Mining Billion-Node Graphs Patterns and Algorithms

Christos Faloutsos
CMU

Thank you!

- Panos Chrysanthis
- Ling Liu
- Vladimir Zadorozhny
- Prashant Krishnamurthy

Resource

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining
System)

- www.cs.cmu.edu/~pegasus

- code and papers

Roadmap

\Rightarrow • Introduction - Motivation

- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Graphs - why should we care?

Food Web
[Martinez '91]

> Internet Map [lumeta.com]

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)

- web: hyper-text graph
- ... and more:

Graphs - why should we care?

- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
- Subject-verb-object -> graph
- Many-to-many db relationship -> graph

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?
- To spot anomalies (rarities), we have to discover patterns

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?
- To spot anomalies (rarities), we have to discover patterns
- Large datasets reveal patterns/anomalies that may be invisible otherwise...

Graph mining

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns
- So, let's look at the data

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99] internet domains

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

internet domains

Solution\# S.2: Eigen Exponent E

Eigenvalue

Exponent $=$ slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- A2: power law in the eigenvalues of the adjacency matrix

Solution\# S.2: Eigen Exponent E

Eigenvalue

Exponent $=$ slope

$$
E=-0.48
$$

May 2001

Rank of decreasing eigenvalue

- [Mihail, Papadimitriou '02]: slope is $1 / 2$ of rank exponent

But:

How about graphs from other domains?

More power laws:

- web hit counts [w/ A. Montgomery]

epinions.com

And numerous more

- \# of sexual contacts
- Income [Pareto] -'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- 'Black swans’

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- degree, diameter, eigen,
- triangles
- cliques
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles

Solution\# S.3: Triangle 'Laws’

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

X-axis: \# of participating triangles
Y: count (\sim pdf)
0^{5} is (CMU)

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

X-axis: \# of participating triangles
Y: count (\sim pdf)
s is (CMU)

Triangle Law: \#S. 4 [Tsourakakis ICDM 2008]

X-axis: degree Y-axis: mean \# triangles
n friends -> $\sim n^{1.6}$ triangles

Degree
.tsos (CMU)

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)
Q : Can we do that quickly?

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)
Q : Can we do that quickly?
A: Yes!
\#triangles $=\mathbf{1 / 6 ~ S u m ~}\left(\lambda_{\mathrm{i}}{ }^{3}\right)$
(and, because of skewness (S2), we only need the top few eigenvalues!

Triangle Law: Computations

 [Tsourakakis ICDM 2008]Wikipedia graph 2006-Nov-04
$\approx 3,1 \mathrm{M}$ nodes $\approx 37 \mathrm{M}$ edges

$1000 x+$ speed-up, $>90 \%$ accuracy

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
C. Faloutsos (CMU)

31

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
C. Faloutsos (CMU)

32

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
C. Faloutsos (CMU)

33

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
C. Faloutsos (CMU)

EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos Faloutsos: EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

$$
A=U \Sigma U^{T}
$$

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- Eigenvectors of adjacency matrix
- equivalent to singular vectors (symmetric, undirected graph)

EigenSpokes

- EE plot:
$2^{\text {nd }}$ Principal component
- Scatter plot of scores of u1 vs u2
- One would expect
- Many points @ origin
- A few scattered \sim randomly

u1
$1^{\text {st }}$ Principal component

EigenSpokes

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
- Many points @ origin
u2

EigenSpokes - pervasiveness

- Present in mobile social graph
- across time and space
- Patent citation graph

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or near-
 bipartite-cores, loosely connected

EigenSpokes - explanation

Near-cliques, or near-bipartite-cores, loosely connected

So what?

- Extract nodes with high scores
- high connectivity
- Good "communities"

C-BIG'12
C. Faloutsos (CMU)

47

Bipartite Communities!

patents from same inventor(s) `cut-and-paste’ bibliography!

magnified bipartite community

C-BIG' 12
C. Faloutsos (CMU)

(maybe, botnets?)

Victim IPs?

Botnet members?

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- degree, diameter, eigen,
- triangles
- cliques
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Observations on weighted graphs?

- A: yes - even more 'laws'!

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

Observation W.1: Fortification

More donors, more \$?

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': $1.01<\mathrm{iw}<1.26$

More donors, even more \$

In-weights

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)

- and Jon Kleinberg (Cornell sabb. @ CMU)

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter $\sim \mathrm{O}(\log \mathrm{N})$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$

- What is happening in real data?

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter $\sim\left(\mathrm{H}_{\mathrm{L}} \mathrm{I}\right)$
- diameter $\sim \mathrm{O}($ rug $\log \mathrm{N})$

- What is happening in real data?
- Diameter shrinks over time

T. 1 Diameter - "Patents"

- Patent citation network
- 25 years of data
- @1999
- 2.9 M nodes
- 16.5 M edges

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

- Q: what is your guess for
$\mathrm{E}(\mathrm{t}+1)=? 2$ * $\mathrm{E}(\mathrm{t})$

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that
$\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})$
- Q: what is your guess for
$\mathrm{E}(\mathrm{t}+1)=?$? $\mathrm{E}(\mathrm{t})$
- A: over-doubled!
- But obeying the "Densification Power Law"

T. 2 Densification - Patent Citations

- Citations among patents granted
- @1999
- 2.9 M nodes
- 16.5 M edges
- Each year is a datapoint

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

T. 3 : popularity over time

\# in links

Post popularity drops-off - exponentially?

T. 3 : popularity over time

\# in links
(log)

days after post (log)

Post popularity drops-off - expon e^{\dagger} ally? POWER LAW!
Exponent?

T. 3 : popularity over time

\# in links
(log)

days after post (log)

Post popularity drops-off - expor ent ally? POWER LAW!
Exponent? -1.6

- close to -1.5: Barabasi's stack model
- and like the zero-crossings of a random walk

C-BIG'12
C. Faloutsos (CMU)

66

-1.5 slope

J. G. Oliveira \& A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. Nature 437, 1251 (2005) . [PDF]

T.4: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

Pedro O. S. Vaz de Melo, Leman
Akoglu, Christos Faloutsos, Antonio A. F. Loureiro PKDD 2010

Probably, power law (?)

No Power Law!

'TLaC: Lazy Contractor'

- The longer a task (phonecall) has taken,
- The even longer it will take

Data Description

- Data from a private mobile operator of a large city
- 4 months of data
- 3.1 million users
- more than 1 billion phone records
- Over 96% of 'talkative' users obeyed a TLAC distribution ('talkative': >30 calls)

Outliers:

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Belief Propagation
- Tensors
- Spike analysis
- Problem\#3: Scalability
- Conclusions

E-bay Fraud detection

w/ Polo Chau \& Shashank Pandit, CMU [www'07]

E-bay Fraud detection

E-bay Fraud detection

E-bay Fraud detection - NetProbe

C-BIG' 12
C. Faloutsos (CMU)

78

E-bay Fraud detection - NetProbe

Compatibility matrix

	F	A	H
\mathbf{F}		99%	
A	99%		
H		49%	49%

Popular press

IㅣㅇㅕN

The Washington plost

 Los Angeles ©imesAnd less desirable attention:

- E-mail from 'Belgium police’ ('copy of your code?')

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Belief Propagation
- Tensors
- Spike analysis
- Problem\#3: Scalability
- Conclusions

GigaTensor: Scaling Tensor Analysis Up By 100 Times Algorithms and Discoveries

U Evangelos Abhay Christos
Kang Papalexakis Harpale Faloutsos

KDD'12

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
- Hyperlinks \&anchor text [Kolda+,05]

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
- Sensor stream (time, location, type)
- Predicates (subject, verb, object) in knowledge base

(48M) verbs
subjects
(26M)

objects (26M)
C. Faloutsos (CMU)

NELL (Never Ending Language Learner) data Nonzeros $=144 \mathrm{M}$

Problem Definition

- How to decompose a billion-scale tensor?
- Corresponds to SVD in 2D case

Problem Definition

- Q1: Dominant concepts/topics?
\square Q2: Find synonyms to a given noun phrase?
- (and how to scale up: |data|> RAM)

NELL (Never Ending
Language Learner) data
Nonzeros $=144 \mathrm{M}$
objects (26M)

Experiments

- GigaTensor solves $100 x$ larger problem

Number of
nonzero
= I / 50

A1: Concept Discovery

- Concept Discovery in Knowledge Base

A1: Concept Discovery

$\begin{array}{r} \text { Noun } \\ \text { Phrase } 1 \end{array}$	Noun Phrase 2	Context
Concept 1: internet file data	Web Protocol" protocol software suite	$\begin{array}{r} \text { 'np1' 'stream' 'np2' } \\ \text { 'np1' 'marketing' 'np2' } \\ \text { 'np1' 'dating' 'np2' } \\ \hline \hline \end{array}$
Concept 2: credit Credit library	Credit Cards" information debt number	'np1' 'card' 'np2' 'np1' 'report' 'np2' 'np1' 'cards' 'np2'
Concept 3: health child home	Health System provider providers system	$\begin{array}{r} \text { 'np1' 'care' 'np2' } \\ \text { 'np' 'insurance' 'np2' } \\ \text { 'np1' 'service' 'np2' } \end{array}$

A2: Synonym Discovery

(Given)
Noun Phrase
pollutants
(Discovered)
Potential Synonyms
dioxin, sulfur dioxide, greenhouse gases, particulates, nitrogen oxide, air pollutants, cholesterol

disabilities	infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries
vodafone	verizon, comcast
Christian history	European history, American history, Islamic history, history
disbelief	dismay, disgust, astonishment

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Belief propagation
- Tensors
- Spike analysis
- Problem\#3: Scalability -PEGASUS
- Conclusions

Rise and fall patterns in social media

- Meme (\# of mentions in blogs)
- short phrases Sourced from U.S. politics in 2008
"you can put lipstick on a pig"

"yes we can"

C. Faloutsome (heyrs)

Rise and fall patterns in social media

- Can we find a unifying model, which includes these patterns?
- four classes on YouTube [Crane et al. '08]
- six classes on Meme [Yang et al. '11]

Rise and fall patterns in social media

- Answer: YES!

- We can represent all patterns by single model

In Matsubara+ SIGKDD 2012

Main idea - SpikeM

- 1. Un-informed bloggers (uninformed about rumor)
- 2. External shock at time nb (e.g, breaking news)
- 3. Infection (word-of-mouth)

Time $\mathrm{n}=0$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}$

Time $n=n_{b}+1$

Infectiveness of a blog-post at age n :
$\beta \quad$ - Strength of infection (quality of news)
$f(n)$ - Decay function

Main idea - SpikeM

- 1. Un-informed bloggers (uninformed about rumor)
- 2. External shock at time nb (e.g, breaking news)
- 3. Infection (word-of-mouth)

Time $\mathrm{n}=0$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}+1$

Infectiveness of a blog-post at age n :
$\beta \quad$ - Strength of infection (quality of news)
$f(n)$ - Decay function
$f(n)=\beta * n^{-1.5}$

SpikeM - with periodicity

- Full equation of SpikeM

$$
\begin{gathered}
\Delta B(n+1)=\frac{p(n+1)}{\text { Periodicity }} \cdot\left[U(n) \cdot \sum_{t=n_{b}}^{n}(\Delta B(t)+S(t)) \cdot f(n+1-t)+\varepsilon\right] \\
\begin{array}{c}
\text { Bloggers change their } \\
\text { activity over time } \\
\text { (e.g., daily, weekly, } \\
\text { yearly) }
\end{array} \\
\text { C. Faloutsos (CMU) }
\end{gathered}
$$

Details

- Analysis - exponential rise and power-raw fall

Details

- Analysis - exponential rise and power-raw fall

Tail-part forecasts

- SpikeM can capture tail part

"What-if" forecasting

"What-if" forecasting

-SpikeM can forecast not only tail-part, but also rise-part!

- SpikeM can forecast shape of upcoming spikes

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Belief propagation
- Spike analysis
- Tensors
- Problem\#3: Scalability -PEGASUS
- Conclusions

Scalability

- Google: $>450,000$ processors in clusters of ~ 2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro 2003]
- Yahoo: 5Pb of data [Fayyad, KDD'07]
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce - hadoop (open-source clone) http://hadoop.apache.org/
解

Roadmap - Algorithms \& results

\Rightarrow| | Centralized | Hadoop/
 PEGASUS |
| :--- | :---: | :---: |
| Degree Distr. | old | old |
| Pagerank | old | old |
| Diameter/ANF | old | HERE |
| Conn. Comp | old | HERE |
| Triangles | done | HERE |
| Visualization | started | |

HADI for diameter estimation R.

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs $\mathbf{O}\left(\mathbf{N}^{* *} \mathbf{2}\right.$) space and up to $\mathrm{O}\left(\mathrm{N}^{*} * 3\right)$ time - prohibitive ($\mathrm{N} \sim 1 \mathrm{~B}$)
- Our HADI: linear on E ($\sim 10 \mathrm{~B}$)
- Near-linear scalability wrt \# machines
- Several optimizations -> 5x faster

CarnegieMellon

YahooWeb graph (120Gb, 1.4B hodes, 6.6 B edges)

- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- Largest publicly available graph ever studied.

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)
-7 degrees of separation (!)
-Diameter: shrunk

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Q: Shape?

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

C-BIG'12
C. Faloutsos (CMU)

Radius Plot of GCC of YahooWeb.

CarnegieMellon

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .
C. Faloutsos (CMU)114

Conjecture:
EN

$\{D E$ ξ_{ξ} 路

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Conjecture:

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .

Running time - Kronecker and Erdos-Renyi
Graphs with billions edges.

Roadmap - Algorithms \& results

	Centralized	Hadoop/ PEGASUS
Degree Distr.	old	old
Pagerank	old	old
Diameter/ANF	old	HERE
Conn. Comp	old	HERE
Triangles		HERE
Visualization	started	

Generalized Iterated Matrix Vector Multiplication (GIMV)

PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. (ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up).

Generalized Iterated Matrix details = Vector Multiplication (GIMV)

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ...)

Example: GIM-V At Work

- Connected Components - 4 observations:

Example: GIM-V At Work

- Connected Components

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

Stable tail slope after the gelling point

C. Faloutsos (CMU)

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Problem\#3: Scalability
\Rightarrow - Conclusions

OVERALL CONCLUSIONS low level:

- Several new patterns (fortification, triangle-laws, conn. components, etc)
- New tools:
- belief propagation, gigaTensor, etc
- Scalability: PEGASUS / hadoop

OVERALL CONCLUSIONS high level

- BIG DATA: Large datasets reveal patterns/ outliers that are invisible otherwise

References

- Leman Akoglu, Christos Faloutsos: RTG: A Recursive Realistic Graph Generator Using Random Typing. ECML/PKDD (1) 2009: 13-28
- Deepayan Chakrabarti, Christos Faloutsos: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1): (2006)

References

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4): (2008)
- Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: Information Survival Threshold in Sensor and P2P Networks. INFOCOM 2007: 1316-1324

References

- Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: Mining large graphs and streams using matrix and tensor tools. Tutorial, SIGMOD Conference 2007: 1174

References

- T. G. Kolda and J. Sun. Scalable Tensor Decompositions for Multi-aspect Data Mining. In: ICDM 2008, pp. 363-372, December 2008.

References

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. PKDD 2005: 133-145

References

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, GraphScope: Parameterfree Mining of Large Time-evolving Graphs ACM SIGKDD Conference, San Jose, CA, August 2007

References

- Jimeng Sun, Dacheng Tao, Christos Faloutsos: Beyond streams and graphs: dynamic tensor analysis. KDD 2006: 374-383

References

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, Fast Random Walk with Restart and Its Applications, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos, Center-Piece Subgraphs: Problem Definition and Fast Solutions, KDD 2006, Philadelphia, PA

References

- Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

Project info

Www.cs.cmu.edu/~pegasus

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Cast

Akoglu, Leman

Beutel, Alex

Chau, Polo

Kang, U

McGlohon, Mary

Prakash, Aditya

Papalexakis, Vagelis

Tong, Hanghang
C. Faloutsos (CMU)

141

OVERALL CONCLUSIONS high level

- BIG DATA: Large datasets reveal patterns/ outliers that are invisible otherwise

