
In: G. Davies and C. Owen (eds.) Proceedings of WebNet'2000, World Conference of the WWW and Internet,

San Antonio, TX, Oct. 30 - Nov. 4, 2000, AACE, pp. 69-74.

Concept-Based Courseware Engineering for Large Scale

Web-based Education
Peter Brusilovsky

Carnegie Technology Education, Carnegie Mellon University

4615 Forbes Avenue, Pittsburgh, PA 15213, USA
plb@cs.cmu.edu

This paper describes a concept-based course maintenance system that we have developed
for Carnegie Technology Education. The system can check the consistency and quality of

a course at any moment of its life and also assist course developers in some routine

operations. The core of this system is a refined approach to indexing the course material
and a set of “scripts” for performing different operations.

Introduction

One of the major functions of a modern Web-based education (WBE) system is to store

and deliver over the Web t h e  course content (explanations, examples, quizzes,
assignments, etc.). A large variety of course support tools and systems [Brusilovsky &
Miller 2000, in press; Robson 1999] is now available for creating, storing and delivering
the course content. The problem, that we are addressing in this paper, is that the vast
majority of these tools is oriented implicitly to a single author content development

model. In this model a syllabus and all course material is developed mainly by a single
author in about the same way as a single-author textbook. Single author is usually able to

develop a consistent course and update once a year to time without a serious loss of
consistency. The situation with the large-scale Web-based education model that is
emerging now is quite different. Large-scale modern courses includes hundred to
thousands of learning items that are produced by a team of developers. Through the life
of the course it could be updated and restructured several times to accommodate to the
needs of different audiences. The difference between single-author and large-scale Web-
based courses is a very similar to a difference between small programs developed by
single programmer and large programming complexes developed by a team of software
developers. Producing large-scale artifacts either programs or courses requires special
support. Large software systems require the use of software engineering technologies and
tools. Large-scale courses require the user of courseware engineering technologies and

tools.

A special kind of courseware engineering tools is concept-based consistency maintenance

tools. Consistency maintenance could be performed for a course where all learning items



are extended with metadata that describes prerequisites and outcomes of every item in
terms of concepts, topics, or learning objectives. The very idea is simple. A consistency
checking mechanism can parse a course in the same order as a student and at any point
check whether the “next step” is a good one. If the next step is not really good, it can
report problems. For example, it can find a situation when an assessment requires

knowledge that are not presented yet or, vice versa, when presented knowledge are never
assessed. While these kinds of course checking seems too simple to require a special
system they are absolutely necessary for any serious course developer teams such as
Carnegie Technology Education, a WBE “arm” of Carnegie Mellon University. .A
concept-based course maintenance system is as important for courseware engineering as
a version tracking system for software engineering.

This paper describes a concept-based course maintenance system that we have
developed for Carnegie Technology Education. The system can check the consistency
and quality of a course at any moment of its life and also assist course developers in some
routine operations. The core of this system is a refined approach to indexing the course
material and a set of “scripts” for performing different operations. Next section describes

the indexing part and the section after that talks about scripts. We conclude with some
speculation about prospects of our work.

What do we want from indexing

There are several possible ways to index the content from very advanced and powerful to

very simple. The approach we choose supports the functionality that we find essential
while being still simple enough to used by course developers.

Most of the existing indexing approaches are based on prerequisite-outcome concept

indexing like the one used in Piano-Tutor [Capell & Dannenberg 1993] or InterBook
[Brusilovsky, Eklund & Schwarz 1998]. Plain indexing does not distinguish different
types of information items and different roles in which a concept can be involved in a
learning item. It also does not take into account relationships between concepts. Plain
indexing has shown to be useful in simple domains or with coarse-grain level of domain
modeling. All systems with plain indexing known to the author use about 50 concepts
and have homogeneous learning items (lessons, chapters, or pages).

The three major extension of plain indexing approach are introductions of item types,
concept roles, and links between concepts. Item types let the system distinguish several
types of indexable information items. Concept roles can specify different roles of the
items in regard to concepts. Both mechanisms let the course developer specify more

knowledge about the content and support more powerful algorithms. Item types are
simpler and easier for indexing, however, it’s mainly suitable for reasonably small
information items that can be easily typed. Role-based indexing approach is more



powerful – it can deal with cases where different concepts play different roles for same
information item. It could be used with coarse-grain items. A few systems with
exceptionally rich information space use both concept typing and role-based indexing.
Inter-concept links is a serious advancement. Its major impact is a more precise student
modeling, prerequisite tracking, and richer navigation. Negative side of it is hard

authoring. Developing a connected concept model of a domain takes considerable time of
several domain experts.

Since the major goal of indexing of CTE courses was the possibility to help course
designers with developing and modifying courses, we were interested to represent as
much information about items, as it is reasonable for the authors and decided to all
extensions: types, roles, and links.

The core of our framework are concepts – elementary pieces of learning material.
The size of a concept is not fixed and may depend of a course. We have several kinds of
teaching operations in our courses – presentations, examples, assignments, and multiple-
choice questions. The type of the item is a part of the index for the item. The rest of the
index is formed by concept-role pairs. We use four kinds of roles (in comparison with

only two in InterBook and Piano-Tutor): light prerequisite, strong prerequisite, light
outcome and strong outcome. In comparison with “real” or strong prerequisites and
outcomes that tells that “deep” knowledge of a concept are produced or demanded by a
learning item, the light prerequisites and outcomes deal with surface knowledge about a
concept. We have to introduce these four roles to accommodate the needs of real courses.

The course concepts are connected to form a heterarchy. We use one non-typed
parent-child link. This link has to express the value usually expressed by “part-of” and
“attribute-of” links. Creating a parent-child hierarchy without the need to type links is
relatively easy The meaning of this hierarchy is simple – the knowledge of a parent
concept is a sum of knowledge of child concepts plus some “integration extra”. There are
two major uses of this parent-child heterarchy:

• A parent concept could replace a list of all child concepts in indexing (for any role).
This will make the indexing more compact and easy in use.

• When monitoring individual students, the current level of knowledge of 30 higher-
level concepts provides a better view on the student progress than the state of
knowledge of 300 terminal-level concepts.

The use of indexing for courseware engineering

Prerequisite checking

Prerequisite checking is the one of the key benefits of concept indexing. It is important

for original course design as well as for a redesign when learning items are moved or



changed. With multiple-level indexing we are able to check prerequisites for all learning
items. Prerequisite check for linear courses is performed by a sequencing engine that
simulates the process of teaching with a student model. It scans learning items in the
order specified by the author, updates the student model, and checks the match between
the current state of the model and each following item. The following prerequisite

problems could be checked:
• Presentation prerequisites: a presentation item can be understood because all

prerequisite concepts are already presented up to the required level
• Question prerequisites: all concepts involved into all questions designed for a

presentation page are learned at least up to the advanced level when the page is
completed.

• Example prerequisites: all concepts involved into an example are learned to the
required level right in the section where an example is presented or before; strong
prerequisite concepts are learned at least up to the advanced level, weak prerequisite
concepts are learned at least up to the surface level

• Exercise prerequisites: at the point where an exercise is presented, all strong

prerequisite concepts are learned and demonstrated with examples, all weak
prerequisite concepts are at either learned or side-demonstrated with examples.

The prerequisite checking on the level of course items is especially important for

programming courses that usually have very few direct prerequisite relationships between
concepts. Most of the concepts could be introduced independently from other concepts.

That’s why there could be many possible ways to teach the same subject. However,
adopting a particular approach to teaching the subject usually results in lots of indirect
prerequisites “hardwired” into educational material. Presentation-level prerequisites are
one of the cases of “unnecessary” prerequisites. Another case is example-level or
problem-level prerequisites. A concept A does not depend of concept B and could be
learned either before or after B. However, in the current course material all available
examples or exercises that use B also include A. As a result, the material requires A to be
learned before B. All these kind of prerequisites are very hard to keep in mind. The only
way to ensure that the course is built or redesigned with no prerequisite conflicts is
careful prerequisite checking.

Finding content “holes”

A failure to meet the prerequisites could mean either a problem with structure (the item

that could meet the prerequisite does exist in the courses but placed after the checked
item) or a problem with content (no item to cover the prerequisite). The system can
distinguish these two cases and provide a helpful report of a problem. While the former



problem could be often resolved by restructuring the material, the latter indicates a need
to expand the course material.

Consolidation of presentations

In a well-designed course each concept has to be presented in full in a single place

(subsection or section). It is the place where the student will be returning to refill the gaps

in his/her knowledge of a concept. This place is called the concept “host sections”. A
concept could be introduced before its host section (to enable the student to learn or
practice other concepts) but not too many times (hardly more than twice) and not after the
full presentation. The system can check these rules using indexing. (Note: The same is
not true about examples. It’s quite desirable to have several examples for each concept).

Question placement and repositioning

Well-designed quiz questions have one or two outcome concepts. Thus, the system can

automatically place new questions into the proper topics by finding the section where the
last of these concepts is presented in full. With automatic placement we can delegate
course and question design to several authors and get a consistent course. If the course is
re-structured the questions can be automatically repositioned.

Guidelines for question design

By matching concepts presented in a topic and concepts assessed by the topic’s question

pool it is easy to identify a set of concepts that can never be assessed. The identified
deficit could drive the question design process. Same procedure can also ensure that the
questions in the pool are reasonably evenly distributed among the concepts (to avoid the
situation where 80% of questions are testing 20% of concepts).

Matching presentations with examples and exercises

It is possible to check to what extent examples and exercises matches their place in the

course and to what extent they cover the presented content. It can be done by matching
the set of concepts presented in the section with the joint sets of goal concepts of
exercises and examples located in this section. In an ideal situation each section should

present, demonstrate (by examples) and assess about the same sets of concepts. If there
are too many concepts that are presented but not covered by examples or exercises, the
coverage is low. If there are too many concepts that are covered by exercises or examples
but not presented in the section (if there is no prerequisite conflict they could be simply
presented in previous sections) then the relevance is low. Small mismatch between
presentations, examples, and concepts is not a problem, but bigger mismatch in either



direction is a sign of poorly designed section and an indication that something has to be
redesigned.

Checking course design against the real course

An author could start the course design with a design document that lists all essential

concepts to be introduced in each section. The design document could be stored

separately from the course. The system can check how the real course matches the
original design by comparing where the author planned to introduce the key concepts and
where they are really introduced; how the set of target concepts is supported by
questions, examples, and exercises.

Presentation density and sectioning

While different concepts may require different amount of presentation, the overall

complexity of a content fragment could be measured by the number of concepts
presented in it. By controlling the number of concepts presented in each section we can
identify two types of problems: presentation density, where too many concepts are
presented in a relatively short section, and uneven distribution of content where number
of concepts subsections of the same level

Controlling the difficulty of examples and exercises

Prerequisite indexing of exercises and examples specifies minimal requirements for the

concept level that have to be met to make an example or an exercise ready to be taken. Its
legal, however that some concepts have higher level of knowledge then it is prescribed.
For example, a goal concept of an exercise has to be learned up to the advanced level. In
real life, the student reaches this exercise when he or she has already seen several
examples with this concept or even solved an exercise involving this concept. It makes
this exercise easier for that student. Generally, we can estimate difficulty or learning item
by measuring a difficulty between the target state of the goal concepts and the starting
state. If all goal concepts or an exercise have been already applied in previous exercises,
the exercise is quite simple. If none of them have even be used in examples, the exercise

is very difficult. The difficulty of an exercise is not a constant – it depends on the place of
the exercise in the course. It makes sense to control the difficulty of examples and
exercises in the course to make sure that none example or exercise is too simple or too
difficult.

There is research evidence that there exists an optimal difficulty of a learning item
for each individual student (i.e., that the student learns best when he or she is presented
with learning items with difficulty closed to optimal. We can’t use this finding directly
since our courses are static – all students go the same way. But in some future we can



found that different groups of users can handle different difficulties. It could be used for
making better-targeted courses for special categories of users.

Implementation
The first version of the system was completed in 1999 and evaluated on one of CTE
courses. With a help of the system we were able to find and fix a number of problems in
the course. The system is written in Java and supports the following functions:
• Prerequisite checking

• Finding content “holes”
• Consolidation of presentations
• Question placement and repositioning

While the system turned out to be very useful, we have encountered a problem. In
addition to a good number of real large and small problems the system has also reported a
number of problems that no real teacher would count as a problem. It turned out that the
course consistency rules behind the system are too rigid. In real life teachers can perfectly
tolerate a number of small inconsistencies in the course. Moreover, in some cases the
course may be formally “inconsistent” with a purpose. A teacher may want to provoke

student thinking by presenting an example that is based on a material that is not yet
presented but could be understood by analogy with the learned material. Our quick
answer to this problem was color coding the course problem report (Figure 1). In
particular, the messages that always report a real problem in the course are colored red
not to be missed. The messages that report a problem that often may be tolerable are
colored green. We use three to four colors in our reports. A real solution to this problem
would be a more precise set of checking rules that is adapted to the course “teaching
approach” and, probably, a better indexing.

Prospects

We plan to continue the work on course maintenance system adding features and

checking it with an incrementally larger volumes of course material. We see a very
important mission in this process. The outcome of this process is not only consistent
courses of higher quality, but also a large volume of carefully indexed learning material.
Thus we are decreasing bootstrapping cost of more flexible sequencing technologies. We
hope that this process will eventually lead to the acceptance of more flexible approaches
in large-scale Web-based education.



Figure 1. A fragment of a problem report for a Java course

References

[Brusilovsky, Eklund & Schwarz 1998] Brusilovsky, P., Eklund, J., & Schwarz, E.
(1998). Web-based education for all: A tool for developing adaptive courseware.
Seventh International World Wide Web Conference. Computer Networks and ISDN
Systems, 30 (1-7), 291-300.

[Brusilovsky & Miller 2000, in press] Brusilovsky, P., & Miller, P. (2000, in press).
Course Delivery Systems for the Virtual University. In Tschang, T., & Della Senta, T.

(Eds.), Access to Knowledge: New Information Technologies and the Emergence of
the Virtual University. Amsterdam: Elsevier Science.

[Capell & Dannenberg 1993] Capell, P., & Dannenberg, R.B. (1993). Instructional
design and intelligent tutoring: Theory and the precision of design. Journal of
Artificial Intelligence in Education, 4 (1), 95-121.

[Robson 1999] Robson, R. (1999). WWW-based course-support systems: The first
generation. International Journal of Educational Telecommunications, 5 (4), 271-282.


