-
fits. Similar high-risk high-reward model is the database-as-
a-service model [10], [11], [12] where the cloud provider
estimates the execution time of the customer queries and

1. Example adapted from the measurements in Herodotou et al.
paper [25].

PALANISAMY ET AL.: COST-EFFECTIVE RESOURCE PROVISIONING FOR MAPREDUCE IN A CLOUD

?°)A

(o0t
o°‘9“

0 /A \\

Cura’s Resource Managernerlt

Mmllenue Performance®
Jol:‘ predictions

Fig. 1. Cura: System architecture.

performs resource provisioning and scheduling to ensure
that the queries meet their response time requirements. As
MapReduce also lends itself well to prediction of execution
time [4], [5], [24], [27], [28], we have designed Cura on a sim-
ilar model. Another recent example of this model is the
Batch query model in Google’s Big Query cloud service [34]
where the cloud provider manages the resources required
for the SQL-like queries so as to provide a service level
agreement of executing the query within 3 hours.

2.2 System Model: User Interaction

Cura’s system model significantly simplifies the way users
deal with the cloud service. With Cura, users simply submit
their jobs (or composite job workflows) and specify the
required service quality in terms of response time require-
ments. After that, the cloud provider has complete control
on the type and schedule of resources to be devoted to that
job. From the user perspective, the deadline will typically
be driven by their quality of service requirements for the
job. As MapReduce jobs perform repeated analytics tasks,
deadlines could simply be chosen based on those tasks (e.g.
8 AM for a daily log analysis job). For ad-hoc jobs that are
not run per a set schedule, the cloud provider can try to
incentivize longer deadlines by offering to lower costs if
users are willing to wait for their jobs to be executed.” How-
ever, this model does not preclude an immediate execution
mode in which case the job is scheduled to be executed at
the time of submission, similar to existing MapReduce
cloud service models.

Once a job is submitted to Cura, it may take one of the
two paths (Fig. 1). If a job is submitted for the very first
time, Cura processes it to be profiled prior to execution as
part of its profile and analyze service. This develops a perfor-
mance model for the job in order to be able to generate pre-
dictions for its performance later on. When making
scheduling decisions, performance predictions in terms of
execution time are made based on the input dataset size,
VM types, cluster sizes and job parameters. This model is
used by Cura in optimizing the global resource allocation.
MapReduce profiling has been an active area of research [4],
[5], [24] and open-source tools such as Starfish [24] are avail-
able to create such profiles. Recent work had leveraged
MapReduce profiling for cloud resource management and
showed that such profiles can be obtained with very high

2. Design of a complete costing mechanism is beyond the scope of
this work.

1267

Pool of extra
large instances

a\

Pool of Large
instances

Pool of small
instances

Fig. 2. VM pool.

accuracy with less than 12 percent error rate for the pre-
dicted running time [27]. Here we would like to note that
though Cura’s architecture and techniques may apply to
other HPC scheduling problems beyond just Map Reduce,
we have considered dedicated MapReduce clouds as the
target scenario of Cura for the wide popularity of MapRe-
duce and the availability of several open source profile and
analyze tools for MapReduce.

2.3 System Architecture
The profile and analyze service is used only once when a cus-
tomer’s job first goes from development-and-testing into
production in its software life cycle. For subsequent instan-
ces of the production job, Cura directly sends the job for
scheduling. Since typically production jobs including inter-
active or long running jobs do not change frequently (only
their input data may differ for each instance of their execu-
tion), profiling will most often be a one-time cost. Further,
from an architectural standpoint, Cura users may even
choose to skip profiling and instead provide VM type, clus-
ter size and job parameters to the cloud service similar to
existing dedicated MapReduce cloud service models like
[14]. Jobs that skip the one-time profile and analyze step will
still benefit from the response time optimizations in Cura
described below, however, they will fail to leverage the ben-
efits provided by Cura’s global resource optimization strate-
gies. Jobs that are already profiled are directly submitted to
the Cura resource management system.

Cura’s resource management system is composed of the
following components:

2.3.1 Secure Instant VM Allocation

In contrast to existing MapReduce services that create VMs
on demand, Cura employs a secure instant VM allocation
scheme that reduces response times for jobs, especially signif-
icant for short running jobs. Upon completion of a job’s exe-
cution, Cura only destroys the Hadoop instance used by the
job (including all local data) but retains the VM to be used for
other jobs that need the same VM configuration. For the new
job, only a quick Hadoop initialization phase is required
which prevents having to recreate and boot up VMs.> Opera-
tionally, Cura creates pools of VMs of different instance types
as shown in Fig. 2 and dynamically creates Hadoop clusters

3. Even with our secure instant VM allocation technique data still
needs to be loaded for each job into its HDFS, but it is very fast for small
jobs as they each process small amount of data, typically less than 200
MB in the Facebook and Yahoo workloads [30].

1268

on them. By default, Cura runs the maximum number of pre-
created VMs in the cloud (limited by the number of servers)
so that all workload can be served instantly.

When time sharing a VM across jobs it is important to
ensure that an untrusted MapReduce program is not able to
gain control over the data or applications of other custom-
ers. Cura’s security management is based on SELinux [20]
and is similar to that of the Airavat system proposed in [19]
that showed that enforcing SELinux access policies in a
MapReduce cloud does not lead to performance overheads.
While Airavat shares multiple customer jobs across the
same HDFS, Cura runs only one Hadoop instance at a time
and the HDFS and MapReduce framework is used by only
one customer before it is destroyed. Therefore, enforcing
Cura’s SELinux policies does not require modifications to
the Hadoop framework and requires creation of only two
SELinux domains, one trusted and the other untrusted. The
Hadoop framework including the HDFS runs in the trusted
domain and the untrusted customer programs run in the
untrusted domain. While the trusted domain has regular
access privileges including access to the network for net-
work communication, the untrusted domain has very lim-
ited permissions and has no access to any trusted files and
other system resources. An alternate solution for Cura’s
secure instant VM allocation is to take VM snapshots upon
VM creation and once a customer job finishes, the VM can
revert to the old snapshot. This approach is also signifi-
cantly faster than destroying and recreating VMs, but it can
however incur noticeable delays in starting a new job before
the VM gets reverted to a secure earlier snapshot.

Overall this ability of Cura to serve short jobs better is a
key distinguishing feature. However as discussed next,
Cura has many other optimizations that benefit any type of
job including long running batch jobs.

2.3.2 Job Scheduler

The job scheduler at the cloud provider forms an integral
component of the Cura system. Where existing MapReduce
services simply provision customer-specified VMs to exe-
cute the job, Cura’s VM-aware scheduler (Section 3.1) is
faced with the challenge of scheduling jobs among available
VM pools while minimizing global cloud resource usage.
Therefore, carefully executing jobs in the best VM type and
cluster size among the available VM pools becomes a crucial
factor for performance. The scheduler has knowledge of the
relative performance of the jobs across different cluster con-
figurations from the predictions obtained from the profile
and analyze service and uses it to obtain global resource
optimization.

2.3.3 VM Pool Manager

The third main component in Cura is the VM Pool Manager
that deals with the challenge of dynamically managing the
VM pools to help the job scheduler effectively obtain effi-
cient resource allocations. For instance, if more number of
jobs in the current workload require small VM instances
and the cloud infrastructure has fewer small instances, the
scheduler will be forced to schedule them in other instance
types leading to higher resource usage cost. The VM pool
manager understands the current workload characteristics

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

of the jobs and is responsible for online reconfiguration
of VMs for adapting to changes in workload patterns
(Section 3.2). In addition, this component may perform fur-
ther optimization such as power management by suitably
shutting down VMs at low load conditions.

2.4 Deployment Challenges and Practical Use

In this section, we discuss some basic challenges in deploy-
ing a globally optimized resource management model like
Cura in a commercial cloud setting. First of all, a global opti-
mization model such as Cura brings additional responsibil-
ity to the cloud provider in meeting the SLA requirements
for the jobs and to the customers. Though the proposed
model is not a must for cloud service providers to function,
they can obtain significant benefits by offering such a
model. While this model brings attractive cost benefits to
both customers and cloud providers, we would need appro-
priate incentive models for both cloud providers and cus-
tomers in order to function symbiotically. The emergence of
new cloud managed models in commercial services (such
as Google Big Query [34]) suggests that the additional man-
agement overhead on the cloud providers might be quite
practical given the wide range of cost benefits such models
bring. Motivated by the huge benefits of global resource
management, similar models have also been proposed in
the context of database-as-a-service [10], [11], [12] and have
been shown to be practical. Another key challenge in glob-
ally optimized resource management is that the scheduling
and resource allocation techniques need to be highly scal-
able and efficient to work in even scenarios with thousands
of servers and with tens of thousands of customer jobs. This
calls for highly scalable scheduling techniques and we
believe there is many possible future work along this direc-
tion. Finally, we also believe that resource pricing in a glob-
ally optimized cloud can be quite a challenge and needs
attention from both business perspective as well as from the
resource management perspective. When pricing models
are closely integrated with resource management techni-
ques, there are huge opportunities for scheduling techni-
ques where resource management decisions are influenced
by intimately coupled pricing models. We believe such
sophisticated models will be interesting extensions to the
Cura global resource management model.

3 CuURA: RESOURCE MANAGEMENT

In this section, we describe Cura’s core resource manage-
ment techniques. We first present Cura’s VM-aware job
scheduler that intelligently schedules jobs within the avail-
able set of VM pools. We then present our reconfiguration-
based VM pool manager that dynamically manages the VM
instance pools by adaptively reconfiguring VMs based on
current workload requirements.

3.1 VM-Aware Scheduling

The goal of the cloud provider is to minimize the infra-
structure cost by minimizing the number of servers
required to handle the data center workload. Typically
the peak workload decides the infrastructure cost for the
data center. The goal of Cura VM-aware scheduling is to
schedule all jobs within available VM pools to meet their

PALANISAMY ET AL.: COST-EFFECTIVE RESOURCE PROVISIONING FOR MAPREDUCE IN A CLOUD

deadlines while minimizing the overall resource usage in
the data center reducing this total infrastructure cost. As
jobs are incrementally submitted to the cloud, scheduling
requires an online algorithm that can place one job at a
time on an infrastructure already executing some jobs. To
better understand the complexity of the problem, we first
analyze an offline version which leads us to the design of
an online scheduler.

3.1.1 Offline VM-Aware Scheduling

In the offline VM-aware scheduling problem, we assume
that information about the jobs, their arrival time and dead-
lines are known apriori and the goal of the algorithm is to
schedule all jobs to meet their deadline by appropriately
provisioning VM clusters and to minimize the overall
resource usage in the cloud. We assume each job, J; is pro-
filed when it first goes to production and based on the pro-
file it has a number of predictions across various cluster
configurations, C*" in terms of instance types denoted by k
and number of VMs denoted by n. Let tymiva(J;) and
tdeadiine(J;) denote the arrival time and deadline of job, J;
respectively. The running time of the job, J; using the clus-
ter configuration, C*" is given by t,,,(J;,C*") and it
includes both execution time and the time for loading data
into the HDFS. Cost(J;, C*") represents the resource usage
cost of scheduling job, J; using the cluster configuration,
C*". Precisely, the cost, Cost(J;, C*") represents the product
of the number of physical servers required to host the vir-
tual cluster, C*" and the running time of the job,
trun (Ji, CF1). If Ry, represents number of units of physical
resources in VM type, k and if each physical server has M
units of physical resources®, the resource usage cost can be
computed as:

, R
Cost(J;, C*m) = trun (Ji, CF7) x 7\4 k)

Handling prediction errors. Additionally, ¢,,,(J;, C”“")
includes an error bound in the prediction to ensure that the
job will complete within its deadline even when there is pre-
diction error. This error can also account for deviations in
predicted running time due to interference among multiple
MapReduce jobs when they execute in parallel. If
tactuatrun (Ji, C¥") represents the actual running time and if
terror(Jis Crp) represents the error bound in the predicted
running time, we have

trun(Ji, C™") = tactuatrun (Ji C*") + tepror(Ji, CM).

This conservative estimate of tmn(,],;,Ck’") guarantees that
the job completes execution even when there is prediction
error.

Let tgq¢(J;) be the actual starting time of the job, J; and
therefore the end time of job, J; is given by

4. Though we present a scalar capacity value, VM resources may
have multiple dimensions like CPU, memory and disk. To handle
this, our model can be extended to include a vector of resources or
compute dimensions can be captured in a scalar value, e.g. the volume
metric [13].

1269

tend(Ji) = tstart(']i) + Z qun X tmm(‘]ia Ck’n)>
k,n

where X" is a Boolean variable indicating if job, J; is
scheduled using the cluster configuration, C*" and

Vi, Y X[=1

kn

In order to ensure that all jobs get completed within their
deadlines, we have

Via tcnd(Ji) S tdcudli?Lc(Ji)~

The sum of concurrent usage of VMs among the running
jobs is also constrained by the number of VMs, V;, in the VM
pools where k represents the VM type. If S! is a Boolean var-
iable indicating if job, J; is executing at time, ¢, we have

St _ 1 if tstart (Jl) S t S tend(Ji)
¢ 0 otherwise

AT <S,f XY (X x n)> < V.

n

With the above constraints ensuring that the jobs get sched-
uled to meet deadlines, now the key optimization is to mini-
mize the overall resource usage cost of all the jobs in the
system.

Overallcost = min Z Cost(J;, CF") x XFn,

i,kn

An optimal solution for this problem is NP-Hard with a
reduction from the known NP-Hard multi bin-packing
problem [21] with additional job moldability constraints.
Therefore, we use a heuristics based VM-aware scheduler
which is designed to work in an online fashion.

3.1.2 Online VM-Aware Scheduler

Given VM pools for each VM instance type and continually
incoming jobs, the online VM-aware scheduler decides (a)
when to schedule each job in the job queue, (b) which VM
instance pool to use and (c) how many VMs to use for the
jobs. The scheduler also decides best Hadoop configuration
settings to be used for the job by consulting the profile and
analyze service.

Depending upon deadlines for the submitted jobs, the
VM-aware scheduler typically needs to make future reser-
vations on VM pool resources (e.g. reserving 100 small
instances from time instance 100 to 150). In order to main-
tain the most agility in dealing with incrementally incoming
jobs and minimizing the number of reservation cancella-
tions, Cura uses a strategy of trying to create minimum
number of future reservations without under-utilizing any
resources. For implementing this strategy, the scheduler
operates by identifying the highest priority job to schedule at
any given time and creates a tentative reservation for
resources for that job. It then uses the end time of that job’s
reservation as the bound for limiting the number of reserva-
tions i.e. jobs in the job queue that are not schedulable (in
terms of start time) within that reservation time window are

1270

not considered for reservation. This ensures that we are not
unnecessarily creating a large number of reservations which
may need cancellation and rescheduling after another job
with more stringent deadline enters the queue.

A job J; is said to have higher priority over job J; if the
schedule obtained by reserving job J; after reserving job J;
would incur higher resource cost compared to the schedule
obtained by reserving job J; after reserving J;. The highest
priority job is chosen such that it will incur higher overall
resource usage cost if the highest priority job is deferred as
compared to deferring any other job. Concretely, if
Cost(J;, J;) denotes the resource usage cost of the schedule
obtained by reserving job J; after reserving job J; and Jlist
represents the job queue, then the highest priority job is cho-
sen as the job J; that maximizes the following.

COSt(Jj, Jl) - COSt(Jl', Jj)

Jjedlist

For a job, the least cost cluster configuration (VM type, num-
ber of VMs) at a given time is found based on the perfor-
mance predictions developed for the job during the profile
and analyze phase. It is essentially the lowest cost cluster
configuration that can meet the jobs deadline and for which
resources are available.

For each VM pool, the algorithm picks the highest prior-
ity job, Jyrior in the job queue and makes a reservation for it
using the cluster configuration with the lowest possible
resource cost at the earliest possible time based on the per-
formance predictions obtained from the profile and analyze
service. Note that the lowest resource cost cluster configura-
tion need not be the job’s optimal cluster configuration (that
has lowest per-job cost). For instance, if using the job’s opti-
mal cluster configuration at the current time cannot meet the
deadline, the lowest resource cost cluster will represent
the one that has the minimal resource usage cost among all
the cluster configurations that can meet the job’s deadline.

Once the highest priority job, J,, is reserved for all VM
pools, the reservation time windows for the corresponding
VM pools are fixed. Subsequently, the scheduler picks the
next highest priority job in the job queue by considering pri-
ority only with respect to the reservations that are possible
within the current reservation time windows of the VM
pools. The scheduler keeps on picking the highest priority job
one by one in this manner and tries to make reservations to
them on the VM pools within the reservation time window.
Either when all jobs are considered in the queue and no more
jobs are schedulable within the reservation time window or
when the reservations have filled all the resources until the
reservation time windows, the scheduler stops reserving.

Then at each time instance, the scheduler picks the reser-
vations for the current time and schedules them on the VM
pools by creating Hadoop clusters of the required sizes in the
reservation. After scheduling the set of jobs that have reser-
vation starting at the current time, the scheduler waits for
one unit of time and considers scheduling for the next time
unit. If no new jobs arrived within this one unit of time, the
scheduler can simply look at the reservations made earlier
and schedule the jobs that are reserved for the current time,
however, if some new jobs arrived within the last one unit of
time, then the scheduler needs to check if some of the newly

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

arrived jobs have higher priority over the reserved jobs and
in that case, the scheduler may require to cancel some exist-
ing reservations to reserve some newly arrived jobs that
have higher priority over the ones in the reserved list.

If the scheduler finds that some newly arrived jobs take
priority over some jobs in the current reservation list, it first
tries to check if the reservation time window of the VM pools
need to be changed. It needs to be changed only when some
newly arrived jobs take priority over the current highest pri-
ority job of the VM pools that decides the reservation time
window. If there exists such newly arrived jobs, the algo-
rithm cancels all reserved jobs and moves them back to the
job queue and adds all the newly arrived jobs to the job
queue. It then picks the highest priority job, J,., for each
VM pool from the job queue that decides the reservation
time window for each VM pool. Once the new reservation
time window of the VM pools are updated, the scheduler
considers the other jobs in the queue for reservation within
the reservation time window of the VM pools until when
either all jobs are considered or when no more resources are
left for reservation. In case, the newly arrived jobs do not
have higher priority over the time window deciding jobs but
have higher priority over some other reserved jobs, the
scheduler will not cancel the time window deciding reserva-
tions. However, it will cancel the other reservations and
move the jobs back to the job queue along with the new jobs
and repeat the process of reserving jobs within the reserva-
tion time windows from the job queue in the decreasing
order of priority. For a data center of a given size, assuming
constant number of profile and analyze predictions for each
job, it can be shown that the algorithm runs in polynomial
time with O(n?) complexity. We present a complete pseudo-
code for this VM-aware scheduler in Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2014.2320498.

While even a centralized VM-aware scheduler scales well
for several thousands of servers with tens of thousands of
jobs, it is also straight forward to obtain a distributed imple-
mentation to scale further. As seen from the pseudocode,
the main operation of the VM-aware scheduler is finding
the highest priority job among the n jobs in the queue based
on pairwise cost comparisons. In a distributed implementa-
tion, this operation can be distributed and parallelized so
that if there are n jobs in the queue, the algorithm would
achieve a speed up of z with = parallel machines, each of
them performing 2 pairwise cost comparisons.

Fig. 3a shows an example VM-aware schedule obtained
for 15 jobs using 40 VMs in each VM type, VM-1, VM-2 and
VM-3. Here we assume that jobs 1,2, 5, 6,7, 8,9, 10, 11, 13,
15 have their optimal cluster configuration using VM-1 and
jobs 3, 12, and 14 are optimal with VM-2 and job 4 is optimal
with VM-3. Here, the VM-aware scheduler tries its best
effort to minimize the overall resource usage cost by provi-
sioning the right jobs in the right VM types and using the
minimal cluster size required to meet the deadline require-
ments. However, when the optimal choice of the resource is
not available for some jobs, the scheduler considers the next
best cluster configuration and schedules them in a cost-
aware manner. A detailed illustration of this example with
cost comparisons is presented in Appendix B, available in
the online supplemental material.

PALANISAMY ET AL.: COST-EFFECTIVE RESOURCE PROVISIONING FOR MAPREDUCE IN A CLOUD

No of VM -1
No of VM -2

0 200 400 600 800 o
Time units

600 800 0 200 400 600 800

200 400

Time units

(a) VM-aware schedule

Time units

Fig. 3. Scheduling in Cura.

3.2 Reconfiguration-Based VM Management
Although the VM-aware scheduler tries to effectively mini-
mize the global resource usage by scheduling jobs based on
resource usage cost, it may not be efficient if the underlying
VM pools are not optimal for the current workload charac-
teristics. Cura’s reconfiguration-based VM manager under-
stands the workload characteristics of the jobs as an online
process and performs online reconfiguration of the underly-
ing VM pools to better suit the current workload. For exam-
ple, the VM pool allocation shown in Fig. 2 can be
reconfigured as shown in Fig. 4 to have more small instan-
ces by shutting down some large and extra large instances if
the current workload pattern requires more small instances.
The reconfiguration-based VM manager considers the
recent history of job executions by observing the jobs that
arrived within a period of time referred to as the reconfigu-
ration time window. For each job, J; arriving within the
reconfiguration time window, the reconfiguration algorithm
understands the optimal cluster configuration, Coy(.J;).
Concretely, the running time of the jobs under a given clus-
ter configuration is predicted by the profile and analyze
tool. Based on the amount of resources in the cluster config-
uration (i.e number of VMs and configuration of each VM)
and the running time, Cura computes the total resource cost
as described in Section 3.1.1. Cura uses this information to
find the optimal cluster configuration as the one which min-
imizes this resource usage cost while being able to complete
the job within its deadline. The reconfiguration manager
understands the current demands for each VM instance
type in terms of the average number of VMs required for
each VM type in order to successfully provision the optimal
cluster configuration to the jobs observed in the reconfigura-
tion time window. At the end of the reconfiguration time
window period, the algorithm decides on the reconfigura-
tion plan by making a suitable tradeoff between the perfor-
mance enhancement obtained after reconfiguration and the

cost of the reconfiguration process. If Yik"” is a Boolean vari-

able indicating if C*" is the optimal cluster configuration
for job, J;, then the proportion of physical resources, P, to

Pool of extra
large instances

Pool of Large
instances

Pool of small
instances

Fig. 4. Reconfiguration-based VM management.

1271

200

150

No of VM -1
n
1]
3
No of VM -2
N

-

]

400 600 800 0 200 400 600 800

[200

¥ 0 200 400 600 800

Time units Time units Time units

(b) VM-aware schedule with Reconf-based VM pool management

be allocated to each VM type k can be estimated based on
the cumulative resource usage in each VM pool computed
as the product of total running time of the jobs and the size
of the cluster used:

Zi,n (t7'un(=]i7 Copt(Ji)) X 1 X Yik.n)
Ei,k,n (trun(Ji, Copt(li)) X n X Y;k’") .

P =

The total physical resources, R in the cloud infrastruc-
ture can be obtained as

Rtotal _ Z ‘/k % Rk7
k

where R, represents the physical resource in VM type, k,
and Vj, is the number of VMs in the existing VM pool of
type k. Therefore, the number of VMs, V} in the new recon-
figured VM pools is given by

Such reconfiguration has to be balanced against the cost of
reconfiguration operations (shutting down some instances
and starting others). For this, we compute the benefit of
doing such reconfiguration. The overall observed cost repre-
sents the actual cumulative resource cost of the jobs exe-
cuted during the reconfiguration time window using
existing VM pools. Here, Z;"" is a Boolean variable indicat-

ing if the job .J; used the cluster configuration, C*"

Overallcost ppserved = Z Cost(J;, CF") x Zf "

i,k,n

Next, we compute the estimated overall cost with new VM
pools assuming that the jobs were scheduled using their
optimal cluster configurations, C,,(J;). Reconfiguration
benefit, Recon fyenesi is then computed as the difference
between the two

Overallcost qstimate = Z Cost (Ji, Copt (JL))

Recon fyepefit = Overallcostesimate — Overallcost yepa-

Assuming the reconfiguration process incurs an average
reconfiguration overhead, Recon foyerhead that represents the
resource usage spent on the reconfiguration process for
each VM that undergoes reconfiguration, the total cost of
reconfiguration is obtained as

Reconfcost = Z ‘(‘/k/ - W)| X Reconfowrhcad-
k

1272

The algorithm then triggers the reconfiguration process only
if it finds that the estimated benefit exceeds the reconfigura-
tion cost by a factor of B, i.e., if Recon fienefit > Bx Recon feos
where B > 1. As Recon fyenefir Only represents an estimate of
the benefit, g is often chosen as a value greater than 1. When
the reconfiguration process starts to execute, it shuts down
some VMs whose instance types needs to be decreased in
number and creates new VMs of the instance types that
needs to created. The rest of the process is similar to any
VM reconfiguration process that focuses on the bin-packing
aspect of placing VMs within the set of physical servers dur-
ing reconfiguration [13], [36].

Continuing the example of Fig. 3, we find that the basic
VM-aware scheduler in Fig. 3a without reconfiguration sup-
port schedules jobs 5, 6, 8, 13, 15 using VM-2 and VM-3
types even though they are optimal with VM-1, The recon-
figuration based VM-aware schedule in Fig. 3b provisions
more VM-1 instances (notice changed Y-axis scale) by
understanding the workload characteristics and hence in
addition to the other jobs, jobs 5, 6, 8 13 and 15 also get
scheduled with their optimal choice of VM-type namely
VM-1, thereby minimizing the overall resource usage cost
in the cloud data center. The detailed schedule for this case
is explained in Appendix B, available in the online supple-
mental material, for interested readers.

4 EXPERIMENTAL EVALUATION

We divide the experimental evaluation of Cura into two—
first, we provide detailed analysis on the effectiveness of
Cura compared to conventional MapReduce services and
then we present an extensive micro analysis on the different
set of techniques in Cura that contribute to the overall per-
formance. We first start with our experimental setup.

4.1 Experimental Setup

Cluster setup. Our profiling cluster consists of 20 CentOS 5.5
physical machines (KVM as the hypervisor) with 16 core
2.53 GHz Intel processors and 16 GB RAM. The machines
are organized in two racks, each rack containing 10 physical
machines. The network is 1 Gbps and the nodes within a
rack are connected through a single switch. We considered
six VM instance types with the lowest configuration starting
from two 2 GHz VCPUs and 2 GB RAM to the highest con-
figuration having 12 2 GHz VCPUs and 12 GB RAM with
each VM configuration differing by two 2 GHz VCPUs and
2 GB RAM with the next higher configuration.

Workload. We created 50 jobs using the Swim MapReduce
workload generator [30] that richly represent the character-
istics of the production MapReduce workload in the Face-
book MapReduce cluster. The workload generator uses a
real MapReduce trace from the Facebook production cluster
and generates jobs with similar characteristics as observed
in the Facebook cluster. Using the Starfish profiling tool [24],
each job is profiled on our cluster setup using clusters of
VMs of all six VM types. Each profile is then analyzed using
Starfish to develop predictions across various hypothetical
cluster configurations and input data sizes.

Simulation setup. In order to analyze the performance and
cost benefits of Cura on a datacenter scale system, we devel-
oped a simulator in Java that uses the profiles and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

performance predictions developed from the real cluster.
The simulator models a cloud datacenter with servers, each
having a 16 core 2.53 GHz processors with 16 GB RAM. It
implements both the VM-aware scheduling with the instant
VM allocation and the reconfiguration-based VM manage-
ment techniques. The execution time for each job in the sim-
ulation is assumed as the predicted execution time (based
on the profiles generated from the profiling cluster) and a
prediction error which could be either a positive or negative
error within an assumed error bound.

Metrics. We evaluate our techniques on four key metrics
with the goal of measuring their cost effectiveness and per-
formance—(1) number of servers: techniques that require
more number of physical servers to successfully meet the
service quality requirements are less cost-effective; this met-
ric measures the capital expense on the provisioning of
physical infrastructure in the data center, (2) response time:
techniques that have higher response time provide poor ser-
vice quality; this metric captures the service quality of the
jobs, (3) per-job infrastructure cost—this metric represents the
average per-job fraction of the infrastructure cost; techni-
ques that require fewer servers will have lower per-job cost
and (4) effective utilization: techniques that result in poor uti-
lization lead to higher cost; this metric captures both the
cost-effectiveness and the performance of the techniques. It
should be noted that the effective utilization captures only
the useful utilization that represents job execution and does
not include the time taken for creating and destroying VMs.

Before discussing the experimental results, we briefly
discuss the set of techniques compared in the evaluation.

Per-job cluster services. Per job services are similar to dedi-
cated MapReduce services such as Amazon Elastic MapRe-
duce [14] that create clusters per job or per workflow. While
this model does not automatically pick VM and Hadoop
parameters, for a fair comparison we use Starfish to create the
optimal VM and Hadoop configuration even in this model.

Dedicated cluster services. Dedicated clusters are similar to
private cloud infrastructures where all VMs are managed
by the customer enterprises and Hadoop clusters are
formed on demand when jobs arrive. Here again the VM
and job parameters are chosen via Starfish.

Cura. Cura incorporates both the VM-aware scheduler
and reconfiguration-based VM pool management. For the
micro-analysis, we also compare the following sub-techni-
ques to better evaluate Cura: 1) Per-job Optimization tech-
nique that uses Cura’s secure instant VM allocation but
always uses the per-job optimal number of VMs and the
optimal VM type, 2) VM-aware scheduler described in
Sections 3.1 and 3) Reconfiguration based VM Management
(Section 3.2).

4.2 Experimental Results

We first present the experimental evaluation of Cura by
comparing with the existing techniques for various experi-
mental conditions determined by distribution of the job
deadlines, size of the MapReduce jobs, number of servers in
the system and the amount of prediction error in the profile
and analyze process. By default, we use a composite work-
load consisting of equal proportion of jobs of three different
categories: small jobs, medium jobs and large jobs. Small

PALANISAMY ET AL.: COST-EFFECTIVE RESOURCE PROVISIONING FOR MAPREDUCE IN A CLOUD

12000 T — T T r
Dedicated cluster —+—
Per-job cluster -
10000 r Cura %
(2]
o 8000
c
% 6000
kS
o L
3 4000
2000 o Mo SE—
0 A * X ¥ |
200 300 400 500 600 700 800 900 1000
Deadline
(a) Number of Servers
16 | Dedicated cluster —+—
T Per-job cluster -
1.4 ¢ Cura %
121
- 1r
w
8 ost
0.6
0.4 Fre y
R S VS
02} *
0 * * X =
200 300 400 500 600 700 800 900 1000
Deadline
(c) Cost

Fig. 5. Effect of job-deadlines.

jobs read 100 MB of data, whereas medium jobs and large
jobs read 1 and 10 GB of input data respectively. We model
Poisson job arrivals with rate parameter, A = 0.5 and the
jobs are uniformly distributed among 50 customers. The
evaluation uses 11,500 jobs arriving within a period of 100
minutes. Each of the arrived job represents one of the 50
profiled jobs with input data size ranging from 100 MB to
10 GB based on the job size category. By default, we assume
that jobs run for the same amount of time predicted in the
profile and analyze process, however, we dedicate a separate
set of experiments to study the performance of the techni-
ques when such predictions are erroneous. Note that a job’s
complete execution includes both the data loading time
from the storage infrastructure to the compute infrastruc-
ture and the Hadoop startup time for setting up the Hadoop
cluster in the cluster of VMs. The data loading time is com-
puted by assuming a network throughput of 50 MBps per
VM? from the storage server and the Hadoop startup time is
taken as 10 sec.

4.2.1 Effect of Job Deadlines

In this set of experiments, we first study the effect of job
deadlines on the performance of Cura with other techniques
(Fig. 5) and then we analyze the performance of Cura in
terms of the contributions of each of its sub-techniques
(Fig. 6). Fig. 5a shows the performance of the techniques for
different maximum deadlines with respect to number of

5. Here, the 50 MBps throughput is a conservative estimate of the
throughput between the storage and compute infrastructures based on
measurement studies on real cloud infrastructures [22].

1273
500 .
Dedicated cluster —+—
Per-job Cltéster rrrrr -
9 r ura e
g 400
@2
g s00f [—
-Oé ___________
c 200
S
a
(7]
Q
o
0 ! . : L L L L
200 300 400 500 600 700 800 900 1000
Deadline
(b) Response time
1 L
Dedicated cluster —+—
Per-job Cluster -
g 08 Cura %
K<) ’
ﬁ QI
=) [
)
= 04
©
2
o o2

0 +
200 300 400 500 600 700 800 900 1000
Deadline

(d) Effective Utilization

servers required for the cloud provider to satisfy the work-
load. Here, the deadlines are uniformly distributed within
the maximum deadline value shown on the X-axis. We find
that provisioning dedicated clusters for each customer
results in a lot of resources as dedicated clusters are based
on the peak requirements of each customer and therefore
the resources are under-utilized. On the other hand, per-job
cluster services require lower number of servers (Fig. 5a) as
these resources are shared among the customers. However,
the Cura approach in Fig. 5a has a much lower resource
requirement having up to 80 percent reduction in terms of
the number of servers. This is due to the designed global
optimization capability of Cura. Where per-job and dedicated
cluster services always attempt to place jobs based on per-
job optimal configuration obtained from Starfish, resources
for which may not be available in the cloud, Cura on the
other hand can schedule jobs using other than their individ-
ual optimal configurations to better adapt to available
resources in the cloud.

We also compare the approaches in terms of the mean
response time in Fig. 5b. To allow each compared technique
to successfully schedule all jobs (and not cause failures), we
use the number of servers obtained in Fig. 5a for each individ-
ual technique. As a result, in this response time comparison,
Cura is using much fewer servers than the other techniques.
We find that the Cura approach and the dedicated cluster
approach have lower response time (up to 65 percent).

In the per-job cluster approach, the VM clusters are cre-
ated for each job and it takes additional time for the VM crea-
tion and booting process before the jobs can begin execution
leading to the increased response time of the jobs. Similar to
the comparison on the number of servers, we see the same

1274

Per-job Opt —+—
1200 VM-aware sched -

Reconf-based VM Mgmt -~
1000 \\\\
800 ¢

<
[
2
,,,,,,,,,, Mo
. S e
-
o 400 Ko S

200

0
200 300 400 500 600 700 800 900 1000
Deadline

(a) Number of Servers

Fig. 6. Effect of job-deadlines.

trend with respect to the per-job cost in Fig. 5c that shows
that the Cura approach can significantly reduce the per-job
infrastructure cost of the jobs (up to 80 percent). The effective
utilization in Fig. 5d shows that the per-job cluster services
and dedicated cluster approach have much lower effective
utilization compared to the Cura approach. The per-job serv-
ices spend a lot of resources in creating VMs for every job
arrival. Especially with short response time jobs, the VM cre-
ation becomes a bigger overhead and reduces the effective
utilization. The dedicated cluster approach does not create
VMs for every job instance, however it has poor utilization
because dedicated clusters are sized based on peak utiliza-
tion. But the Cura approach has a high effective utilization
having up to 7x improvement compared to the other techni-
ques as Cura effectively leverages global optimization and
deadline-awareness to achieve better resource management.

Micro analysis. Next, we discuss the performance of the
sub-techniques of Cura and illustrate how much each sub-
technique contributes to the overall performance under dif-
ferent deadlines. Fig. 6a shows that with only per-job opti-
mization (which only leverages instant VM allocation), it
requires up to 2.6 x higher number of servers compared to
using reconfiguration-based VM pool management scheme
with the VM-aware scheduler. The per-job optimization
scheduler always chooses the optimal VM type and the
optimal number of VMs for each job and in case the optimal
resources are not available when the job arrives, the sched-
uler keeps on queuing the job until the required optimal
resource becomes available when some other jobs
complete. It drops the request when it finds out that the job
cannot meet its deadline if the optimal resources are provi-
sioned. However, with the VM-aware approach, the sched-
uler will be able to still schedule the job by provisioning
higher resources in order to meet the deadline. Second,
with the per-job optimization scheduler, even when some
sub-optimal resources are available when the job is wait-
ing, they remain unused as the job is expecting to be sched-
uled only using the optimal resources. Therefore the per-
job optimization results in poor performance. The number
of servers required by the VM-aware approach is signifi-
cantly reduced by up to 45 percent servers by efficient
reconfiguration-based VM management that dynamically
manages the VMs in each VM pool. Fig. 6b shows the mean
response time of the jobs for various sub-techniques. We
find that the sub-techniques have similar response times
except for the per-job optimization case that has up to
11 percent higher mean response time. As per-job

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

160
140
120
100
80
60
40

Response time (sec)

Per-job Opt —+—
20 VM-aware sched -
Reconf-based VM Mgmt -

0
200 300 400 500 600 700 800 900 1000

Deadline

(b) Response time

optimization scheduler keeps the jobs waiting until it finds
their optimal resources, it leads to higher queuing time that
causes this increase.

4.2.2 Effect of Prediction Error

This set of experiments evaluates the techniques by study-
ing the effect of inaccuracies in the performance predic-
tion. As accurate performance predictions may not always
be available, it is important that the techniques can tolerate
inaccuracies in performance prediction and yet perform
efficiently. Fig. 7 shows the comparison of the techniques
while varying the error rate from 0 to 70 percent. Here, the
mean deadline of the jobs is taken as 800 second. The error
rate means that accurate running time of the jobs can be
anywhere within the error range on both sides of the pre-
dicted value. The comparison of number of servers in
Fig. 7a shows that all the techniques require more number
of servers when the prediction error increases. The Cura
approach on an average requires 4 percent additional
number of servers for every 10 percent increase in predic-
tion error. Note that even the per-job cluster and dedicated
cluster schemes require increased number of servers as
they also decide the resource requirements based on the
performance predictions of the jobs across different cluster
configurations.

Fig. 7b shows that the response time of the techniques
decreases with increase in the error rate. While the Cura
and dedicated cluster approaches have a decrease of 4.2
and 3.7 percent respectively, the per-job cluster approach
has a decrease of only 1.4 percent for every 10 percent
increase in error rate as the major fraction of the response
time in these services is due to the VM creation process.
As error rate increases, the techniques provision more
resources to ensure that even in the worst case, when the
jobs run for the maximum possible time within the error
range, the jobs complete within the deadline. Therefore,
in cases where the job completes within the maximum
possible running time, these additional resources make
the job complete earlier than its deadline and therefore it
speeds up the execution resulting in lower response time.
The cost trend shown in Fig. 7c also shows that the tech-
niques that require fewer servers result in lower per-job
cost. Similarly the effective utilization comparison in
Fig. 7d shows similar relative performance as in Fig. 5d.

We compare the performance of the sub-techniques of
Cura under different error rates in Fig. 8. We find that the

PALANISAMY ET AL.: COST-EFFECTIVE RESOURCE PROVISIONING FOR MAPREDUCE IN A CLOUD

"Dedicated cluster —+—
Per-job cluster -
20000 Cura %
4
2 15000
o)
7]
S 10000
o
P4
5000
0 * * * * * ¥
0 10 20 30 40 50 60 70
Prediction error percentage
(a) Number of Servers
Dedicated cluster —+—
31 Per-job cluster -~
Cura %
= 1
o)
o 1

0 10 20 30 40 50 60 70
Prediction error percentage

(c) Cost

Fig. 7. Effect of prediction error.

number of servers in Fig. 8a shows a similar relative perfor-
mance among the sub-techniques as in 7a. Here again, the
response time as shown in Fig. 8b shows that the per-job
optimization scheduler leads to higher response time due to
queue wait times and the response time of the sub-techni-
ques increases with increase in error rate.

4.2.3 Varying Number of Servers

We next study the performance of the techniques by vary-
ing the number of servers provisioned to handle the work-
load. Fig. 9a shows the success rate of the approaches for
various number of servers. Here, the success rate represents
the fraction of jobs that successfully meet their deadlines.
We find that the Cura approach has a high success rate even
with 250 servers, whereas the per-job cluster approach
obtains close to 100 percent rate only with 2,000 servers.
Fig. 9b shows that the response time of successful jobs in
the compared approaches show a similar trend as in Fig. 5b
where the Cura approach performs better than the per-job
cluster services.

1000 W

800 I

600

No of Servers

400

200 Per-job Opt —+—
VM-aware sched -
Reconf-based VM Mgmt -

0
0 10 20 30 40 50 60 70
Prediction error percentage

(a) Number of Servers

Fig. 8. Effect of prediction error.

1275

350
Dedicated cluster —+—
Per-job cluster -
S sop 9 Cura %
8 s T
)
£ 200
[
@ 150
3
g frrmwee——y]
T 5 o
0
0 10 20 30 40 50 60 70
Prediction error percentage
(b) Response time
1 -
Dedicated cluster —+—
Per-job Cluster -
c 08 Cura %
2 ’
i
= 0.6)
o *- .. K
S *- * * * *
= 04
©
Q
m 02
o S A A e IR
0 E—t— A f

0 10 20 30 40 50 60 70
Prediction error percentage

(d) Utilization

4.2.4 Varying Job Sizes

This set of experiments evaluates the performance of the
techniques for various job sizes based on the size of input
data read. Note that small jobs process 100 MB of data,
medium jobs process 1 GB of data and large and extra large
jobs process 10 and 100 GB of data respectively. Also small,
medium and large jobs have a mean deadline of 100 second
and the extra large jobs have a mean deadline of 1,000 sec-
ond as they are long running. We find that the performance
in terms of number of servers in Fig. 10a has up to 9x
improvement for the short and medium jobs with Cura
approach compared to the per-job cluster approach. It is
because in addition to the VM-aware scheduling and recon-
figuration-based VM management, these jobs benefit the
most from the secure instant VM allocation as these are
short jobs. For large and extra large jobs, the Cura approach
still performs significantly better having up to 4x and 2x
improvement for large and extra large jobs compared to the
per-job cluster services. The dedicated cluster service
requires significantly higher resources for large jobs as the

o

(0]

@

(]

£

3

c 40

S

a

[

£ 20 :
o Per-job Opt —+—

VM-aware sched -
Reconf-based VM Mgmt -

0 10 20 30 40 50 60 70
Prediction error percentage

(b) Response time

1276
140
Dedicated cluster ——
120 Per-job Cluster —--—-
Cura %
o 100§ ..-¥ * o
E
2 80 B
@
g 60
=}
(%]

500 1000 1500 2500

No of Servers

2000

(a) Success Rate

Fig. 9. Effect of servers.

peak workload utilization becomes high (its numbers signif-
icantly cross the max Y-axis value). This set of experiments
show that the global optimization techniques in Cura are
not only efficient for short jobs but also for long running
batch workloads.

The response time improvements of Cura and dedicated
cluster approach in Fig. 10b also show that the improvement
is very significant for short jobs having up to 87 percent
reduced response time and up to 69 percent for medium
jobs. It is reasonably significant for large jobs with up to 60
percent lower response time and extra large jobs with up to
30 percent reduced response time. The cost comparison in
Fig. 10c also shows a similar trend that the Cura approach,
although is significantly effective for both large and extra
large jobs, the cost reduction is much more significant for
small and medium jobs.

The sub-technique comparison of Cura for various job
types in terms of number of servers is shown in Fig. 11a.
We find that the sub-techniques have impact on all kind of
jobs irrespective of the job size. While secure instant VM

14000 Per-job Cluster xxxxd
ura
12000 Dedicated cluster B
£ 10000 B
o o5
2 oo
© 8000 o5
S 6000 o
Z 4000 B
R
535
2000 2o
P M il &
Small Mediu Large Extra large
Job type
(a) Number of Servers
2+ Per-job Cluster xx=xz3
ura —
Dedicated cluster
151
B
S 1 K
(&] ;:z:i
s
R
R
353
B, R -
Small Medium Large Extralarge
Job type
(c) Cost

Fig. 10. Effect of job type.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

500
Dedicated cluster ——
Per—jobCILéster rrrrr e
) ura %
g 400
@
L 800}
3
c 200
)
[oX
]
& 100 * * * *

500 1000 1500 2500

No of Servers

2000

(b) Response time

allocation contributes more to the performance of the small
jobs compared to large jobs, the sub-techniques in Cura have
equal impact on the overall performance for all job categories.
The response time comparison of the sub-techniques in
Fig. 11b shows that the sub-techniques have similar response
time, however, for large and extra large jobs, the per-job opti-
mization leads to increased response time by up to 24.8 per-
cent as large jobs in the per-job optimization require incur
longer waiting time in the queue as they often request more
resources that may not be immediately available.

4.3 Effect of Deadline Distribution

In Fig. 12, we study the effect of different distributions of
deadline on the performance of Cura for different mean
deadlines. In Fig. 12a, we find that both the Poisson and
uniform distributions require similar number of servers
whereas the exponential deadline distribution requires up
to 30 percent additional servers as there are more jobs
with shorter deadlines in the exponential distribution. The
response time comparison in Fig. 12b shows that irrespective

Per-job Cluster xxxzzxa
1000 . ura
o Dedicated cluster [
Q $o%!
o 800 E‘f‘
3o
2 B
£ 3o
= 600 3335
o o
2 B
S o
g 400 B
3 B B
2 B B
Q 205 555
o B g
5] R
2008 o2
B B
d o8] N
Small Medium Large Extralarge
Job type
(b) Response time
1 -
Per-job Cluster xxxxzxi
A ura e—
c 081} Dedicated cluster = S
RS ’
=
N
= 06
=
o)
)
= 04
3 %
= K
w o02f £
3o
o £
R ioss
L. il Cl- Gl

Medium Large Extralarge
Job type

(d) Effective Utilization

Small

PALANISAMY ET AL.: COST-EFFECTIVE RESOURCE PROVISIONING FOR MAPREDUCE IN A CLOUD

16000 Per-job Opt Gz
VM-aware sched s
Reconf-based VM Mgmt

o}

ool

]
o2

14000

XX
(203204

o2e?

12000

X%
Je2atel

05

10000

%

8000

No of Servers

6000

o262

o
o262

4000

%
SLLEL

%
022

2
o2eets

2000

2635262
B

S
Small Medium Large

Job type

Extra large

(a) Number of Servers

Fig. 11. Effect of job type.

of the deadline distribution, the jobs have more or less simi-
lar response time.

5 RELATED WORK

Resource allocation and job scheduling. There is a large body of
work on resource allocation and job scheduling in grid and
parallel computing. Some representative examples of
generic schedulers include [37], [38]. The techniques pro-
posed in [39], [40] consider the class of malleable jobs where
the number processors provisioned can be varied at run-
time. Similarly, the scheduling techniques presented in [41],
[42] consider moldable jobs that can be run on different
number of processors. These techniques do not consider a
virtualized setting and hence do not deal with the chal-
lenges of dynamically managing and reconfiguring the VM
pools to adapt for workload changes. Therefore, unlike
Cura they do not make scheduling decisions over dynami-
cally managed VM pools. Chard et al. present a resource
allocation framework for grid and cloud computing frame-
works by employing economic principles in job scheduling
[45]. Hacker and Mahadik propose techniques for allocating
virtual clusters by queuing job requests to minimize the
spare resources in the cloud [46]. Recently, there has been
work on cloud auto scaling with the goal of minimizing cus-
tomer cost while provisioning the resources required to pro-
vide the needed service quality [43]. The authors in [44]
propose techniques for combining on demand provisioning
of virtual resources with batch processing to increase sys-
tem utilization. Although the above mentioned systems
have considered cost reduction as a primary objective of
resource management, these systems are based on either
per-job or per-customer optimization and hence unlike

700

Uniform —+—

Exponential -
600 Poisson -

No of Servers

0
100 150 200 250 300 350 400 450 500
Mean Deadline

(a) Number of Servers

Fig. 12. Effect of deadline distribution.

1277

700

Per-job Opt XXxxx
VM-aware sched e
600 Reconf-based VM Mgmt &z

b9t

5
ostetoletetetely

%

XEXXE
%
022

REXK
XX
foie2

SRR

%
X

500

o0
%

X
dotete

%%

XXX

400

285

da%el

%
X
22

300

o
%3
2%

",.V
X
2ok

%
X
Qoteteds

200

Response time (sec)

100

vvv
RRIXX.
5 RS

Large

um
Job type

Extra large

(b) Response time

Cura, they do not lead to a globally optimal resource
management.

MapReduce task placement. There have been several efforts
that investigate task placement techniques for MapReduce
while considering fairness constraints [17], [32]. Mantri tries
to improve job performance by minimizing outliers by mak-
ing network-aware task placement [3]. Similar to Yahoo's
capacity scheduler and Facebook’s fairness scheduler, the
goal of these techniques is to appropriately place tasks for
the jobs running in a given Hadoop cluster to optimize for
locality, fairness and performance. Cura, on the other hand
deals with the challenges of appropriately provisioning the
right Hadoop clusters for the jobs in terms of VM instance
type and cluster size to globally optimize for resource cost
while dynamically reconfiguring the VM pools to adapt for
workload changes.

MapReduce in a cloud. Recently, motivated by MapRe-
duce, there has been work on resource allocation for data
intensive applications in the cloud context [18], [33]. Quincy
[18] is a resource allocation system for scheduling concur-
rent jobs on clusters and Purlieus [33] is a MapReduce cloud
system that improves job performance through locality opti-
mizations achieved by optimizing data and compute place-
ments in an integrated fashion. However, unlike Cura these
systems are not aimed at improving the usage model for
MapReduce in a cloud to better serve modern workloads
with lower cost.

MapReduce profile and analyze tools. A number of MapRe-
duce profiling tools have been developed in the recent past
with an objective of minimizing customer’s cost in the cloud
[4], [5], [23], [28], [29]. Herodotou and Babu developed an
automated performance prediction tool based on their pro-
file and analyze tool Starfish [24] to guide customers to

180

Uniform —+—

160 Exponential -~
Poisson %

Response time

40
20

0
100 150 200 250 300 350 400 450 500
Mean Deadline

(b) Response time

1278

choose the best cluster size for meeting their job require-
ments [26]. Similar performance prediction tool is devel-
oped by Verma et al. [29] based on a linear regression
model with the goal of guiding customers to minimize cost.
Popescu et al. developed a technique for predicting runtime
performance for jobs running over varying input data set
[28]. Recently, a new tool called Bazaar [27] has been devel-
oped to guide MapReduce customers in a cloud by predict-
ing job performance using a gray-box approach that has
very high prediction accuracy with less than 12 percent pre-
diction error. However, as discussed earlier, these job opti-
mizations initiated from the customer-end may lead to
requiring higher resources at the cloud. Cura while leverag-
ing existing profiling research, addresses the challenge of
optimizing the global resource allocation at the cloud pro-
vider-end with the goal of minimizing customer costs. As
seen in evaluation, Cura benefits from both its cost-opti-
mized usage model and its intelligent scheduling and online
reconfiguration-based VM pool management.

6 CONCLUSIONS

This paper presents a new MapReduce cloud service model,
Cura, for data analytics in the cloud. We argued that exist-
ing cloud services for MapReduce are inadequate and ineffi-
cient for production workloads. In contrast to existing
services, Cura automatically creates the best cluster configu-
ration for the jobs using MapReduce profiling and leverages
deadline-awareness which, by delaying execution of certain
jobs, allows the cloud provider to optimize its global
resource allocation efficiently and reduce its costs. Cura also
uses a unique secure instant VM allocation technique that
ensures fast response time guarantees for short interactive
jobs, a significant proportion of modern MapReduce work-
loads. Cura’s resource management techniques include
cost-aware resource provisioning, VM-aware scheduling
and online virtual machine reconfiguration. Our experimen-
tal results using jobs profiled from realistic Facebook-like
production workload traces show that Cura achieves more
than 80 percent reduction in infrastructure cost with 65 per-
cent lower job response times.

ACKNOWLEDGMENTS

The first and third authors are supported by grants from US
National Science Foundation (NSF) CISE NetSE program,
SaTC program, I/UCRC and a grant from Intel ICST on
cloud computing.

REFERENCES

[1] B. Igou, “User survey analysis: Cloud-computing budgets are
growing and shifting; traditional IT services providers must
prepare or perish,” Gartner, Inc., Stamford, CT, USA, Gartner
Rep. G00205813, 2010.

[2]]. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Symp. Operating Syst. Des. Imple-
mentation, 2004, p. 10.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
B. Saha, and E. Harris, “Reining in the outliers in Map-Reduce
clusters using Mantri,” in Proc. 9th USENIX Conf. Operating Syst.
Des. Implementation, 2010.

[4] K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing
Hadoop provisioning in the cloud,” in Proc. Conf. Hot Topics Cloud
Comput., 2009.

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]
[171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.5, MAY 2015

K. Morton, A. Friesen, M. Balazinska, and D. Grossman,
“Estimating the progress of MapReduce pipelines,” in Proc. IEEE
26th Int. Conf. Data Eng., 2010, pp. 681-684.

Pig user guide. [Online]. Available: http://pig.apache.org/, 2014.
A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive - A warehousing
solution over a MapReduce framework,” Proc. VLDB Endowment,
vol. 2, pp. 1626-1629, 2009.

D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegel-
berg, H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash
facebook, R. Schmidt, and A. Aiyer, “Apache Hadoop goes real-
time at Facebook,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2011, pp. 1071-1080.

S. Melnik, A. Gubarev, J.]. Long, G. Romer, S. Shivakumar, M.
Tolton, and T. Vassilakis, “Dremel: Interactive analysis of web-
scale datasets,” in Proc. 36th Int. Conf. Very Large Data Bases, 2010,
pp- 330-339.

C. Curino, E. P. C. Jones, R. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, N. Zeldovich, “Relational cloud: A database-as-
a-service for the cloud,” in Proc. 5th Biennial Conf. Innovative Data
Syst. Res., 2011, pp. 235-240.

S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and]. Rittinger,
“Multi-tenant databases for software as a service: Schema-map-
ping techniques,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2008, pp. 1195-1206.

P. Xiong, Y. Chi, S. Zhu, J. Tatemura, C. Pu, and H. Hacigumus,
“ActiveSLA: A profit-oriented admission control framework for
database-as-a-service providers,” in Proc. 2nd ACM Symp. Cloud
Comput., 2011.

T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Black-box
and gray-box strategies for virtual machine migration,” in Proc.
4th USENIX Conf. Netw. Syst. Des Implementation, 2007, p. 17.
Amazon Elastic MapReduce. [Online]. Available: http://aws.
amazon.com/ elasticmapreduce/, 2014.

Amazon Elastic Compute Cloud. [Online]. Available: http://aws.
amazon.com/ec2/,2014.

Hadoop. [Online]. Available: http:/ /hadoop.apache.org, 2014.

M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments,” in Proc. 8th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2008, pp. 29-42.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A.
Goldberg, “Quincy: Fair scheduling for distributed computing
clusters,” in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princi-
ples, 2009, pp. 261-276.

I. Roy, Srinath. Setty, A. Kilzer, V. Shmatikov, and E. Witchel,
“Airavat: Security and privacy for MapReduce,” in Proc. 7th USE-
NIX Conf. Netw. Syst. Des. Implementation, 2010, p. 20.

SELinux user guide. [Online]. Available: http://selinuxproject.
org/page/Main_Page, 2014.

M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness,” San Francisco, CA, USA:
Freeman, 1979.

S. L. Garfinkel. (2007). An evaluation of Amazon’s grid computing
services: EC2, S3 and SQS. School Eng. Appl. Sci., Harvard Univ.,
Cambridge, MA, USA, Tech. Rep. TR-08-07, [Online]. Available:
ftp:/ /ftp.deas.harvard.edu/techreports/tr-08-07.pdf

F. Tian and K. Chen, “Towards optimal resource provisioning for
running MapReduce programs in public clouds,” in Proc. IEEE
4th Int. Conf. Cloud Comput., 2011, pp. 155-162.

H. Herodotou et al.,, and S. Babu, “On optimizing MapReduce
programs/Hadoop jobs,” Proc. VLDB Endowment, vol. 12, 2011.

H. Herodotou, H. Li, G. Luo, N. Borisov, L. Dong, F. B. Cetin,
and S. Babu, “Starfish: A selftuning system for big data analy-
tics,” in Proc. 5th Biennial Conf. Innovative Data Syst. Res., 2011,
pp- 261-272.

H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size fits all:
Automatic cluster sizing for data-intensive analytics,” in Proc. 2nd
ACM Symp. Cloud Comput., 2011.

V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
“Bazaar: Enabling predictable performance in datacenters,”
Microsoft Res., Cambridge, U.K., Tech. Rep. MSR-TR-2012-38,
2012.

A. Popescu, V. Ercegovac, A. Balmin, M. Branco, and A. Aila-
maki, “Same queries, different data: Can we predict runtime
performance?” Proc. 3rd Int. Workshop Self-Manag. Database
Syst., 2012.

PALANISAMY ET AL.: COST-EFFECTIVE RESOURCE PROVISIONING FOR MAPREDUCE IN A CLOUD

[29] A. Verma, L. Cherkasova, and R. H. Campbell, “Resource provi-
sioning framework for MapReduce jobs with performance goals,”
in Proc. ACM/IFIPJUSENIX 12th Int. Middleware Conf., 2011,
pp. 165-186.

Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for eval-
uating MapReduce performance using workload suites,” in Proc.
IEEE 19th Annu. Int. Symp. Model., Anal., Simul. Comput. Telecom-
mun. Syst., 2011, pp. 390-399.

S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of
traces from a production MapReduce cluster,” in Proc. 10th IEEE/
ACM Int. Conf. Cluster, Cloud Grid Comput., 2010, pp. 94-103.

T. Sandholm and K. Lai, “Mapreduce optimization using dynamic
regulated prioritization,” ACM SIGMETRICS/Perform. Eval. Rev.,
vol. 37, pp. 299-310, 2009

B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: Locality-
aware resource allocation for MapReduce in a cloud,” in Proc. Int.
Conf. High Perform. Comput., Netw., Storage Anal., 2011.

Google BigQuery. [Online]. Available: https://developers.google.
com/bigquery/

Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, “Energy eff-
ciency for large-scale MapReduce workloads with significant
interactive analysis,” in Proc. 7th ACM Eur. Conf. Comput. Syst.,
2012, pp. 43-56.

A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage
virtualization: Integration and load balancing in data centers,” in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., 2008,
pp- 1-12.

A. Mu’alem and D. Feitelson, “Utilization, predictability, work-
loads, and user runtime estimates in scheduling the IBM SP2 with
backfilling,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 6, pp.
529-543, Jun. 2001

J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The EASY - LoadLev-
eler API Project,” in Proc. Workshop Job Scheduling Strategies Parallel
Process., 1996, pp. 41-47.

S. Anastasiadis and K. Sevcik, “Parallel application scheduling on
networks of workstations,” J. Parallel Distrib. Comput., vol. 43, pp.
109-124, 1997

E. Rosti, E. Smirni, L. Dowdy, G. Serazzi, and B. Carlson, “Robust
partitioning policies of multiprocessor systems,” Perform. Eval.,
vol. 19, pp. 141-165, 1993.

S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur, and
P. Sadayappan, “Effective selection of partition sizes for moldable
scheduling of parallel jobs,” in Proc. 9th Int. Conf. High Perform.
Comput., 2002, pp. 174-183.

W. Cirne, “Using moldability to improve the performance of
supercomputer jobs,” Ph.D. dissertation, Dept. Comput. Sci. Eng.,
Univ. California, San Diego, La Jolla, CA, USA, 2001.

M. Mao and M. Humphrey, “Auto-scaling to minimize cost and
meet application deadlines in cloud workflows,” in Proc. Int. Conf.
High Perform. Comput., Netw., Storage Anal., 2011.

B. Sotomayor, K. Keahey, and I. Foster, “Combining batch execu-
tion and leasing using virtual machines,” in Proc. 17th Int. Symp.
High Perform. Distrib. Comput., 2007, pp. 87-96.

K. Chard, K. Bubendorfer, and P. Komisarczuk, “High occupancy
resource allocation for grid and cloud systems, a study with
DRIVE,” in Proc. 19th ACM Int. Symp. High Perform. Distrib. Com-
put., 2010, pp. 73-84.

T. Hacker and K. Mahadik, “Flexible resource allocation for reli-
able virtual cluster computing systems,” in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal., 2011, pp. 1-12.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

1279

Balaji Palanisamy received the MS and PhD
degrees in computer science from the College of
Computing, Georgia Tech, in 2009 and 2013,
respectively. He is an assistant professor at the
School of Information Science, University of
Pittsburgh. His primary research interests lie in
scalable and privacy-conscious resource man-
agement for large-scale distributed and mobile
systems. At University of Pittsburgh, he co-
directs research in the Laboratory of Research
and Education on Security Assured Information
Systems (LERSAIS), which is one of the first group of NSA/DHS desig-
nated Centers of Academic Excellence in Information Assurance Educa-
tion and Research (CAE & CAE-R). He received the Best Paper Award
at the Fifth International Conference on Cloud Computing, IEEE CLOUD
2012. He is a member of the IEEE and is currently the chair of the IEEE
Communications Society Pittsburgh Chapter.

Aameek Singh received the bachelor's degree
from IIT Bombay, India and the PhD degree from
the Georgia Institute of Technology. He is cur-
rently a research manager in IBM Research-
Almaden. His research interests include enter-
prise systems management, cloud computing
and distributed systems. He is a member of the
IEEE.

Ling Liu is a full professor in computer science at
the Georgia Institute of Technology. She directs
the research programs in Distributed Data Inten-
sive Systems Lab (DiSL), examining various
aspects of large scale data intensive systems.
She is an internationally recognized expert in the
areas of cloud computing, database systems, dis-
tributed computing, Internet systems, and service
oriented computing. She has published more
than 300 international journal and conference
articles and received the best paper award from a
number of top venues, including ICDCS 2003, WWW 2004, 2005 Pat
Goldberg Memorial Best Paper Award, IEEE Cloud 2012, IEEE ICWS
2013. She also received the IEEE Computer Society Technical Achieve-
ment Award in 2012 and an Outstanding Doctoral Thesis Advisor award
in 2012 from the Georgia Institute of Technology. In addition to services
as the general chair and PC chairs of numerous IEEE and ACM confer-
ences in data engineering, very large databases and distributed comput-
ing fields, she was on editorial board of more than a dozen international
journals. She is currently the editor in chief of IEEE Transactions on Ser-
vice Computing, and is on the editorial board of ACM Transactions on
Internet Technology (TOIT), ACM Transactions on Web (TWEB), Dis-
tributed and Parallel Databases (Springer), and Journal of Parallel and
Distributed Computing (JPDC). She is a senior member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

