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Abstract—We propose a new MapReduce cloud service model,
Cura, for data analytics in the cloud. We argue that performing
MapReduce analytics in existing cloud service models – either
using a generic compute cloud or a dedicated MapReduce cloud
– is inadequate and inefficient for production workloads. Existing
services require users to select a number of complex cluster and
job parameters while simultaneously forcing the cloud provider to
use those potentially sub-optimal configurations resulting in poor
resource utilization and higher cost. In contrast Cura leverages
MapReduce profiling to automatically create the best cluster
configuration for the jobs so as to obtain a global resource opti-
mization from the provider perspective. Secondly, to better serve
modern MapReduce workloads which constitute a large propor-
tion of interactive real-time jobs, Cura uses a unique instant
VM allocation technique that reduces response times by up to
65%. Thirdly, our system introduces deadline-awareness which,
by delaying execution of certain jobs, allows the cloud provider to
optimize its global resource allocation and reduce costs further.
Cura also benefits from a number of additional performance
enhancements including cost-aware resource provisioning, VM-
aware scheduling and online virtual machine reconfiguration.
Our experimental results using Facebook-like workload traces
show that along with response time improvements, our techniques
lead to more than 80% reduction in the compute infrastructure
cost of the cloud data center.

I. INTRODUCTION

One of the major IT trends impacting modern enterprises
is big data and big data analytics. As enterprises generate
more and more data, deriving business value from it using
analytics becomes a differentiating capability – whether it is
understanding customer buying behavior or detecting fraud
in online transactions. The most popular approach towards
such big data analytics is using MapReduce [2] and its open-
source implementation called Hadoop [16]. With the ability to
automatically parallelize the application on a scale-out cluster
of machines, MapReduce can allow analysis of terabytes and
petabytes of data in a single analytics job.

This MapReduce analytics capability, when paired with
another major IT trend – cloud computing, offers a unique
opportunity for enterprises interested in big data analytics.
A recent Gartner survey shows increasing cloud computing
spending with 39% of enterprises having allotted IT budgets
for it [1]. Offered in the cloud, a MapReduce service allows
enterprises to analyze their data without dealing with the
complexity of building and managing large installations of
MapReduce platforms. Using virtual machines (VMs) and
storage hosted by the cloud, enterprises can simply create
virtual MapReduce clusters to analyze their data.

In general, there are two approaches in use today for
MapReduce in a cloud. In the first approach, customers use

a dedicated MapReduce cloud service (e.g. Amazon Elastic
MapReduce [14]) and buy on-demand clusters of VMs for
each job or a workflow. Once the MapReduce job (or work-
flow) is submitted, the cloud provider creates VMs that execute
that job and after job completion the VMs are deprovisioned.
In the second approach customers lease dedicated clusters
from a generic cloud service like Amazon Elastic Compute
Cloud [15] and operate MapReduce on them as if they were
using a private MapReduce infrastructure. In this case, based
on the type of analytics workload they may use different
number of VMs for each submitted job, however the entire
cluster needs to be maintained by the client enterprise.

In this paper we argue that these MapReduce cloud models
suffer from the following drawbacks:

1) Interactive workloads: Many modern MapReduce
workloads constitute a large fraction of interactive short
jobs [8], [9], [35] that require short response times. A
recent study on the Facebook and Yahoo production
workload traces [30], [35] show that more than 95%
of their production MapReduce jobs are short running
jobs with an average running time of 30 sec. These
jobs typically process a smaller amount of data (less
than 200 MB in the Facebook trace [30])that are part of
bigger data sets, for example, a friend recommendation
query that is issued interactively when a Facebook
user browses his/her profile. These jobs process a
small amount of data corresponding to a small subset
of the social network graph to recommend the most
likely known friends to the user. As these jobs are
highly interactive, providing high quality of service in
terms of job response time is infeasible in a dedicated
MapReduce cloud model (the first approach) since it
requires virtual clusters to be created afresh for each
submitted job. On the other hand an owned cluster in a
generic compute cloud (the second approach) has high
costs due to low utilization since the cluster needs to
be continuously up waiting for jobs and serving them
when submitted.

2) Lack of global optimization: Secondly, both of
these models require users to figure out the complex
job configuration parameters (e.g. type of VMs,
number of VMs and MapReduce configuration like
number of mappers per VM etc.) that have an impact
on the performance and thus cost of the job. With
growing popularity of MapReduce and associated



eco-system like Pig [6], Hive [7], many MapReduce
jobs nowadays are actually fired by non-engineer
data analysts and putting such a burden on those
users is impractical. Additionally, even if MapReduce
performance prediction tools like [26] are used in
the current cloud models, the per-job optimized
configurations created by them from a user perspective
are often suboptimal from a cloud provider perspective
and hence lead to requiring more cloud resources
than that required by a globally optimized schema
with resource management performed at the cloud
provider-end. A good example of such a cloud managed
system is the recent Google BigQuery system [34]
which allows to run SQL-like queries against very
large datasets with potentially billions of rows. In
BigQuery service, customers only submit the queries
to be processed on the large datasets and the Cloud
service provider intelligently manages the resources for
the SQL-like queries.

3) Low service differentiation: Thirdly, both existing
models fail to incorporate significant other optimiza-
tion opportunities available for the cloud provider to
improve its resource utilization. MapReduce workloads
often have a large number of jobs that do not require
immediate execution, rather feed into a scheduled flow
- e.g. MapReduce job analyzing system logs for a
daily/weekly status report. By delaying the execution
of such jobs, cloud provider can multiplex its resources
better for significant cost savings. For instance, the batch
query model in Google BigQuery service [34] has 43%
lower cost than the interactive query model in which
case the queries are instantaneously executed.

To alleviate these drawbacks, we propose a MapReduce
cloud service model called Cura. Cura uses a secure instant
VM allocation scheme that helps reduce the response time for
short jobs by up to 65%. To reduce user complexity, Cura
automatically creates the best cluster configuration for the
customers jobs with the goal of optimizing the overall resource
usage of the cloud. Finally, Cura includes a suite of resource
management techniques which leverage deadline awareness for
cost-aware resource provisioning. Overall, the use of these
techniques including intelligent VM-aware scheduling and
online VM reconfiguration techniques lead to more than 80%
savings in the cloud infrastructure cost. While Cura focuses
on cloud provider’s resource costs, we believe that any cost
savings of the cloud provider in terms of infrastructure cost
and energy cost based on resource usage would in turn reflect
positively in the price of the services for the customers.

The rest of the paper is organized as follows: Section II mo-
tivates the need for the global optimization model and presents
the Cura model and a description of its various components.
In Section III, we present the technical details of the resource
management techniques in Cura namely VM-aware scheduling
and Reconfiguration-based VM management. We present our
experimental results in Section IV and conclude in Section VI.

II. CURA: MODEL AND ARCHITECTURE

In this section, we present the cloud service model and
system architecture for Cura.

A. Cloud Operational Model

Table I shows possible cloud service models for providing
MapReduce as a cloud service. The first operational model
(immediate execution) is a completely customer managed
model where each job and its resources are specified by the
customer on a per-job basis and the cloud provider only
ensures that the requested resources are provisioned upon
job arrival. Many existing cloud services such as Amazon
Elastic Compute Cloud [15], Amazon Elastic MapReduce
[14] use this model. This model has the lowest rewards
since there is lack of global optimization across jobs as well
as other drawbacks discussed earlier. The second possible
model (delayed start) [44] is partly customer-managed and
partly cloud-managed model where customers specify which
resources to use for their jobs and the cloud provider has the
flexibility to schedule the jobs as long as they begin execution
within a specified deadline. Here, the cloud provider takes
slightly greater risk to make sure that all jobs begin execution
within their deadlines and as a reward can potentially do
better multiplexing of its resources. However, specifically with
MapReduce, this model still provides low cost benefits since
jobs are being optimized on a per-job basis by disparate users.
In fact customers in this model always tend to greedily choose
low-cost small cluster configurations involving fewer VMs that
would require the job to begin execution almost immediately.
For example, consider a job that takes 180 minutes to complete
in a cluster of 2 small instances but takes 20 minutes to
complete using a cluster of 6 large instances1. Here if the job
needs to be completed in more than 180 minutes, the per-job
optimization by the customer will tend to choose the cluster of
2 small instances as it has lower resource usage cost compared
to the 6 large instance cluster. This cluster configuration,
however, expects the job to be started immediately and does
not provide opportunity for delayed start. This observation
leads us to the next model. The third model – which is
the subject of this paper – is a completely cloud managed
model where the customers only submit jobs and specify job
completion deadlines. Here, the cloud provider takes greater
risk and performs a globally optimized resource management
to meet the job SLAs for the customers. Similar high-risk high-
reward model is the database-as-a-service model [10], [11],
[12] where the cloud provider estimates the execution time
of the customer queries and performs resource provisioning
and scheduling to ensure that the queries meet their response
time requirements. As MapReduce also lends itself well to
prediction of execution time [24], [5], [27], [28], [4], we have
designed Cura on a similar model. Another recent example of
this model is the Batch query model in Google’s Big Query
cloud service [34] where the Cloud provider manages the
resources required for the SQL-like queries so as to provide a
service level agreement of executing the query within 3 hours.

1Example adapted from the measurements in Herodotou et. al. paper[25]



TABLE I: Cloud Operational Models
Model Optimization Provider risk Potential benefits
Immediate execution Per-job Limited Low
Delayed start Per-job Moderate Low – Moderate
Cloud managed Global High High
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Fig. 1: Cura: System Architecture

B. System Model: User Interaction

Cura’s system model significantly simplifies the way users
deal with the cloud service. With Cura, users simply submit
their jobs (or composite job workflows) and specify the re-
quired service quality in terms of response time requirements.
After that, the cloud provider has complete control on the type
and schedule of resources to be devoted to that job. From the
user perspective, the deadline will typically be driven by their
quality of service requirements for the job. As MapReduce
jobs perform repeated analytics tasks, deadlines could simply
be chosen based on those tasks (e.g. 8 AM for a daily log
analysis job). For ad-hoc jobs that are not run per a set
schedule, the cloud provider can try to incentivize longer
deadlines by offering to lower costs if users are willing to
wait for their jobs to be executed2. However, this model does
not preclude an immediate execution mode in which case the
job is scheduled to be executed at the time of submission,
similar to existing MapReduce cloud service models.

C. System Architecture

Once a job is submitted to Cura, it may take one of the two
paths (Figure 1). If a job is submitted for the very first time,
Cura processes it to be profiled prior to execution as part of
its profile and analyze service. This develops a performance
model for the job in order to be able to generate predictions
for its performance for different VM types, cluster sizes and
job parameters. This model is used by Cura in optimizing the
global resource allocation. MapReduce profiling has been an
active area of research [24], [5], [4] and open-source tools such
as Starfish [24] are available to create such profiles. Recent
work had leveraged MapReduce profiling for Cloud resource
management and showed that such profiles can be obtained
with very high accuracy with less than 12% error rate for the
predicted running time [27].

The profile and analyze service is used only once when
a customer’s job first goes from development-and-testing into
production in its software life cycle. For subsequent instances

2Design of a complete costing mechanism is beyond the scope of this work.

of the production job, Cura directly sends the job for schedul-
ing. Since typically production jobs including interactive or
long running jobs do not change frequently (only their input
data may differ for each instance of their execution), pro-
filing will most often be a one-time cost. Further, from an
architectural standpoint, Cura users may even choose to skip
profiling and instead provide VM type, cluster size and job
parameters to the cloud service similar to existing dedicated
MapReduce cloud service models like [14]. Jobs that skip
the one-time profile and analyze step will still benefit from
the response time optimizations in Cura described below,
however, they will fail to leverage the benefits provided by
Cura’s global resource optimization strategies. Jobs that are
already profiled are directly submitted to the Cura resource
management system.

Cura’s resource management system is composed of the
following components:

1) Secure instant VM allocation: In contrast to existing
MapReduce services that create VMs on demand, Cura em-
ploys a secure instant VM allocation scheme that reduces
response times for jobs, especially significant for short running
jobs. Upon completion of a job’s execution, Cura only destroys
the Hadoop instance used by the job (including all local
data) but retains the VM to be used for other jobs that need
the same VM configuration. For the new job, only a quick
Hadoop initialization phase is required which prevents having
to recreate and boot up VMs3. Operationally, Cura creates
pools of VMs of different instance types as shown in Figure
2 and dynamically creates Hadoop clusters on them.

Pool of small 

instances

Pool of Large 

instances

Pool of extra 

large instances

Fig. 2: VM Pool

When time sharing a VM across jobs it is important to en-
sure that an untrusted MapReduce program is not able to gain
control over the data or applications of other customers. Cura’s
security management is based on SELinux [20] and is similar
to that of the Airavat system proposed in [19] that showed
that enforcing SELinux access policies in a MapReduce cloud
does not lead to performance overheads. While Airavat shares
multiple customer jobs across the same HDFS, Cura runs
only one Hadoop instance at a time and the HDFS and
MapReduce framework is used by only one customer before

3Even with our secure instant VM allocation technique data still needs to
be loaded for each job into its HDFS, but it is very fast for small jobs as
they each process small amount of data, typically less than 200 MB in the
Facebook and Yahoo workloads [30].



it is destroyed. Therefore, enforcing Cura’s SELinux policies
does not require modifications to the Hadoop framework and
requires creation of only two SELinux domains, one trusted
and the other untrusted. The Hadoop framework including the
HDFS runs in the trusted domain and the untrusted customer
programs run in the untrusted domain. While the trusted
domain has regular access privileges including access to the
network for network communication, the untrusted domain has
very limited permissions and has no access to any trusted files
and other system resources. An alternate solution for Cura’s
secure instant VM allocation is to take VM snapshots upon
VM creation and once a customer job finishes, the VM can
revert to the old snapshot. This approach is also significantly
faster than destroying and recreating VMs, but it can however
incur noticeable delays in starting a new job before the VM
gets reverted to a secure earlier snapshot.

Overall this ability of Cura to serve short jobs better is a key
distinguishing feature. However as discussed next, Cura has
many other optimizations that benefit any type of job including
long running batch jobs.

2) Job Scheduler: The job scheduler at the cloud provider
forms an integral component of the Cura system. Where exist-
ing MapReduce services simply provision customer-specified
VMs to execute the job, Cura’s VM-aware scheduler (Sec-
tion III-A) is faced with the challenge of scheduling jobs
among available VM pools while minimizing global cloud
resource usage. Therefore, carefully executing jobs in the best
VM type and cluster size among the available VM pools
becomes a crucial factor for performance. The scheduler has
knowledge of the relative performance of the jobs across
different cluster configurations from the predictions obtained
from the profile and analyze service and uses it to obtain global
resource optimization.

3) VM Pool Manager: The third main component in Cura
is the VM Pool Manager that deals with the challenge of
dynamically managing the VM pools to help the job scheduler
effectively obtain efficient resource allocations. For instance,
if more number of jobs in the current workload require small
VM instances and the cloud infrastructure has fewer small
instances, the scheduler will be forced to schedule them in
other instance types leading to higher resource usage cost.
The VM pool manager understands the current workload
characteristics of the jobs and is responsible for online recon-
figuration of VMs for adapting to changes in workload patterns
(Section III-B). In addition, this component may perform
further optimization such as power management by suitably
shutting down VMs at low load conditions.

III. CURA: RESOURCE MANAGEMENT

In this section, we describe Cura’s core resource man-
agement techniques. We first present Cura’s VM-aware job
scheduler that intelligently schedules jobs within the available
set of VM pools. We then present our reconfiguration-based
VM pool manager that dynamically manages the VM instance
pools by adaptively reconfiguring VMs based on current
workload requirements.

A. Online VM-aware Scheduling

The goal of the cloud provider is to minimize the infras-
tructure cost by minimizing the number of servers required to
handle the data center workload. Typically the peak workload
decides the infrastructure cost for the data center. The goal
of Cura VM-aware scheduling is to schedule all jobs within
available VM pools to meet their deadlines while minimizing
the overall resource usage in the data center reducing this total
infrastructure cost.

Given VM pools for each VM instance type and continually
incoming jobs, the online VM-aware scheduler decides (a)
when to schedule each job in the job queue, (b) which VM
instance pool to use and (c) how many VMs to use for the
jobs. The scheduler also decides best Hadoop configuration
settings to be used for the job by consulting the profile and
analyze service.

Depending upon deadlines for the submitted jobs, the VM-
aware scheduler typically needs to make future reservations on
VM pool resources (e.g. reserving 100 small instances from
time instance 100 to 150). In order to maintain the most agility
in dealing with incrementally incoming jobs and minimizing
the number of reservation cancellations, Cura uses a strategy
of trying to create minimum number of future reservations
without under-utilizing any resources. For implementing this
strategy, the scheduler operates by identifying the highest
priority job to schedule at any given time and creates a
tentative reservation for resources for that job. It then uses the
end time of that job’s reservation as the bound for limiting
the number of reservations i.e. jobs in the job queue that are
not schedulable (in terms of start time) within that reservation
time window are not considered for reservation. This ensures
that we are not unnecessarily creating a large number of
reservations which may need cancellation and rescheduling
after another job with more stringent deadline enters the queue.

A job Ji is said to have higher priority over job Jj if
the schedule obtained by reserving job Ji after reserving
job Jj would incur higher resource cost compared to the
schedule obtained by reserving job Jj after reserving Ji. The
highest priority job is picked by performing pairwise cost
comparisons. It is chosen such that it will incur higher overall
resource usage cost if the highest priority job is deferred as
compared to deferring any other job.

For each VM pool, the algorithm picks the highest priority
job, Jprior in the job queue and makes a reservation for it using
the cluster configuration with the lowest possible resource
cost at the earliest possible time based on the performance
predictions obtained from the profile and analyze service. Note
that the lowest resource cost cluster configuration need not
be the job’s optimal cluster configuration (that has lowest
per-job cost). For instance, if using the job’s optimal cluster
configuration at the current time cannot meet the deadline,
the lowest resource cost cluster will represent the one that
has the minimal resource usage cost among all the cluster
configurations that can meet the job’s deadline.

Once the highest priority job, Jprior is reserved for all VM
pools, the reservation time windows for the corresponding VM
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(b) VM-aware schedule with Reconf-based VM pool management

Fig. 3: Scheduling in Cura

pools are fixed. Subsequently, the scheduler picks the next
highest priority job in the job queue by considering priority
only with respect to the reservations that are possible within
the current reservation time windows of the VM pools. The
scheduler keeps on picking the highest priority job one by one
in this manner and tries to make reservations to them on the
VM pools within the reservation time window. Either when
all jobs are considered in the queue and no more jobs are
schedulable within the reservation time window or when the
reservations have filled all the resources until the reservation
time windows, the scheduler stops reserving.

Then at each time instance, the scheduler picks the reser-
vations for the current time and schedules them on the VM
pools by creating Hadoop clusters of the required sizes in
the reservation. After scheduling the set of jobs that have
reservation starting at the current time, the scheduler waits
for one unit of time and considers scheduling for the next
time unit. If no new jobs arrived within this one unit of time,
the scheduler can simply look at the reservations made earlier
and schedule the jobs that are reserved for the current time,
however, if some new jobs arrived within the last one unit
of time, then the scheduler needs to check if some of the
newly arrived jobs have higher priority over the reserved jobs
and in that case, the scheduler may require to cancel some
existing reservations to reserve some newly arrived jobs that
have higher priority over the ones in the reserved list.

If the scheduler finds that some newly arrived jobs take
priority over some jobs in the current reservation list, it first
tries to check if the reservation time window of the VM
pools need to be changed. It needs to be changed only when
some newly arrived jobs take priority over the current highest
priority job of the VM pools that decides the reservation
time window. If there exists such newly arrived jobs, the
algorithm cancels all reserved jobs and moves them back to
the job queue and adds all the newly arrived jobs to the job

queue. It then picks the highest priority job, Jprior for each
VM pool from the job queue that decides the reservation
time window for each VM pool. Once the new reservation
time window of the VM pools are updated, the scheduler
considers the other jobs in the queue for reservation within the
reservation time window of the VM pools until when either
all jobs are considered or when no more resources are left for
reservation. In case, the newly arrived jobs do not have higher
priority over the time window deciding jobs but have higher
priority over some other reserved jobs, the scheduler will not
cancel the time window deciding reservations. However, it will
cancel the other reservations and move the jobs back to the
job queue along with the new jobs and repeat the process
of reserving jobs within the reservation time windows from
the job queue in the decreasing order of priority. For a data
center of a given size, assuming constant number of profile
and analyze predictions for each job, it can be shown that the
algorithm runs in polynomial time with O(n2) complexity. We
present a complete pseudo-code for this VM-aware scheduler
in Algorithm 1.

While even a centralized VM-aware scheduler scales well
for several thousands of servers with tens of thousands of
jobs, it is also straight forward to obtain a distributed im-
plementation to scale further. As seen from the pseudocode,
the main operation of the VM-aware scheduler is finding the
highest priority job among the n jobs in the queue based on
pairwise cost comparisons. In a distributed implementation,
this operation can be distributed and parallelized so that if
there are n jobs in the queue, the algorithm would achieve a
speed of x with x parallel machines, each of them performing
n
x pairwise cost comparisons.

Figure 3(a) shows an example VM-aware schedule obtained
for 15 jobs using 40 VMs in each VM type, VM-1, VM-2 and
VM-3. Here we assume that jobs 1, 2, 5, 6, 7, 8, 9, 10, 11,
13, 15 have their optimal cluster configuration using VM-1 and



Algorithm 1 VM-aware Scheduling
1: Wlist: jobs that are waiting to be reserved or scheduled
2: Nlist: jobs that arrived since the last time tick
3: Rlist: jobs that have a tentative reservation
4: twindow(V ): reservation time window of VM type V
5: twindow : is the set of time windows of all the VM types
6: CostV M (Ji, Jj , V ): lowest possible resource usage cost of

scheduling jobs Ji and Jj by reserving Ji before job Jj in VM
type V

7: Cost(Ji, Jj): lowest possible cost of scheduling jobs Ji and Jj

on any VM type
8: Costtwindow(Ji, Jj): lowest possible cost of scheduling Ji and

Jj by reserving Ji before Jj such that they both start within the
time window of the VM pools

9: Sched(Ji, twindow): determines if the Job Ji is schedulable
within the current time window of the VM pools

10: All cost calculations consider only cluster configurations that can
meet the job’s deadline

11: procedure VMAWARESCHEDULE(Wlist, Nlist, Rlist)
12: Assign redo reserve = true if ∃Jn ∈ Nlist, ∃Jr ∈ Rlist

such that Cost(Jn, Jr) ≤ Cost(Jr, Jn)
13: Assign redo timewindow = true if ∃Jn ∈ Nlist, ∃Jr

∈ Rlist such that Cost(Jn, Jr) < Cost(Jr, Jn) and Jr is a
time window deciding job

14: if ( redo reserve == false) then
15: return
16: end if
17: if (redo timewindow == true) then
18: CJlist = Rlist ∪Nlist ∪Wlist

19: Cancel all reservations
20: for all V ∈ VMtypes do
21: Pick and reserve job Ji that maximizes
22:

∑
Jj∈CJlist

Cost(Jj , Ji)− CostV M (Ji, Jj , V ))

23: twindow(V ) = min(tend(Ji), tbound)
24: end for
25: else
26: CJlist = Rlist ∪Nlist

27: Cancel all reservations except twindow deciding ones
28: end if
29: while ( ∃Ji ∈ CJlist|sched(Ji, twindow) == true) do
30: Pick and reserve job Ji that maximizes
31:

∑
Jj∈CJlist

Costtwindow(Jj , Ji)− Costtwindow (Ji, Jj)
32: end while
33: Run jobs having reservations start at the current time
34: end procedure

jobs 3, 12, and 14 are optimal with VM-2 and job 4 is optimal
with VM-3. The VM-aware scheduler tries its best effort to
minimize the overall resource usage cost by provisioning the
right jobs in the right VM types and using the minimal cluster
size required to meet the deadline requirements. However,
when the optimal choice of the resource is not available
for some jobs, the scheduler considers the next best cluster
configuration and schedules them in a cost-aware manner. A
detailed illustration of this example with cost comparisons is
presented in Appendix A.

B. Reconfiguration-based VM Management

Although the VM-aware scheduler tries to effectively mini-
mize the global resource usage by scheduling jobs based on re-
source usage cost, it may not be efficient if the underlying VM
pools are not optimal for the current workload characteristics.
Cura’s reconfiguration-based VM manager understands the
workload characteristics of the jobs as an online process and

performs online reconfiguration of the underlying VM pools
to better suit the current workload. For example, the VM pool
allocation shown in Figure 2 can be reconfigured as shown in
Figure 4 to have more small instances by shutting down some
large and extra large instances if the current workload pattern
requires more small instances.

Pool of small 

instances

Pool of Large 

instances

Pool of extra 

large instances

Fig. 4: Reconfiguration-based VM Management

The reconfiguration-based VM manager considers the re-
cent history of job executions by observing the jobs that
arrived within a period of time referred to as the reconfig-
uration time window. For each job, Ji arriving within the
reconfiguration time window, the reconfiguration algorithm
understands the optimal cluster configuration, Copt(Ji) that
incurs the lowest resource usage cost among all cluster config-
urations that can meet the job’s deadline requirements. At the
end of the reconfiguration time window period, the algorithm
decides on the reconfiguration plan by making a suitable
tradeoff between the performance enhancement obtained after
reconfiguration and the cost of the reconfiguration process.
Such reconfiguration has to be balanced against the cost of
reconfiguration operations (shutting down some instances and
starting others). For this, we compute the benefit of doing such
reconfiguration.

The algorithm triggers the reconfiguration process only if it
finds that the estimated cost benefit exceeds the reconfiguration
cost by a factor of β. When the reconfiguration process starts
to execute, it shuts down some VMs whose instance types
needs to be decreased in number and creates new VMs of the
instance types that needs to created. The rest of the process is
similar to any VM reconfiguration process that focuses on the
bin-packing aspect of placing VMs within the set of physical
servers during reconfiguration [13], [36].

Continuing the example of Figure 3, we find that the
basic VM-aware scheduler in Figure 3(a) without reconfig-
uration support schedules jobs 5, 6, 8, 13, 15 using VM-
2 and VM-3 types even though they are optimal with VM-
1, The reconfiguration based VM-aware schedule in Figure
3(b) provisions more VM-1 instances (notice changed Y-axis
scale) by understanding the workload characteristics and hence
in addition to the other jobs, jobs 5, 6, 8 13 and 15 also
get scheduled with their optimal choice of VM-type namely
VM-1, thereby minimizing the overall resource usage cost in
the cloud data center. The detailed schedule for this case is
explained in Appendix A for interested readers.



IV. EXPERIMENTAL EVALUATION

We present our experimental evaluation in terms of both
performance and cost-effectiveness of Cura compared to con-
ventional MapReduce services. We first start with our experi-
mental setup.

A. Experimental setup

Metrics: We evaluate our techniques on four key metrics
with the goal of measuring their cost effectiveness and
performance– (1) number of servers: techniques that require
more number of physical servers to successfully meet the
service quality requirements are less cost-effective; this metric
measures the capital expense on the provisioning of physical
infrastructure in the data center, (2) response time: it is the
total time between job submission and job completion and
therefore techniques that have higher response time provide
poor service quality; this metric captures the service quality
of the jobs and (3) per-job infrastructure cost - this metric
represents the average per-job fraction of the infrastructure
cost; techniques that require fewer servers will have lower
per-job cost and (4) effective utilization: techniques that result
in poor utilization lead to higher cost; this metric captures both
the cost-effectiveness and the performance of the techniques.
It should be noted that the effective utilization captures only
the useful utilization that represents job execution and does
not include the time taken for creating and destroying VMs.
Cluster Setup: Our cluster consists of 20 CentOS 5.5 physical
machines (KVM as the hypervisor) with 16 core 2.53GHz Intel
processors and 16 GB RAM. The machines are organized
in two racks, each rack containing 10 physical machines.
The network is 1 Gbps and the nodes within a rack are
connected through a single switch. We considered 6 VM
instance types with the lowest configuration starting from 2
2 GHz VCPUs and 2 GB RAM to the highest configuration
having 12 2GHz VCPUs and 12 GB RAM with each VM
configuration differing by 2 2 GHz VCPUs and 2 GB RAM
with the next higher configuration.
Workload: We created 50 jobs using the Swim MapReduce
workload generator [30] that richly represent the character-
istics of the production MapReduce workload in the Face-
book MapReduce cluster. The workload generator uses a
real MapReduce trace from the Facebook production cluster
and generates jobs with similar characteristics as observed in
the Facebook cluster. Using the Starfish profiling tool [24],
each job is profiled on our cluster setup using clusters of
VMs of all 6 VM types. Each profile is then analyzed using
Starfish to develop predictions across various hypothetical
cluster configurations and input data sizes.

Before discussing the experimental results, we briefly dis-
cuss the set of techniques compared in the evaluation.
Per-job cluster services: Per job services are similar to ded-
icated MapReduce services such as Amazon Elastic MapRe-
duce [14] that create clusters per job or per workflow. While
this model does not automatically pick VM and Hadoop
parameters, for a fair comparison we use Starfish to create the
optimal VM and Hadoop configuration even in this model.

Dedicated cluster services: Dedicated clusters are similar
to private cloud infrastructures where all VMs are managed
by the customer enterprises and Hadoop clusters are formed
on demand when jobs arrive. Here again the VM and job
parameters are chosen via Starfish.
Cura: Cura incorporates both the VM-aware scheduler de-
scribed in Section III-A and the Reconfiguration based VM
Management (Section III-B).

B. Experimental Results

We begin by presenting the comparison of Cura with
the existing techniques for various experimental conditions
determined by distribution of the job deadlines, size of the
MapReduce jobs and the number of servers in the system.
By default, we use a composite workload consisting of equal
proportion of jobs of three different categories: small jobs,
medium jobs and large jobs. Small jobs read 100 MB of
data, whereas medium jobs and large jobs read 1 GB and 10
GB of input data respectively. We model Poisson job arrivals
with rate parameter, λ = 0.5 and the jobs are uniformly
distributed among 50 customers. The evaluation uses 11,500
jobs arriving within a period of 100 minutes. Each of the
arrived job represents one of the 50 profiled jobs with input
data size ranging from 100 MB to 10 GB based on the job
size category. Note that a job’s complete execution includes
both the data loading time from the storage infrastructure to
the compute infrastructure and the Hadoop startup time for
setting up the Hadoop cluster in the cluster of VMs. The data
loading time is computed by assuming a network throughput
of 50 MBps per VM 4 from the storage server and the Hadoop
startup time is taken as 10 sec.

1) Effect of job deadlines: In this set of experiments, we
first study the effect of job deadlines on the performance of
Cura with other techniques. Figure 5(a) shows the performance
of the techniques for different maximum deadlines with respect
to number of servers required for the cloud provider to satisfy
the workload. Here, the deadlines are uniformly distributed
within the maximum deadline value shown on the X-axis. We
find that provisioning dedicated clusters for each customer
results in a lot of resources as dedicated clusters are based
on the peak requirements of each customer and therefore
the resources are under-utilized. On the other hand, per-
job cluster services require lower number of servers (Figure
5(a)) as these resources are shared among the customers.
However, the Cura approach in Figure 5(a) has a much lower
resource requirement having up to 80% reduction in terms
of the number of servers. This is due to the designed global
optimization capability of Cura. Where per-job and dedicated
cluster services always attempt to place jobs based on per-
job optimal configuration obtained from Starfish, resources
for which may not be available in the cloud, Cura on the
other hand can schedule jobs using other than their individual
optimal configurations to better adapt to available resources in
the cloud.

4Here, the 50 MBps throughput is a conservative estimate of the throughput
between the storage and compute infrastructures based on measurement
studies on real cloud infrastructures [22].
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Fig. 5: Effect of Job-deadlines

We also compare the approaches in terms of the mean
response time in Figure 5(b). To allow each compared tech-
nique to successfully schedule all jobs (and not cause failures),
we use the number of servers obtained in Figure 5(a) for
each individual technique. As a result, in this response time
comparison, Cura is using much fewer servers than the other
techniques. We find that the Cura approach and the dedicated
cluster approach have lower response time (up to 65%).

In the per-job cluster approach, the VM clusters are created
for each job and it takes additional time for the VM creation
and booting process before the jobs can begin execution
leading to the increased response time of the jobs. Similar
to the comparison on the number of servers, we see the
same trend with respect to the per-job cost in Figure 5(c)
that shows that the Cura approach can significantly reduce
the per-job infrastructure cost of the jobs (up to 80%). The
effective utilization in Figure 5(d) shows that the per-job clus-
ter services and dedicated cluster approach have much lower
effective utilization compared to the Cura approach. The per-
job services spend a lot of resources in creating VMs for every
job arrival. Especially with short response time jobs, the VM
creation becomes a bigger overhead and reduces the effective
utilization. The dedicated cluster approach does not create
VMs for every job instance, however it has poor utilization
because dedicated clusters are sized based on peak utilization.
But the Cura approach has a high effective utilization having
up to 7x improvement compared to the other techniques as

Cura effectively leverages global optimization and deadline-
awareness to achieve better resource management.

2) Varying number of Servers: We next study the perfor-
mance of the techniques by varying the number of servers
provisioned to handle the workload. Figure 6(a) shows the
success rate of the approaches for various number of servers.
Here, the success rate represents the fraction of jobs that suc-
cessfully meet their deadlines. We find that the Cura approach
has a high success rate even with 250 servers, whereas the per-
job cluster approach obtains close to 100% rate only with 2000
servers. Figure 6(b) shows that the response time of successful
jobs in the compared approaches show a similar trend as in
Figure 5(b) where the Cura approach performs better than the
per-job cluster services.

3) Varying job sizes: This set of experiments evaluates
the performance of the techniques for various job sizes based
on the size of input data read. Note that small jobs process
100 MB of data, medium jobs process 1 GB of data and
large and extra large jobs process 10 GB and 100 GB of
data respectively. Also small, medium and large jobs have a
mean deadline of 100 second and the extra large jobs have
a mean deadline of 1000 second as they are long running.
We find that the performance in terms of number of servers
in Figure 7(a) has up to 9x improvement for the short and
medium jobs with Cura approach compared to the per-job
cluster approach. It is because in addition to the VM-aware
scheduling and reconfiguration-based VM management, these
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Fig. 7: Effect of Job type

jobs benefit the most from the secure instant VM allocation as
these are short jobs. For large and extra large jobs, the Cura
approach still performs significantly better having up to 4x and
2x improvement for large and extra large jobs compared to the
per-job cluster services. The dedicated cluster service requires
significantly higher resources for large jobs as the peak work-
load utilization becomes high (its numbers significantly cross
the max Y-axis value). This set of experiments show that the
global optimization techniques in Cura are not only efficient
for short jobs but also for long running batch workloads.

The response time improvements of Cura and dedicated
cluster approach in Figure 7(b) also show that the improvement

is very significant for short jobs having up to 87% reduced
response time and up to 69% for medium jobs. It is reasonably
significant for large jobs with up to 60% lower response time
and extra large jobs with up to 30% reduced response time.
The cost comparison in Figure 7(c) also shows a similar trend
that the Cura approach, although is significantly effective for
both large and extra large jobs, the cost reduction is much
more significant for small and medium jobs.

V. RELATED WORK

Resource Allocation and Job Scheduling: There is a
large body of work on resource allocation and job scheduling



in grid and parallel computing. Some representative examples
of generic schedulers include [37], [38]. The techniques
proposed in [39], [40] consider the class of malleable jobs
where the number processors provisioned can be varied
at runtime. Similarly, the scheduling techniques presented
in [41], [42] consider moldable jobs that can be run on
different number of processors. These techniques do not
consider a virtualized setting and hence do not deal with the
challenges of dynamically managing and reconfiguring the
VM pools to adapt for workload changes. Therefore, unlike
Cura they do not make scheduling decisions over dynamically
managed VM pools. Chard et. al present a resource allocation
framework for grid and cloud computing frameworks by
employing economic principles in job scheduling [45]. Hacker
et. al propose techniques for allocating virtual clusters by
queuing job requests to minimize the spare resources in the
cloud [46]. Recently, there has been work on cloud auto
scaling with the goal of minimizing customer cost while
provisioning the resources required to provide the needed
service quality [43]. The authors in [44] propose techniques
for combining on demand provisioning of virtual resources
with batch processing to increase system utilization. Although
the above mentioned systems have considered cost reduction
as a primary objective of resource management, these systems
are based on either per-job or per-customer optimization and
hence unlike Cura, they do not lead to a globally optimal
resource management.

MapReduce task placement: There have been several
efforts that investigate task placement techniques for
MapReduce while considering fairness constraints [32], [17].
Mantri tries to improve job performance by minimizing
outliers by making network-aware task placement [3]. Similar
to Yahoo’s capacity scheduler and Facebook’s fairness
scheduler, the goal of these techniques is to appropriately
place tasks for the jobs running in a given Hadoop cluster
to optimize for locality, fairness and performance. Cura, on
the other hand deals with the challenges of appropriately
provisioning the right Hadoop clusters for the jobs in terms
of VM instance type and cluster size to globally optimize for
resource cost while dynamically reconfiguring the VM pools
to adapt for workload changes.

MapReduce in a cloud: Recently, motivated by
MapReduce, there has been work on resource allocation for
data intensive applications in the cloud context [18], [33].
Quincy [18] is a resource allocation system for scheduling
concurrent jobs on clusters and Purlieus [33] is a MapReduce
cloud system that improves job performance through locality
optimizations achieved by optimizing data and compute
placements in an integrated fashion. However, unlike Cura
these systems are not aimed at improving the usage model
for MapReduce in a Cloud to better serve modern workloads
with lower cost.

MapReduce Profile and Analyze tools: A number of
MapReduce profiling tools have been developed in the recent

past with an objective of minimizing customer’s cost in the
cloud [4], [23], [5], [28], [29]. Herodotou et al. developed an
automated performance prediction tool based on their profile
and analyze tool Starfish [24] to guide customers to choose
the best cluster size for meeting their job requirements [26].
Similar performance prediction tool is developed by Verma.
et. al [29] based on a linear regression model with the goal
of guiding customers to minimize cost. Popescu. et. al devel-
oped a technique for predicting runtime performance for jobs
running over varying input data set [28]. Recently, a new tool
called Bazaar [27] has been developed to guide MapReduce
customers in a cloud by predicting job performance using
a gray-box approach that has very high prediction accuracy
with less than 12% prediction error. However, as discussed
earlier, these job optimizations initiated from the customer-
end may lead to requiring higher resources at the cloud.
Cura while leveraging existing profiling research, addresses
the challenge of optimizing the global resource allocation at
the cloud provider-end with the goal of minimizing customer
costs. As seen in evaluation, Cura benefits from both its
cost-optimized usage model and its intelligent scheduling and
online reconfiguration-based VM pool management.

VI. CONCLUSIONS

This paper presents a new MapReduce cloud service model,
Cura, for data analytics in the cloud. We argued that existing
cloud services for MapReduce are inadequate and inefficient
for production workloads. In contrast to existing services,
Cura automatically creates the best cluster configuration for
the jobs using MapReduce profiling and leverages deadline-
awareness which, by delaying execution of certain jobs, allows
the cloud provider to optimize its global resource allocation
efficiently and reduce its costs. Cura also uses a unique secure
instant VM allocation technique that ensures fast response time
guarantees for short interactive jobs, a significant proportion of
modern MapReduce workloads. Cura’s resource management
techniques include cost-aware resource provisioning, VM-
aware scheduling and online virtual machine reconfiguration.
Our experimental results using jobs profiled from realistic
Facebook-like production workload traces show that Cura
achieves more than 80% reduction in infrastructure cost with
65% lower job response times.
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VIII. APPENDIX A: VM-AWARE SCHEDULE EXAMPLE

VMs trun

VM-1
Cost
VM-1

trun

VM-2
Cost
VM-2

trun

VM-3
Cost
VM-3

10 900 1500 562.5 1875 321.42 2142.85
20 473.68 1578.94 296.05 1973.68 169.17 2255.63
30 333.33 1666.66 208.33 2083.33 119.04 2380.95
40 264.70 1764.70 165.44 2205.88 94.53 2521.00

TABLE II: Job type -1: Optimal with virtual machine type -1 (VM-1)

VMs trun

VM-1
Cost
VM-1

trun

VM-2
Cost
VM-2

trun

VM-3
Cost
VM-3

10 1250 2083.33 500 1666.66 357.14 2380.95
20 657.89 2192.98 263.15 1754.38 187.96 2506.26
30 462.96 2314.81 185.18 1851.85 132.27 2645.50
40 367.64 2450.98 147.05 1960.78 105.04 2801.12

TABLE III: Job type -2: Optimal with virtual machine type -2 (VM-2)

VMs trun

VM-1
Cost
VM-1

trun

VM-2
Cost
VM-2

trun

VM-3
Cost
VM-3

10 5000 8333.33 2187.5 7291.66 875 5833.33
20 2631.57 8771.92 1151.31 7675.43 460.52 6140.35
30 1851.85 9259.25 810.18 8101.85 324.07 6481.48
40 1470.58 9803.92 643.38 8578.43 257.35 6862.74

TABLE IV: Job type -3: Optimal with virtual machine type -3

VMs trun

VM-1
Cost
VM-1

trun

VM-2
Cost
VM-2

trun

VM-3
Cost
VM-3

10 250 416.66 156.25 520.83 89.28 595.23
20 131.57 438.59 82.23 548.24 46.99 626.56
30 92.59 462.96 57.87 578.70 33.06 661.37
40 73.52 490.19 45.95 612.74 26.26 700.28

TABLE V: Job type -4: Optimal with virtual machine type -1

Table VI shows a simple workload of 15 jobs scheduled
using the VM-aware scheduler. The workload consists of 4
types of jobs. Tables II, III, IV and V show the performances
predictions of these 4 job types made across 3 VM types. VM-
1 is assumed to have 2 GB memory and 2 VCPUs and VM-2
and VM-3 are assumed to have 4 GB memory and 4 VCPUs
and 8 GB memory and 8 VCPUs respectively. The tables
compare 4 different cluster configurations for each VM type
by varying the number of VMs from 10 to 40. The running
time of the job in each cluster configuration is shown as trun
and the resource utilization cost is shown as Cost. We find
that job type 1 is optimal with the VM-1 and incurs 20%
additional cost with VM-2 and 30% additional cost with VM-
3. Similarly, job type 2 is optimal with VM-2 and incurs 20%
additional cost with VM-1 and 30% additional cost with VM-
3. Job type 3 is optimal for VM-3 and incurs 30% additional
cost with VM-1 and 20% additional cost with VM-2. Job type



4 is similar to job type-1 which is optimal for VM-1, but it
has shorter running time.

In Table VI, the arrival time and the deadline of the jobs
are shown. Now, the scheduler’s goal is to choose the number
of virtual machines and the virtual machine type to use for
each job. At time t = 0, we find jobs, 1, 2, 3, 4 and 5 in the
system. Based on the type of the jobs and by comparing the
cost shown in Tables II - V, jobs 1, 2 and 5 are optimal with
VM-1 whereas job 3 is optimal with VM-2 and job 4 is optimal
with VM-3. The VM-aware scheduler chooses job 1 as the
time window deciding job for VM-1 based on the cost-based
priority and chooses jobs 3 and 4 as the time window deciding
jobs for VM-2 and VM-3 respectively. Once the time windows
are decided, it reserves and schedules job 2 in VM-1 based
on the cost-based priorities by referring to the performance
comparison tables. Similarly it reserves and schedules job 5
in VM-3, however job 5 is optimal only with VM-1. As there
is not enough resources available in the VM pool of VM-1, the
scheduler is forced to schedule it in VM-3 although it knows
that it is less efficient.

At time t = 5, job 6 arrives and it is scheduled in VM-2
within the reservation time window as the other permissible
cluster configurations using the VM types cannot meet its
deadline. When job 7 arrives at time, t = 105 it is reserved
and scheduled in VM-1 within its reservation time window. At
time t = 160, when job 8 arrives, the scheduler identifies that
it is optimal with VM-1, however as there is not enough VMs
in VM-1, it schedules it in VM-3 as the reservation of job
8 starts within the current reservation time window of VM-
3. When job 9 arrives, it gets reserved on VM-1 to start at
t = 225 as it is optimal with VM-1. However, when job 10
arrives at t = 220 it overrides job 9 by possessing higher
priority and hence job 9’s reservation is cancelled and job 10
is reserved and scheduled at t = 225.

After job 11 arrives at time t = 230 and gets scheduled
at t = 250, the reservation time window needs to be updated
for VM-1. The scheduler compares the priority based on the
cost and identifies job 11 as the time window deciding job and
schedules it at time t = 250. Subsequently, job 9’s reservation
is also made at the earliest possible, t = 357 within the new
reservation time window. When job 12 arrives, the scheduler
identifies that it is optimal with VM-2 and it is reserved at the
earliest possible time t = 302 and at that time the reservation
time window for VM-2 is also updated with job 12. We note
that job 13 is optimal with VM-1, however it gets reserved
and scheduled only with VM-3 as it has stronger deadline
requirements that only VM-3 can satisfy given the available
resources in the other pools. Job 14 arrives at t = 430 and
gets reserved and scheduled at t = 450 which also updates the
reservation time window of VM-2. However, Job 15 which is
optimal with VM-1 needs to be scheduled with VM-3 due
to lack of available resources in VM-1 pool. Thus the VM-
aware scheduler minimizes the overall resource usage cost
even though some jobs violate their per-job optimality.
VM-aware Schedule with Reconfiguration-based VM man-
agement: For the same workload shown in Table VI, with the
reconfiguration-based VM pool management, the allocation

Job id type arrival
time

deadline VM No
VMs

start end

1 4 0 270 1 10 0 250
2 4 0 150 1 20 0 132
3 2 0 275 2 20 0 264
4 3 0 475 3 20 0 461
5 1 0 185 3 20 0 170
6 1 5 310 2 20 0 302
7 1 105 250 1 30 132 225
8 1 160 500 3 10 170 492
9 1 215 850 1 20 357 831
10 1 220 400 1 20 225 357
11 1 230 650 1 20 250 624
12 2 240 460 2 40 302 450
13 1 400 800 3 10 461 783
14 2 430 730 2 20 450 714
15 4 460 700 3 20 492 662

TABLE VI: VM-aware schedule
Job id type arrival

time
deadline VM No

VMs
start end

1 4 0 270 1 10 0 250
2 4 0 150 1 20 0 132
3 2 0 275 2 20 0 264
4 3 0 475 3 20 0 461
5 1 0 185 1 70 0 172
6 1 5 310 1 40 0 270
7 1 105 250 1 30 132 225
8 1 160 510 1 30 172 502
9 1 215 850 1 20 357 831
10 1 220 400 1 20 225 357
11 1 230 650 1 20 250 624
12 2 240 460 2 20 264 529
13 1 400 800 1 30 400 734
14 2 480 730 2 20 529 773
15 4 460 700 1 20 460 592

TABLE VII: Schedule with Reconfiguration-based VM Management

of the VMs in each pool is based on the current workload
characteristics. For the example simplicity, we do not show the
reconfiguration process in detail, instead we assume that the
reconfiguration is performed and illustrate the example with
the efficient schedule obtained by the VM-aware scheduler
with the reconfigured VM pools. In Table VII, we note that all
the jobs of job type 1 and job type 4 are scheduled using their
optimal VM type VM-1. Similarly type 2 and type 3 jobs also
obtain their optimal VM types VM-2 and VM-3 respectively.


