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Introduction  

The idea of self-improving intelligent educational systems is almost as old as the field of intelligent educa-
tional systems itself. The origin of this research stream could be traced to the paper of Tim O’Shea “A self-
improving quadratic tutor” (O'Shea, 1982), which was published 40 years ago in the famous special issue 
of International Journal on the Man-Machine Studies. This special issue later re-published in a separate 
book (Sleeman & Brown, 1982), which arguably launched the very field of intelligent tutoring systems 
(ITS) and defined its research agenda for years ahead. O’Shea’s paper was somewhat different from the 
rest of the papers in the special issue. Unlike the majority of researchers who believed that intelligent edu-
cational systems should be created by domain experts through knowledge elicitation and engineering, 
O’Shea argued that an intelligent system should be able to improve itself not just by constant engagement 
of experts but by using data collected in the process of its practical application. While his self-improving 
tutor started with an expert-engineered teaching strategy in the form of production rules and assertions, the 
system also included a pro-active self improvement cycle. The idea of this cycle was to select an educational 
objective, make an experimental change in teaching strategy, statistically evaluate the resulting perfor-
mance over time, and make necessary update if the change is successful. 

While the idea of self-improving ITS and the original paper produced a stream of follow-up work, for many 
years this stream was really small and not easily visible in a large body of work on intelligent educational 
systems. The main obstacle was a rather low level of practical use of these systems. Without a large number 
or real users working with an intelligent system year by year the idea of automatic experimentation and 
constant improvement was hard to implement. The situation, however, gradually changed over the years. 
As the field of ITS became more mature, some systems, like the famous Algebra Tutor, got exposed to 
hundreds and thousands of real users year by year (Koedinger, Anderson, Hadley, & Mark, 1997) and the 
need to constantly improve the knowledge representation and algorithms behind these systems was brought 
back to the agenda of ITS researchers. Several research teams demonstrated that learning data routinely 
collected by ITS could offer valuable insights on how the systems could be improved and suggested specific 
approaches to data-driven improvement of ITS (Martin, Mitrovic, Koedinger, & Mathan, 2011; Pavlik, 
Cen, Wu, & Koedinger, 2008).   

Following these pioneer work, the use of learner data to improve the performance of ITS and other educa-
tional systems (i.e., MOOCs) gradually emerged as one of the most popular topics of research in several 
research communities including Artificial Intelligence in Education (AI-Ed), Educational Data Mining 
(EDM), and Learning Analytics and Knowledge (LAK) with dozens papers published every year.  Yet, the 
absolute majority of research on this topic focus on just one way of using this data. Whether the learner 
data is used to improve domain models or to adjust parameters of student modeling and personalization 
approaches, the focus is on enhancing the “machine” intelligence side of ITS. Yet, every intelligent system 
could be improved in two different ways. One way, indeed, is to ehance the internal intelligence of the 
system. The other way, however, is to empower the intelligence of the system user through more advanced 
and intelligent interfaces. While developers of intelligent systems frequently over-focus on enhancing the 



 

internal functionality of the systems, the research in the area of intelligent user interfaces demonstrate that 
augmenting human intelligence through a more powerful, AI-driven interface could remarkably improve 
the overall efficiency of an intelligent system. In other words, best results could be achieved when human 
and artificial intelligence work together, not when when all efforts are spent on improving the AI and the 
power of human intelligence is wasted due to a primitive interface. Getting back to the problem of improv-
ing ITS using data of past learners, an interesting challenge is how this data could be used to advance the 
interface side of ITS so that it could empower human learners, better engage them into interacting with the 
system, and improve the overall performance. In this chapter, we review one of the approaches, which could 
efficiently use data of past learners to offer a more efficient interface for future learning: social navigation. 
In the following sections we introduce the idea of social navigation (Farzan & Brusilovsky, 2018) and 
review several studies exploring social navigation in different contexts. 

Social Navigation 

Social navigation is a group of approaches belonging to a broader field of social information access 
(Brusilovsky & He, 2018). Social information access can be formally defined as a stream of research that 
explores methods for organizing users’ past interaction with an information in order to provide better access 
to information to the future users. Various information traces left by past users of interactive systems form 
highly valuable “community wisdom”, which could be harnessed to support various kinds of information 
access such as search, browsing, and recommendations. Within this stream of research, social navigation 
approaches (Farzan & Brusilovsky, 2018) focus on using “community wisdom” to assist their users in the 
process of browsing and navigation, i.e., selecting the most relevant information item or link among many 
possible options.  

The ideas of social navigation are frequently traced back to the pioneer Read Wear and Edit Wear system 
(Hill, Hollan, Wroblewski, & McCandless, 1992). This system visualized the history of authors’ and read-
ers’ interactions with a document enabling new users to quickly locate the most viewed or edited parts of 
the document. Social navigation in information space as well as the term social navigation was introduced 
two years later by Dourish and Chalmers as “moving towards cluster of people” or “selecting subjects 
because others have examined them” (Dourish & Chalmers, 1994). The pioneer systems Juggler (Andreas 
Dieberger, 1997) and Footprints (Wexelblat & Mayes, 1999) used the ideas of social navigation to help 
users navigate in two kinds of information spaces – a Web site and a text-based virtual environment (known 
as MUDs and MOOs). Both systems attempted to visualize “wear” traces left by the system users in order 
to guide future users. In addition to this indirect social navigation, Juggler also implemented several types 
of direct social navigation (for example, allowing users to guide each other directly through chat). This 
allowed Dieberger (1997) to start the process of generalizing the ideas of social navigation. Further gener-
alization of the field of social navigation was propelled by several workshops, which gathered like-minded 
researchers, and publications, which streamed from these workshops (A. Dieberger, Dourish, Höök, 
Resnick, & Wexelblat, 2000; Höök, Benyon, & Munro, 2003; Munro, Höök, & Benyon, 1999). As a result 
of this active ideas exchange, the understanding of what forms the “community wisdom” in social naviga-
tion systems was considerably expended to include a variety of options – from past user “clicks” to rich 
explicit feedback and resource annotations. 

In the context of learning and education, the ideas of social navigation have been introduced in the context 
of research on Web-based education. Early generation of Web-based education systems (Khan, 1997) sup-
ported the learning process by providing learners with access to a variety of educational resources. In this 
context, it was natural to explore the technology of social navigation, which was known to help users in 
accessing most appropriate information. First attempts to introduce social navigation in Web-based educa-
tion has been made by Dron, Boyne, Mitchell, and Siviter (2000) and Kurhila, Miettinen, Nokelainen, and 



 

Tirri (2002). The EDUCO system built by Kurhila and his colleagues (Kurhila et al., 2002) could be con-
sidered as a classic example of exploring the ideas of social navigation in the education context. EDUCO 
was a collaborative learning environment which implemented social navigation support to enrich learners’ 
experiences in Web-based learning. EDUCO supported synchronous social navigation by visualizing the 
presence of others in the learning environment.  As users of the system were accessing the educational Web 
documents, others can view their presence as dots next to the documents in a visualized document space 
(Figure 1).  The color of the documents represented the popularity of the document among the users based 
on how many times they have been clicked. Furthermore, users can leave comments associated with docu-
ments that are visible to others navigating to the document. 

 

Figure 1. Representation of documents and users within EDUCO learning environment 

The early examples of educational social navigation and the increased popularity of research on “collective 
wisdom” and social information access helped to engage several other research teams working on similar 
topics. In just a few years, the number and the diversity of explored social navigation approaches in educa-
tional context increased remarkably (Brusilovsky, Chavan, & Farzan, 2004; Hübscher & Puntambekar, 
2004; Mitsuhara, Kanenishi, & Yano, 2004; Tattersall et al., 2004; Vassileva, 2004). Since that time, both 
the variety and the complexity of research om this topic has been gradually increasing. However, due to the 
practical focus of this paper, we do not intend to provide a comprehensive overview of this research stream. 
Instead, we focus on three well-explored and extensively used systems, which applied different kinds of 
social navigation to educational processes. We believe that a review of these systems can provide both, a 
list of useful social navigation techniques and a demonstration how the the research on social navigation in 
educational context has gradually advanced from simple ideas explored in proof-of-concept systems to 
more complex designs validated by large-scale field studies.  

Knowledge Sea II 

Knowledge Sea II (Brusilovsky et al., 2004), originally developed in 2003-2005, provides a good example 
of how early ideas of “traffic-based” social navigation explored in the pioneer systems Juggler (Andreas 
Dieberger, 1997) and Footprints (Wexelblat & Mayes, 1999) could be applied in the educational context.  
Knowledge Sea II uses ideas of social navigation to support both browsing and visualization access to 



 

information. The visualization-based access is provided through an 8 by 8 cell-based map of the information 
space. This map is assembled using Kohonen’s Self-Organized Map (SOM) technology (Kohonen, 1995) 
from about 25,000 Web pages devoted to C programming language. Every cell on a resulting map provides 
access to a subset of these pages. By clicking on a cell, the user can open it and get access to the set of 
pages located in this cell (Figure 2). An interesting property of SOM technology is that it places similar 
pages into the same or adjacent cells on the map, so the result presents a reasonably good semantic map of 
the information space. The cells of the map are marked by keywords, which are most frequently found in 
the corresponding pages of each cell and by landmark resources located in the cell. The map itself was re-
used from the earlier version of the system, Knowledge Sea (Brusilovsky & Rizzo, 2002). In the Knowledge 
Sea II project, we added a layer of social navigation on top of the map. 

 

 
Figure 2. Social navigation support in the Knowledge Sea II system. The knowledge map is shown on the top left 
and an opened cell is shown on the right. The list of links to the tutorial roots is shown on the bottom left. A darker 
blue background indicates documents and map cells that have received more attention from users within the same 
group. Human icons with darker colors indicate documents and cells that have received more attention from the user 
herself.  

The browsing-based access is provided through the hierarchical structure of the C programming tutorials 
assembled by the system. Each tutorial site is organized as a tree with table of contents, sections, and sub-
sections. The home page of Knowledge Sea II provides access to the root pages of all these tutorials. Start-
ing from that, users can navigate down to the sections or subsections of interest assisted by social navigation 
visual cues (Figure 3).  



 

The community wisdom in Knowledge Sea II is collected by tracking two kinds of page-centric user infor-
mation: timed page visits (traffic) and page annotations. This information is used to generate a history-
enriched environment with two types of visual cues, which change the appearance of links on the pages and 
map cells presented to the user (Figure 2). These cues are based on the two kinds of tracked information 
and are known respectively as traffic- and annotation-based social navigation support. The system generates 
appropriate cues individually for each user by analyzing past individual activities of the user and other users 
belonging to the same group. 

 

Figure 3. Social navigation in C-programming tutorial pages, from (Farzan & Brusilovsky, 2008) 

Traffic-based navigation support attempts to express how much attention the user herself and other users 
from the same group paid to each of the25,000 pages that the system monitors. The level of attention for a 
page is computed by considering both number of visits and time spent on the page and is displayed to the 
user through an icon that shows a human figure on a blue background. The color saturation of the figure 
expresses the level of the user’s own attention while the background color expresses the average level of 
group attention. The higher the level of attention is, the darker the color appears to the user. The contrast 
between colors allows the user to compare her navigation history with the navigation of the entire group. 
For example, a light figure on a dark background indicates a page that is popular among group members 
but remains under-explored by the user. The color of the map cell and the human figure shown in the cell 
is computed by integrating attention parameters of all pages belonging to that cell.  

Annotation-based navigation support uses a similar approach to represent the number of page annotations 
made by the users from the same group. Users can annotate each page in the system. Users can also indicate 



 

that a note is praise (i.e., the page is good in some aspect). While users make annotations mainly for them-
selves, Knowledge Sea II allows all users of the same group to benefit from collective annotation behavior. 
The yellow annotation icon shown next to the blue traffic icon shows the density and the “praise tempera-
ture” of annotations for each page. The more annotations a page has, the darker the yellow background 
color appears to the user. The temperature shown on a thermometer icon indicates the percentage of praise 
annotations.  

Both types of social visual cues were provided to guide users to most relevant and useful pages as implic-
itely indicated by the past users’ activity. Traffic-based social navigation was provided in the very first 
version of Knolwedge Sea II (Brusilovsky et al., 2004) and could be considered as a direct application of 
the early ideas of social navigation in education contexts. Annotation-based social navigation was added in 
the second version (Farzan & Brusilovsky, 2005b). This feature was motivated by our experience with the 
first version. As we found during first classroom studies, despite its overall effectiveness, traffic-based 
social navigation was subject to the avalanche effect, which has not been well-studied at that time. User 
clicks and page visits were an important, but not reliable signs of user attention and page importance. Fre-
quently, users clicked on a less relevant page by mistake, attracted by a seemingly relevant title. After 
landing on the page and realizing that it is not helpful, the first visitor backed away. Yet, with traffic-based 
navigation, every visit left a visible trace: the page link annotation became darker, further increasing a 
chance to be visited by future users. As we discovered, simple version of traffic-based social navigation 
lead to creating some “tar pits”, low-value pages with attractive titles, which were falsely indicated as im-
portant by social navigation. The addition of more reliable annotation-based social navigation and devel-
oping a smarter time-based approach to score user page visits (Farzan & Brusilovsky, 2005a) resolved this 
problem. 

The advanced version of Knowledge Sea II with dual sources of social navigation support has been explored 
in many classroom studies. In these studies, we were able to discover and confirm several effects of social 
navigation. We found that a community of students was remarkably good in co-discovering most important 
and valuable pages in the context of the course. Note that only a part of the 25,000 pages extracted from 
multipe tutorials were relevant and useful for our specific C programming course. Even in the classes that 
started with an empty map, we were able to observe most relevant pages and their clusters to be discovered 
relatively fast creating a class-adapted map to guide future users. Moreover, the ability to annotate pages 
and the visualization of annotations through visual cues could considerably increase a chance for an im-
portant page to be noticed. We also found that social visual cues highly influence user navigation behavior. 
Pages which attracted past attention of the users – as revealed by visual cues – have a significantly higher 
chance to be re-visited by users who already explored them and visited by new users. In fact, very popular 
pages visualized by the displayed density of visits and annotations, were more attractive for the users than 
top results in a ranked search list. As we found in a study of social search in Knowledge Sea II, adding 
social visual cues to the ranked list of search results shifts user’s attention from top-3 results in the list to 
most popular pages in this list. We also found that the presence of annotation-based cues doubled an user’s 
chance to follow a specific link. It was clear that the users considered annotation-based as more indicative 
and reliable in finding useful pages. Following our success in using social navigation in Knowledge Sea II, 
we re-used both explored social navigation approaches in another project (Farzan, Coyle, Freyne, 
Brusilovsky, & Smyth, 2007.) An extensive report of our findings in both projects is available in (Farzan 
& Brusilovsky, 2008). 

Progressor 

Our experience with social navigation in Knowledge Sea II project, revealed the importance of the reliabil-
ity of “social wisdom”. Comparing traffic-based traces with annotation-based traces of past behavior, we 
discovered that actions that require higher-level commitments from the past users are both more reliable in 



 

discovering important pages and more influential for the future users. In the Progressor project (Hsiao, 
Bakalov, Brusilovsky, & König-Ries, 2013), we explored another high-commitment traces of behavior: the 
problem-solving traces of students taking the same course. The work on Progressor followed our past at-
tempts to combine open student modeling (Bull & Kay, 2007) and adaptive navigation support 
(Brusilovsky, 2007) to help user in accessing most relevant problems in a programming course. In our first 
attempts, we explored traditional knowledge-driven adaptive navigation support where personalized guid-
ance decisions were made on the basis of manually engineered domain models and personalization algo-
rithms (Hsiao, Sosnovsky, & Brusilovsky, 2010). While we found it highly efficient and engaging 
(Sosnovsky & Brusilovsky, 2015), our concern was that the knowledge-based approach required a consid-
erable engagement of domain experts. By replacing traditional knowledge-based navigation support with 
social navigation support, we hoped that the “community wisdom” could provide an alternative source of 
knowledge for efficient navigation. On the way to find the most appropriate way to process and visualize 
past problem solving behavior in such a way that it could provide efficient help for future users, we explored 
a sequence of design options (Brusilovsky, Hsiao, & Folajimi, 2011; Hsiao, Bakalov, Brusilovsky, & 
König-Ries, 2011; Hsiao et al., 2013). The Progressor system reviwed in this section was the last and the 
most efficient design in this sequence. 

The design of Progressor was motivated by the ideas of Open Social Student modeling and the theories of 
Social Comparizon and Self-Regulated learning. Open Social Student Modeling (OSSM) can be considered 
a social extension of open student modeling. Open student modeling has been suggested as a way to exter-
nalize student models, the key component of any personalized learning systems. While in a traditional per-
sonalized learning system this model is usually hidden from the student and only used by the personalization 
engine to provide adaptation effects, systems with an open student model expose this model to the learner 
and provide an interface for its exploration and possible editing. Open student modeling is known for a 
number of positive effects. It increases the transparency of personalization, helps raise the students’ aware-
ness of their learning performances, and supports meta-cognitive processes (Bull & Kay, 2013). In combi-
nation with adaptive navigation support, it can also efficiently guide students to the appropriate content 
(Sosnovsky & Brusilovsky, 2015). In this context, the idea of Open Social Student Modeling is simply to 
make the content of individual and student models accessible not only to the target student herself, but to a 
broader group of students, for example, students in the same class. The most natural way to do it is through 
social visualization that can visually present the content of multiple student models to the target student in 
a form that enables comparison of her own knowledge to the knowledge of her peers and the class as a 
whole. 

Research in self-regulated learning examines students’ metacognitive strategies for planning, monitoring, 
and modifying their management and control of their effort on classroom academic tasks (Pintrich & De 
Groot, 1990). Self-regulated learning involves self-monitoring to optimally interpret feedback from their 
academic learning process and environment (Zimmerman, 1990). Our work aimed to leverage awareness, 
motivation, and content organization through social visualizations in the hopes of promoting students’ self-
regulated learning behavior. Research in social comparison (Festinger, 1954) has demonstrated that people 
often determine appropriate behavior for themselves by examining the behavior of others, especially similar 
others (Buunk & Gibbons, 2007). Consequently, it has been shown that individuals tend to behave similarly 
to their friends and peers (Cialdini, Wosinska, Barrett, Butner, & Gornik-Durose, 1999). Researchers and 
designers of online systems have used the insights from social comparison research in the study of online 
social behavior.  In the educational domain, the positive impact of social comparison on student perfor-
mance has been reported in several papers (Light, Littleton, Bale, Joiner, & Messer, 2000). However, the 
value of social comparison in the context of personalized learning and navigation support has not been 
studied. Based on the past studies, we hoped that social navigation design that directly enages social com-
parison could increase its impact and positive value. 



 

Figure 4 shows the Progressor interface. The visualization consists of two panes: the left pane displays the 
student’s own progress and the right one displays the progress of any class peer or the whole class, which-
ever is selected from a dropdown menu. Each pane visualizes the respective student’s progress as a pie 
chart. The pie chart representation visually conveys the chronological order of lectures while the size of a 
sector represents the number of problems for each lecture. A lecture may consist of one or several topics, 
which are represented as angular segments placed within the circular sector of the corresponding lecture. 
This representation allows the student to easily estimate the amount of work on each individual topic or 
lecture, while an apparent topical sequence provides a good picture of progress through the course. In ad-
dition to that, the ability to view someone else’s progress allows the student to quickly find the peers who 
can help with a difficult topic or quiz. Finally, the ability to view the average progress of the entire class 
allows the student to relate her progress to that of the whole class and estimate whether she is ahead or 
behind of the class. In addition to serving as OSSM, the Progressor interface provided direct access to 
learning content. Clicking on any topic on the student’s own model (Figure 4, left) or on a peer or class 
model (Figure 4, right) opened a list of practice problems available for this topic. Links to problems have 
been also socially annotated using the same color-coding scheme.  

 

Figure 4. Peers model comparison and social navigation support interface in Progressor. The color of course topics 
indicate students own progress with the topic knowledge (left) and class or peer progress (right). A click on a spe-

cific topic on either side opens a list of practice problems for the topic. 

From a semester-long study cross-compared with previous attempts to organize access to Java problems, 
we learned that the new design of the OSSM interface was very engaging. Students used Progressor exten-
sively. On average, it achieved the highest system usage across all OSSM interface designs surpassing even 
the former champion, JavaGuide (Hsiao et al., 2010). Progressor also engaged students to explore more 
topics and to work on more distinct questions. In addition, the amount of time spent on the system (in terms 
of the sessions) was doubled. To check whether the boost of usage could be credited to the new design, we 
examined student interaction with the peer side of the Progressor interface such as re-sorting, scrolling, and 
accessing the peer list. As before, we found that students interacted with the peer side quite considerably, 



 

comparing their progress with the progress of peers and accessing a considerable volume of content from 
the peer side. Moreover, the more students engaged in interacting with the social features of Progressor, the 
more likely they were to achieve a higher success rate in answering the self-assessment questions. The 
findings were consistent with the subjective evaluation outcome, which demonstrated high satisfaction with 
Progressor (Hsiao et al., 2013). 

Mastery Grids 

Following the success of Progressor and the discovered value of combining social navigation, open learner 
modeling, and social comparison ideas within the same design, we attempted to expand these ideas to a 
more realistic online learning context. One serious limitation of Progressor was its focus on one type of 
learning content, which in our past studies was one type of programming problems. In a more typical online 
learning situation, the student has access to multiple types of learning content: readings, worked examples, 
questions, problems, etc. The first attempt to expand the ideas of Progressor to multiple types of content 
was done in the Progressor+ system (Hsiao & Brusilovsky, 2017). Following the encouraging results of its 
evlaluation, we developed Mastery Grids, an open-source domain-independnt framework for open social 
student modeling and social navigation (Loboda, Guerra, Hosseini, & Brusilovsky, 2014). 

 

Figure 5. MasteryGrid interface for a Database course 

MasteryGrids uses a grid-based social visualization approach pioneered in Progressor+, which allows easy 
comparison of the progress of the student against peer students or against the aggregated progress of all 
students of the class. MasteryGrids uses cells of different color saturation to show knowledge progress of 
the target student, her reference group, and other students over multiple kinds of educational content orga-
nized by topics. Figure 5 shows the “collapsed” version of MasteryGrids’ interface for a database manage-
ment course. Left to right, the first column of the grid ("OVERALL") shows student average progress, and 
the remaining columns show student knowledge progress topic by topic starting from the first topic of the 
database course: "Table Creation". The collapsed version of OSSM grid includes 3 rows. The first row of 
the grid (Me) presents the topic-by-topic knowledge progress of the current student and uses green colors 
of different saturation to represent the level of progress (the darker is the color, the higher the progress). 
The third row (Group) shows the aggregated topic-by-topic progress of the reference group (in this case, 
the whole class) using blue colors of different saturation. The second row (Me vs. Group) presents a topic-
by-topic difference between the student progress and the class progress. The cells in the second row are 



 

green if the student knowledge progress is higher than the class, blue if the class is ahead, and gray when 
both the student and the rest of the class have the same progress. Higher color saturation indicates a larger 
difference. MasteryGrids can be configured to disable the OSSM features turning it into a standard Open 
Student model (OSM), as it can be seen in Figure 5. In the OSM version only the first row with the progress 
of the current student is shown.  

By clicking on any topic cell, the student can access learning content associated with the topic. For example, 
in Figure 5, the student has clicked in a cell of the topic SELECT-FROM-WHERE and the system displays 
two kinds of learning content available for this topic (quizzes and examples) in two rows of content items 
represented as colored cells. By clicking in the content cells, the content (problem or example) will be 
loaded in an overlaid window. The student can access the content by clicking on any of the three rows of 
the topic (i.e., Me, Me vs. group, or Group). The row clicked defines whether the colors of content cells 
(Quizzes/Examples) will represent individual progress, comparison between the individual and the group, 
or the group progress. For example, in Figure 5, the student clicked in the second, differential progress row. 
Thus, the colors of the content cells also show differential progress (resulting in both green and blue cells.)  

The “collapsed” version of the interface is the simplest one available for students. In addition to displaying 
the overall class progress, MasteryGrids can display and compare progress for each or all types of content. 
For example, Figure 6 shows an expanded comparison interface for a Java programming course. Here the 
upper grid (green) shows students own knowledge progress within each type of content, the bottom (blue) 
grid shows class progress, and the middle grid allows detailed comparison for each combination of topic 
and content. The full interface of Mastery Grids allowed the students to choose which resources are visu-
alized and which peer group is used for social comparison. For example, in Figure 6, the student selected 
“class average” as a basis for comparison, but there are many other options, like top 10 students, upper part 
of the class, lower part of the class, etc. The interface also provides an option to show the full anonymized 
ranked grid of individual students with their progress over the course topics. The position of the current 
student in the list is highlited to make the overall class standing more clear. 

 



 

Figure 6. An expanded version of Mastery Grids interface for a Java programming course displaying and comparing 
progress over different types of content. 

Mastery grids interface has been developed for Java (Guerra, Hosseini, Somyurek, & Brusilovsky, 2016), 
Database (Brusilovsky et al., 2016), and Python (Brusilovsky et al., 2018) courses and extensively studied 
in these contexts in many classroom studies. To date, the most extensive study has been done in a database 
course with over a hundred students (Brusilovsky et al., 2016) where the version of Mastery Grids shown 
in Figure 5 was offered as a non-mandatory practice system to be used during students’ study time. Our 
most valuable discovery from this study is a remarkable ability of the social navigation and comparison 
interface to engage and retain students, as compared with a more traditional open student model (OSM) 
interface without the social component. OSSM motivated students to perform significantly more work with 
non-mandatory learning content. In addition, social visualization enabled students in the OSSM group to 
work more efficiently, which could be attributed to the social navigation aspect of our OSSM implementa-
tion. Working with OSSM also positively impacted student learning, significantly improving the learning 
gain of weaker students. This could be attributed to the increased work with the content (as shown by the 
correlation between the amount of work and exam grade). While it is hardly surprising that more work with 
learning content resulted in better learning, it is impressive that we were able to achieve this effect with 
non-mandatory educational content, which the students explore at their own will.  

Social Navigation in Dialogue-based Intelligent Tutoring Systems 

While the majority of work on social navigation (including the examples reviewed above) focused on social 
navigation via link augmentation in virtual environments, such as hypertext, MUDs, and WWW, the early 
promoters of social navigation pointed out that social navigation in real word frequently happening in the 
context of a natural language dialogue (Andreas Dieberger, 1997; A. Dieberger et al., 2000). While the 
research on dialogue-based social navigation received very little attention since the early days (Farrell, 
Rajput, Das, Danis, & Dhanesha, 2010), it could very relevant for the area of Intelligent Tutoring Systems 
due to the increasing popularity of conversational ITS. Intelligent Tutoring Systems with conversational 
dialogue form a special category of educational technologies (Rus, D’Mello, & Graesser, 2013). These 
conversational ITSs are based on explanation-based constructivist theories of learning and the collaborative 
constructive activities that occur during human tutoring. Conversational ITSs have several advantages over 
other types of ITSs. They encourage deep learning as students are required to explain their reasoning and 
reflect on their basic approach to solving a problem. Conceptual reasoning is more challenging and benefi-
cial than mechanical application of mathematical formulas. Furthermore, conversational ITSs have the po-
tential of giving students the opportunity to learn the language of scientists, an important goal in science 
literacy. A student associated with a more shallow understanding of a science topic uses more informal 
language as opposed to more scientific accounts (Mohan, Chen, & Anderson, 2009). The impact of conver-
sational ITSs allegedly can be augmented by the use of social elements such as the OSSM as well as dia-
logue-based social navigation components. For instance, we conjecture that student engagement will in-
crease in conversational ITSs if open learner model and open social student models will be added. We are 
currently working on an NSF-sponsored project that will study the impact of adding open learner models 
and social navigation elements to the DeepTutor conversational ITS. 

Summary, Recommendations, and Future Research 

In this chapter, we introduced the social navigation technology in the context of online education systems. 
Social navigation offers an alternative approach for using large volume of past learners’ data for developing 
self-improving intelligent learning systems. While the majority of work on self-improving ITS focus on 
improving components or the whole system, here we argued that improvements may come from exploiting 



 

the “user community wisdom” which results in improved domain models, student modeling, and personal-
ization algorithms. Indeed, the social navigation approach provides an example of using the “wisdom of 
the crowds” for empowering humans’ own intelligence through a more powerful and intelligent interface. 
A specific goal of social navigation among other interface-focused intelligent interfaces is to help users in 
finding most appropriate learning content among multiple options usually available in an online learning 
system. As the data of our studies shows, the presence of social navigation considerably influences students’ 
navigation behavior successfully guiding them to most useful content. In turn, it positively affects student 
learning performance. By integrating social navigation with open social student modeling, the value of 
social interface could be further expanded. As the studies show, most important impact of the OSSM inter-
face with social comparison is an impressive increase of student engagement and retention, which makes 
OSSM very attractive for contexts where motivation and retention are critical, such as modern MOOCs. 
The literature on self-regulated learning indicates that the individual and social student models could have 
an even more significant positive impact on student learning in self-regulated context. Exploring this direc-
tion, we already demonstrated that OSSM interface considerably improves student ability to assess their 
performance in both absolute and relative sense (Somyurek & Brusilovsky, 2015). However, more exten-
sive longer-term studies are required to assess these effects. 

Taken together, our experience and findings provide important insights on the impact of social navigation 
and open social student modeling. The positive nature of the observe changes and the magnitude of this 
impact demonstrated in several studies encourages us to recommend social navigation in general and a 
MasteryGrids-style integration of social navigation and social comparison interfaces to the developers of 
various kinds of educational systems, especially those focused on more mature learners, self-regulated 
learning context, and non-mandatory practice learning content. Specifically, focusing on Intelligent Tutor-
ing Systems, we recommend replacing a “hard sequencing” interface in this category of systems, which 
dictates which problems should be practiced at any moment, with an opportunity to choose the most relevant 
problem guided by both knowledge-driven intelligent guidance (adapted to students’ own knowledge level) 
and social navigation guidance (adapted to a community of comparable peer learners). This interface will 
engage both artificial intelligence of the ITS and the natural intelligence of its human users. Multiple studies 
demonstrated that this kind of navigation support is more efficient and more attractive for mature learners 
than traditional “sequencing”. Moreover, when student engagement or support for self-regulated learning 
are important, we recommend to use an interface, which integrates social navigation, open student models, 
and social comparison – as suggested in the Progressor and Mastery Grids interfaces. As our studies show, 
it could result in a considerable increase of student engagement and better support of self-regulated learning. 

In our current and future studies, we plan to further explore the value of social navigation and open student 
models in different learning contexts. One direction of our research is focused on exploring a value of 
granularity in OSM and OSSM models. While the projects reviewed in this paper use relatively coarse-
grain “topic-level” student models, we are now running a sequence of studies to explore the value of fine-
grain “concept-level” models (Barria-Pineda, Guerra-Hollstein, & Brusilovsky, 2018). We also continue a 
stream of research, which explores the value of these technologies in contexts where learning content is 
specifically structured in a non-linear form, such as in hierarchical textbooks (Guerra, Parra, & Brusilovsky, 
2013). We hope that our future work will bring more insights on the value of “social visdom” for improving 
online learning and help in developing more efficient systems. 

We also plan to explore the content dynamics in online learning systems with social navigation capabilities 
and investigate how content dynamics (adding new learning objects, deleting some, modifying some) im-
pacts its performance. For instance, when you add a new problem, i.e., learning object, it will might take a 
while for students to explore it and therefore accumulate sufficient “community wisdom”. In extreme cases, 
when you add a new item to an established pool of items in a system with social navigation, the new item 
will likely to be obscured by the previous successful items. In other words, unless the platform pushes 
students somehow to work with new items, the new item will never have a chance to compete with existing, 



 

items which by default might be recommended to the users. It is a typical characteristic of social network 
to make “the rich richer”, i.e., a socially “rich” learning object will get “richer” by the very nature of the 
social navigation mechanism. The system should have ways to balance exploitation versus exploration of 
new, recently added objects and give the chance of “newcomers” to become visible in case they are truly 
valuable for, in this case, learning. 
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