
Ontology-based Integration of Adaptive Educational
Systems

Sergey Sosnovsky1, Antonija Mitrovic2,
Danielle Lee1, Peter Brusilovsky1, Michael Yudelson1

1University of Pittsburgh, School of Information Sciences,
135 North Bellefield ave., Pittsburgh, PA, 15260, USA
{sas15, hyl12, peterb, mvy3}@pitt.edu,

http://www.sis.pitt.edu/~paws/
2Dept. of Computer Science and Software Engineering, University of Canterbury

Private Bag 4800, Christchurch 8140, New Zealand
Tanja.Mitrovic@canterbury.ac.nz

http://www.cosc.canterbury.ac.nz/tanja.mitrovic/ictg.html

Abstract. With the growth of adaptive educational systems available to
students, semantic integration of user modeling information from these
systems is emerging into an important practical task. Ontologies can serve as
the major representational framework for such integration. In this paper, we
report an experiment on integration of domain models of two different
adaptive systems. The differences in domain representations require use of
manual mappings provided by human experts. The structure of domain
ontology helps to refine the resulting mappings and align human expertise.

1 Introduction

The expansion of WWW, as a major infrastructure for information and service delivery
brings unmatched opportunities for dissemination of adaptive educational technologies.
With the growing number of adaptive Web-based educational systems (AWBES) it
becomes realistic to have several AWBES available to assist a student in the same domain.
This opportunity comes with challenges for several AWBES working with the same
student to exchange information about the student. Traditionally, adaptive educational
systems focus on the modeling of student’s knowledge in the domain, which includes a
particular representation of the domain structure in terms of its elementary units and
evaluation of student’s knowledge of these units. The mediation of such user modeling
components will require target systems to achieve a certain level of mutual understanding
of the domain semantics. Once the systems agree on the domain model, they can exchange
student models for equivalent or related parts of the domain and include it into the
adaptive inference.

One of the first steps in this direction would be the implementation of the domain
models with the help of ontologies, which express the shared view on the domain
semantics and come with a full package of technologies developed within the framework
of the Semantic Web initiative. If the student models of two systems rely on the common
domain ontology, they can be exchanged and consistently interpreted when necessary.
OntoAIMS project provides a good example of such integration [1].

Several research teams have generalized this approach to the level of architectures for
user model semantic integration. Mitrovic and Devedzic [2] propose M-OBLIGE, an

architecture for ITS interoperability based on the central ontology used as a reference point
by the local ITS ontologies. Niederée et al. [3] describe the Multi-Dimensional Unified
User Context Model (UUMC) and the creation of a user modeling server providing the
commonly-represented user information to multiple adaptive systems. Heckmann [4]
developed UbisWorld, an infrastructure for cross-system ubiquitous personalization on the
basis of shared ontologies.

Unfortunately, the practice of AWBES is still far from the use of common ontologies.
Although the designers of AWBES more and more frequently choose to represent the
domain models as ontologies, they tend to employ different ontologies for the same
domain. In this case, to perform semantic integration of the user models, one has to apply
ontology mapping techniques [5]. The mapping between the domain ontologies can be
later used as a translation component for user model mediation. Sosnovsky et al. [6]
describe the implementation of such approach for translation between two overlay models
of student knowledge based on two different ontologies.

In addition, many AWBES do not yet employ ontologies for domain representation. In
many cases, implemented technologies for adaptation and user modeling rely on
formalisms, different from the conceptual networks, which are the core components of
ontologies. The semantic integration of such systems requires manual mapping of
underlying domain models into each other. However, we argue that even in this case
ontologies could be useful as a common denominator and facilitate future integration.

In this paper, we present a case of domain model mapping in the area of database
programming. To support students working with two AWBES for SQL language, we have
to integrate two very different domain models. One of the AWBES uses an overlay model
of students’ knowledge based on an ontology, while the other implements the domain
model as a set of constraints. During integration, we used the ontology underlying the first
system as the reference model for constraint mapping. We report the results of a small
experiment evaluating the results of manual mapping provided by several experts and
show how the ontology structure can help to align the manually provided expertise.

The rest of the paper is structured as follows. In Sections 2 we briefly describe the two
systems used in the study. Sections 3 and 4 discuss the ontology and the constraint-based
domain model. Section 5 presents the mapping experiment. Finally, Section 6 concludes
the paper with the discussion and future plans.

2 System descriptions

Two existing adaptive educational systems for the SQL domain have been chosen as an
example of AWBES semantic integration.

2.1 SQL-Guide

SQL-Guide is an AWBES helping students to practice SQL skills. A typical SQL-Guide
problem description contains a set of predefined databases and a desired output, for which
a student is asked to write a matching query (see Fig. 1). The system evaluates student’s
answer and provides simple feedback. All problems in SQL-Guide are dynamically
generated using a set of parameterized templates. An average template is capable of
generating several dozens of unique SQL problems with the predefined level of difficulty
and the same set of related concepts.

To assist students in choosing the appropriate problem to practice, SQL-Guide employs
an adaptive hypermedia technique called adaptive annotation. Every problem in SQL-
Guide is annotated with an adaptive icon reflecting the progress of the student with the
learning material underlying this problem. The CUMULATE user modeling server keeps

track of all answers the student has given to SQL-Guide’s problems and computes the
long-term model of his/her knowledge for the related concepts. SQL-Guide requests the
state of the model and dynamically annotates problems with the appropriate icons. The
student’s progress is double-coded: as the knowledge level grows, the icon fades and the
bar level rises. By means of this abstraction, SQL-Guide delivers to a student two kinds of
information: where the progress has been made (higher bar level) and where the attention
should be focused (brighter target color). The checkmarks over the problem icons
designate problems that at least once have been solved correctly. To help a student
understand the meaning of annotations, QuizGuide dynamically generates mouse-over
hints for all icons. A more complete description of the system can be found in [7, 8].

Fig. 1 The interface of SQL-Guide

2.2 SQL Tutor

SQL-Tutor is a constraint-based intelligent tutoring system that helps university-level
students learn SQL. The system contains definitions of several databases, and a set of
problems and the ideal solutions to them. In order to check the student’s solution, SQL-
Tutor compares it to the correct solution, using domain knowledge represented in the form
of constraints. At the beginning of a learning session, SQL-Tutor selects a problem for the
student to work on. When the student submits a solution, the system analyzes the solution,
identifies mistakes (if there are any), and provides adaptive feedback. When the current
problem is solved, or the student requires a new problem to work on, the pedagogical
module selects an appropriate problem based on the student model.

The interface, illustrated in Fig. 2, has been designed to be robust, flexible, and easy to
use. It reduces the memory load by displaying the database schema and the problem text,
by providing the basic structure of the query, and also by providing explanations of the
elements of SQL. The main page is divided into three areas. The upper part displays the
text of the problem being solved, while the middle part contains the clauses of the
SELECT statement, thus visualizing the goal structure. Students need not remember the
exact keywords used and the relative order of clauses. The lowest part displays the schema
of the chosen database. Schema visualization is very important; all database users are
painfully aware of the constant need to remember table and attribute names and the
corresponding semantics as well. The motivation here is to remove from the student some
of the cognitive load required for checking the low-level syntax, and to enable the student
to focus on higher-level, query definition problems. SQL-Tutor was evaluated in 11 studies

since 1998, which proved the system’s effectiveness [9-11]. All the studies showed that
SQL-Tutor is successful in supporting students’ learning.

Fig. 2. The interface of SQL-Tutor

3 Ontology used by SQL-Guide

Every problem template (and naturally every problem) in SQL-Guide is indexed with
several concepts from the SQL Ontology, which was developed as a collaborative effort
between the PAWS Lab of the University of Pittsburgh, and the ICT Group of the
University of Canterbury. The main purpose of this ontology is to support the development
of adaptive educational content for SQL and facilitate the integration of educational
systems in this domain, while ensuring the objective modeling of SQL semantics. The
ontology can be accessed at http://www.sis.pitt.edu/~paws/ont/sql.owl. It is a light-weight
OWL-Full ontology, with more then 200 classes connected via three relations: standard
rfs:subClassOf (hyponymy relation) and a transitive relation pair sql:isUsedIn – sql:uses,
which models the connection between two concepts, where one concept utilizes another.
Fig. 3 gives some examples of relations.

Fig. 3. Example of relations from SQL Ontology

The level of granularity of the terminal concept in the SQL ontology was chosen to
support the adequate modeling of students’ knowledge with the necessary details. At the
same time, our goal was not the comprehensive representation of the current SQL standard,
therefore certain parts of the domain stay out of the scope of this ontology. We designed
the ontology in Protégé 3.3.1 (Fig. 4). It is still being refined, although the main structure
of the ontology is determined.

<sql:WhereClause> <rdfs:subClassOf> <sql:Clause>
<sql:SelectStatement> <rdfs:subClassOf> <sql:Statement>
<sql:WhereClause> <sql:isUsedIn> <sql:SelectStatement>
<sql:SelectStatement> <sql:uses> <sql:WhereClause>

Fig. 4. SQL Ontology

4. Constraint-based model of SQL-Tutor

SQL-Tutor is the first in the family of systems developed at the Intelligent Computer
Tutoring Group (ICTG), which use Constraint-Based Modeling (CBM) to model domain
and their students [12]. Domain knowledge is represented in form of constraints, which
specify basic domain principles that must be satisfied by any correct solution. A constraint
consists of two conditions: the relevance condition specifies solution features for which
the constraint is relevant, while the satisfaction condition specifies additional features
which a solution must posses in order to be correct. An example constraint is “If you are
driving in New Zealand (the relevance condition), you should be on the left side of the road
(the satisfaction condition)”. Each condition may be a logical combination of simple tests.

The constraint set in SQL-Tutor contains about 700 constraints, which check for
syntactic and semantic correctness of the solution. Fig. 5 illustrates two constraints, used
in the study reported in Section 5. Constraint 16 is a syntactic constraint; it is relevant
when the student has specified the HAVING clause in his/her query (referred to as ss). In
this case, the solution must also contain the GROUP BY clause (tested in the satisfaction
condition). The constraint contains a message that may be displayed to the student if the
constraint is violated. The last element of the constraint is the name of the concept (in this
case, GROUP BY) that the constraint covers.

SQL-Tutor is not capable of solving the problems posed to the student. Instead, it
evaluates solutions on their semantics by comparing the student’s solution to the pre-
specified, ideal solution (is). Constraint 635 is relevant if the WHERE clause exists in
both ss and is, with is containing a condition using the NOT IN predicate and a nested
SELECT statement, but when the student has an alternative way of specifying the same
condition, based on the EXISTS predicate (and a nested SELECT). The satisfaction
condition of the constraint makes sure that the student is using the negative version of the

predicate. There are additional constraints that will check other aspects of the solution;
each constraint focuses on a very narrow part of the domain.

The constraints are modular and problem-independent. There is no one-to-one mapping
between problems and constraints; a large number of constraints would be relevant for
each problem. Constraint violations indicate errors in the solution, and the system provides
the messages attached to violated constraints as feedback to students. SQL-Tutor uses the
student model to adaptively select problems at the right level of complexity for the student.

Fig. 5. Two example constraints

5 Semantic Integration Experiment

The fundamental differences in the domain models of the two systems make reliable
automatic alignment of these models rather impractical. A well-established set of ontology
mapping techniques cannot be applied to this task due to the unique nature of SQL-Tutor’s
constraints. A constraint is not directly related to a single concept or a sub-tree of the
ontology; instead it models the syntactic or semantic relations between various concepts.
The development of the algorithm even for partial resolution of the modeling
discrepancies between ontologies and constraint-based models is not a trivial task.

To investigate the feasibility of integrating the two systems, we decided first to
determine the mapping provided by several experts for a limited set of constraints into
concepts of the SQL ontology. Six experts participated in the experiment: two instructors
teaching relational database courses, two PhD students who are teaching assistants, and
two PhD students regularly using SQL. Each expert was asked to find the most relevant
concepts for 20 constraints, which were selected to cover both different parts of SQL and
the variety of constraint types. Every expert had hierarchical layout of the ontology. The
task was to pick for every provided constraint relevant concepts from the ontology and
assign them with the weights (low/medium/large) designating the importance of the
relation between the constraints and the concept. The time for this task was not limited.
The experts also specified their levels of expertise in SQL, knowledge engineering and
constraint-based modeling, summarized in Table 1.

Table 1. Levels of relevant expertise
Expertise in... SQL Knowledge Engineering Constraints
Expert1 Medium Low Low
Expert2 High Low Low
Expert3 High Low Low
Expert4 Medium High Low
Expert5 Medium High Low
Expert6 High High High

(16 "You have to specify the grouping in the GROUP BY clause before you can
specify how to restrict grouping in the HAVING clause!"
(not (null (having ss)))
(not (null (slot-value ss 'group-by)))
“GROUP BY")

(635 "Check the condition involving the nested SELECT!"
(and (not (null (where ss))) (not (null (where is)))

(match '(?*d1 ?a1 "NOT" "IN" "(" "SELECT" ?d5 "FROM" ?t ?*d2)
 (where is) bindings)
(not (member "IN" (where ss) :test 'equalp))
(member "EXISTS" (where ss) :test 'equalp)
(match '(?*d3 ??n "EXISTS" "(" "SELECT" ?a2 "FROM" ?t ?*d4)
 (where ss) bindings))

(equalp ?n "NOT")
"WHERE")

5.1 Evaluation of Manual Mapping

Although manual mapping by experts is regarded as the golden standard comparing to the
mapping acquired automatically, there are several important problems with this approach.
Two, arguably, most important of these problems are: it is error-prone and subjective. As a
result, there is generally a high level of disagreement between experts.

The data analysis confirmed this phenomenon once again. For example, for constraint
16 (Figure 5) the two experts with the highest knowledge of SQL specified different sets
of concepts: Expert A specified five concepts (Having Clause, Group By Clause, Where
Clause, Aggregate Functions and Condition), while expert B only specified the initial two
concepts. Furthermore, they did not agree even on the weights assigned to those two
concepts, with expert A assigning large weights to both of them, while expert B assigned a
large weight to the Having Clause, and a medium weight to the Group By Clause. Four
experts only specified those two concepts (but with different weights), while two
remaining experts had additional concepts too.

Overall, our experts used 61 ontology concepts for mapping. Although the average
number of concepts a single expert used per constraint was only 3.1 (sd=1.1), the number
of unique concepts used by all experts per constraint varied from 6 to 12. For ten
constraints more than half mappings have been provided only by one of the six experts,
which means, for the half of the constraints no agreement have been reached on more than
a half of the mappings. Moreover, for two constraints no single mappings have been
found, that would be agreed upon by the majority of the experts (4 out of 6).

To numerically express the agreement between the experts, we computed the matching
ratios for every pair. The ratio is essentially the percentage of mapping cases provided by
the first expert, on which he/she has agreed with the second expert. For example, if the
expert1 found 100 mappings, out of which 50 have been confirmed by the expert2, the
rating of agreement of the first expert to the second is 50/100 = 0.5. The average rating of
agreement varied from only 40% to 66%.

5.2 Evaluation of Ontologically-Enhanced Expertise

More detailed analysis showed that the experts approached mapping in two different ways:
some experts provided very laconic set of mappings, others tended to over-specify the
conceptual maps of constraints. The total number of mappings varied from 40 to 81. In
order to align the manually created mappings, we employed the taxonomic structure of the
SQL ontology. We used three main heuristics to refine mappings:

- If an expert maps a constraint to all children of a single concept, such mappings are
substituted by the mapping “constraint – parent concept”;

- If the minority of experts map a constraint to a child of the concept chosen for the
same constraint by the majority of experts, the majority vote is taken: the mappings
are modified to the “constraint – parent concept”

- If the minority of experts map a constraint to a parent of the concept chosen by the
majority for the same constraint, and there is no sibling concepts mapped to the same
constraint, the majority vote is taken: the mappings are modified to the “constraint –
child concept”.

The ontology-enhanced mappings result an increases expert agreement. The pairwise t-
test demonstrated a statistically significant difference between the original agreement
ratings (M = 0.52±0.046) and the agreement ratings for ontology-aligned expertise (M =
0.59±0.032); t(5) = 3.705; p = 0.014.

6 Discussion

We have presented an example of semantic integration of two AWBES employing
different adaptation technologies and different domain models. The magnitude of diversity
of the underlying domain models prevents us from using existing automatic techniques for
semantic integration. Instead we rely on the manual mapping of domain models provided
by human experts. We conducted a small experiment and analyzed the results of manual
mapping. The experiment showed a very high level of disagreement between the experts.
However the application of very basic inference rules exploiting taxonomic relation
between the ontology concepts allows us to significantly improve the mapping results.
Such ontological inference overcomes overly specific/general mappings and align the
manually-provided expertise. The resulting ratings of agreement are still far from
acceptable. We plan to further refine the mapping and extend it to map the entire domain
models. Another important direction of this project is the implementation of protocols for
user authentication, remote application call, user modeling information exchange etc.

References

1. Denaux, R., Dimitrova, V., Aroyo, L. Integrating Open User Modeling and Learning Content
Management for the Semantic Web. In, Ardissono, L., Brna, P., and Mitrovic, A., (eds.), 10th
Int. Conf. User Modeling, Edinburgh, Scotland, UK: Springer, 2005, pp. 9-18.

2. Mitrovic, A., Devedzic, V. A Model of Multitutor Ontology-based Learning Environments.
Continuing Engineering Education and Life-Long Learning, 14, 3 (2004), 229-245.

3. Niederée, C., Stewart, A., Mehta, B., Hemmje, M. A Multi-Dimensional, Unified User
Model for Cross-System Personalization. Workshop on Environments for Personalized
Information Access at AVI'2004, Gallipoli, Italy, 2004, pp. 34-54.

4. Heckmann, D. Ubiquitous User Modeling. Berlin, Germany: Akademische
Verlagsgesellschaft Aka GmbH, 2006.

5. Kalfoglou, Y., Schorelmmer, M. Ontology Mapping: the State of the Art. The Knowledge
Engineering Review, 18, 1 (2003), 1-31.

6. Sosnovsky, S., Dolog, P., Henze, N., Brusilovsky, P., Nejdl, W. Translation of Overlay
Models of Student Knowledge for Relative Domains Based on Domain Ontology Mapping.
In Luckin, R., Koedinger, K.R., and Greer, J., (eds.), 13th Int. Conf. Artificial Intelligence in
Education, Marina Del Ray, CA, USA: IOS Press, 2007, pp. 289-296.

7. Sosnovsky, S., Brusilovsky, P., Lee, D.H., Zadorozhny V., Zhou X. Re-assessing the value of
adaptive navigation support in e-learning context. In: J. Kay & P. Pearl (eds.) Proc. 5th Int.
Conf. Adaptive Hypermedia and Adaptive Web-Based Systems, 2008 (accepted).

8. Brusilovsky, P., Sosnovsky S., Lee, D.H., Yudelson, M., Zadorozhny V., Zhou X. An open
integrated exploratorium for database courses. In: E. Menasalvas & A. Young (eds.) Proc.
13th Conf. Innovation and Technology in Computer Science Education, 2008 (accepted).

9. Mitrovic, A., Martin, B., Suraweera, P. Intelligent tutors for all: Constraint-based modeling
methodology, systems and authoring. IEEE Intelligent Systems, special issue on Intelligent
Educational Systems, 22(4), 38-45, July/August 2007.

10.Mitrovic, A., Suraweera, P., Martin, B. and Weerasinghe, A. (2004) DB-suite: Experiences
with Three Intelligent, Web-based Database Tutors. Journal of Interactive Learning
Research, 15(4), 409-432, 2004.

11.Mitrovic, A., Ohlsson, S.: Evaluation of a Constraint-based Tutor for a Database Language. Int.
J. on Artificial Intelligence in Education, 10(3-4), 238-256, 1999.

12. Ohlsson, S.: Constraint-based student modeling. In: Greer, J.E., McCalla, G (eds): Student
modeling: the key to individualized knowledge-based instruction, 167-189, 1994.

