

Adaptive Knowledge-Based Visualization for Accessing Educational Examples

Peter Brusilovsky, Jae-wook Ahn, Tibor Dumitriu, Michael Yudelson
School of Information Sciences, University of Pittsburgh

{peterb, jaa38, mvy3}@pitt.edu

Abstract

A number of research teams are working to organize
personalized access to the modern repositories of
educational resources. The goal of personalized access is
to help students locate resources that match their
individual goals, interests, and current knowledge. The
project presented in this paper is focused on the least
explored way of personalized access – adaptive
visualization. Here, we present the NavEx ADVISE
visualization system, which provides personalized access
to a repository of educational examples. The system
combines spatial, similarity-based visualization with
adaptive annotations of resources. The spatial layout and
the adaptive annotations are generated using a
knowledge-based indexing of examples with domain
concepts.

1. Introduction

Dedicated repositories of educational materials such as
educational digital libraries (DL) and pools of reusable
learning objects are now accumulating a large volume of
educational resources. The abundance of resources
available to students has created a new challenge—how to
help students locate resources that match their individual
goals, interests, and current knowledge.

We first faced this challenge in our WebEx project,
when we developed a repository of about a hundred
annotated program examples for an introductory
programming course [2]. The repository contains lines of
example code that has been annotated by teachers. Once
an example is selected, the WebEx system allows students
to explore it interactively inside a Web browser, by
clicking on the annotated lines of code and reading the
teacher’s explanations. But the question is—how can the
most relevant examples in a repository be located when
there are dozens of examples accessible at any one time?

Our first solution was to apply the adaptive navigation
support approach by using NavEx [9], an adaptive
interface for the WebEx system. It provided a list of links
to all examples and augmented each link with an adaptive
icon that visualized the status of the example, adapted to

the current state of the student's knowledge and history of
past interactions (Figure 1). These icons help students to:
a) distinguish new examples from examples that have
already been partially or fully explored in the past; as well
as to b) distinguish examples that are ready to be explored
from examples that demand prerequisite knowledge the
student lacks.

The problem that we are addressing in this paper is
how to help students to locate examples that are relevant
not only to their current knowledge, but also to their
current learning goal. What if a student has problems with
understanding a specific example and wants to read
explanations for one or more similar examples? Or, in
contrast, what if a student fully understands the
programming constructs explained in a specific example
and now wants to explore an essentially different example
to better cover the content of the course? Unfortunately,
the ordered list of links to examples used in NavEx
offered no help in selecting similar or dissimilar
examples.

Past research on information visualization suggests
that goal-based selection of documents is better supported
by two-dimensional visualization than by a one-
dimensional list. In particular, the Lighthouse system [5]
applied spatial similarity-based visualization and
relevance marking to assist users in finding documents
most relevant to their search goals. Due to the nature of
similarity-based visualization, similar documents were
positioned close to each other and dissimilar far from
each other. This allowed the users to visually receive
better guidance in selecting documents than is usually
provided by a ranked list.

This paper presents our attempt to implement ideas of
adaptive visualization in the context of personalized
access to a repository of annotated program examples. We
present our new visualization interface, NavEx ADVISE,
which combines spatial similarity-based visualization
with adaptive annotations. The similarity-based layout
allows students to easily locate the most similar and
dissimilar examples visually, helping the student to select
examples relevant to their current learning goal. Adaptive
annotations support knowledge-based and progress-based
adaptation. NavEx ADVISE was implemented using
ADVISE 2D, a visualization tool developed by the
authors.

Figure 1 Adaptive navigation support in NavEx system helps students choose the example to browse by

augmenting each example link with an adaptive icon that visualizes the status of the example

The need to provide personalized access to program

examples served as the motivation to develop ADVISE 2D;
however, we attempted to make ADVISE 2D generic
enough so that it can support a range of similar information
access needs. The paper focuses on both NavEx ADVISE, a
specific adaptive visualization system, and ADVISE 2D, a
tool that we have created to support this and similar projects.
The next section presents the user's view of the adaptive
visualization interface in NavEx ADVISE. The remaining
sections present ADVISE 2D and its application to guiding
students through examples with personalized access.

2. Accessing program examples with adaptive
visualization

The visualization-based interface for accessing examples
organizes and displays the whole repository of examples on
a two dimensional example map. Figure 2 shows the map
with its examples distributed according to similarity. Each
rectangle represents an example. The distance between two
documents on the map represents how similar they are to
each other. If their knowledge-level content is similar, they
are placed closer to each other, but if dissimilar, they are
placed farther from each other. It is important to know that
the visualization is based on knowledge-based similarity.
The distance between two examples is determined by

comparing the set of programming concepts presented by
these examples.

Each example bears an adaptive icon that shows the
relevance of this example to the user's current knowledge
and completion of progress through the example. If the user
is not ready to access the example, due to a lack of
prerequisite knowledge, a red X is displayed (Figure 2). If
the user is ready to access an example, then a green bullet is
shown. The fullness of the bullet approximates the user's
progress within the example. An empty bullet shows a
completely new, but ready-to-be explored example. A filled
bullet denotes a fully explored example. The current icon is
determined by the NavEx system, which compares the past
history of the student's interaction with the example to the
concept-level model of knowledge maintained by NavEx.

The spatial layout and adaptive annotations help the users
to locate the most relevant examples. To start working with
an example, the user double-clicks the example box, which
causes a WebEx window to open for interactive exploration
of the selected example.

To better explore the set of examples, users can
manipulate the visualization: zooming in or out with a slide
bar or panning the screen in four directions. In addition,
users can display lines between similar documents and exact
similarity values between pairs of documents.

Figure 2 ADVISE 2D helps students choose the most relevant example by combining adaptive navigation

support with spatial 2D visualization of the example space

These functionalities are important for dealing with an

abundance of documents that may potentially be displayed
in a relatively small window. Finally, the example names
sometimes make the display too crowded to grasp the whole
picture. In such situation, the rectangles with document
titles can be reduced to small icons, as shown in Figure 3. In
this view, the example name is only displayed when a user
moves a mouse cursor over its icon.

3. Similarity-based visualization in ADVISE

The spatial visualization of examples in NavEx was
produced with ADVISE 2D – one of the tools developed in
our lab for the ADVISE project. ADVISE (ADaptive
VISualization for Education) is a suite of web-based,
personalized document-visualization systems for educational
purposes. The goal of the ADVISE project is to help
students find the most relevant educational materials,
through personalized visualization. ADVISE suite includes
three systems with different perspectives and approaches.
ADVISE 2D and ADVISE 3D are similarity-based
document space visualization systems for two- and three-
dimensional spaces, respectively.

They provide spatial document maps where documents
are distributed according to their similarity values. (We refer
to every educational object in this system as a document.)
ADVISE VIBE is an implementation of the VIBE [7]

document visualization approach. It calculates similarities
between documents and POIs (Point Of Interest) or concepts
and determines document positions relative to the positions
of the POIs. ADVISE tools are customizable to different
application contexts and are available from the project home
page (http://ir.exp.sis.pitt.edu/advise)

ADVISE 2D is a generic tool that provides personalized
access to documents using a similarity-based visualization
approach known as spring modeling (see section 3.4 for
details). Icons which represent similar documents are
positioned relatively closer to each other on a two
dimensional map and while those which are different would
be placed more distantly on the map. By consulting the
distribution of the icons and the positions of each of them,
users can make some general assumptions about the contents
of a document even before actually opening it, understand
the relationships between documents in terms of their
contents, and see the overall picture of the documents in the
corpus. The adaptive similarity-based visualization is
produced in several steps: representing document contents as
vectors, loading the vectors into the application, calculating
similarities among document vectors, deciding document
positions on a two dimensional space based on these
similarity values, and finally presenting visual representation
to users.

Figure 3 Simple display for documents

Figure 4 ADVISE 2D architecture

ADVISE 2D was designed as a context-independent

Web-based visualization tool. It can visualize data that has
been loaded from several different applications. Figure 4 is
the architecture of ADVISE 2D. For the purpose of this
project, ADVISE 2D was tuned to work with a repository of
WebEx examples. The remaining part of this section
describes ADVISE 2D and the next section presents use of
the system for personalized access to examples.

3.1. Document representation

Documents in ADVISE 2D are represented as weighted
term vectors in order to calculate the similarities and to place
them in appropriate positions [8]. If a document is a full-text
tutorial or a lecture slide, terms from the document are
extracted and stored in a vector, which represents the
document. If the document is a code example, language
constructs are stored in the vector. Therefore, the whole
corpus can be represented as a matrix with documents in its
rows and terms in its columns. If the corpus contains a total
of M documents and the total number of terms in it is N, an
M by N matrix is constructed (Figure 5). In most cases, few
documents would even come close to containing every term
in the corpus, so the matrix tends to be very sparse, with a
lot of 0’s, which means that there is no occurrence of
another corresponding term in the document.

The value of vector components can be binary or
weighted. A well known TF (term frequency) or TF-IDF
(term frequency multiplied by inverse document frequency)

scheme can be applied for term weights. TF means the
frequency of a term in a document and IDF is an inverse of
the number of documents which have the corresponding
term (Equation 1).

 Term1 Term2 Term3 … Termi
Doc1 w11 w12 w13 … w1j
Doc2 w21 w22 w23 … w2j
… … … … …

Doci wi1 wi2 wi3 … wij

Figure 5 Document-term matrix

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

)(
log),(),(

tdf
D

tdtftdtfidf

tf(d,t): number of occurrences of term t in document d
df(t): number of documents where term t appears
|D|: total number of documents in the corpus

Equation 1 TF-IDF weighting

3.2. Similarity calculation

The cosine similarity coefficient (Equation 2) was used
for calculating inter-document similarities. This relates to
the cosine angle of the two vectors x and y, and ranges from
0 (the two documents being completely dissimilar) to 1 (they
are identical).

∑∑

∑
=

i
i

i
i

i
ii

yx

yx
yxSim

22
),(

Equation 2 Cosine similarity coefficient

3.3. Data communication

ADVISE 2D was designed to work seamlessly with web-
based materials. It can spatially map the materials by their
contents, explore the mapping, and open their contents by
connecting to their URL’s. For this last purpose, it was
implemented as a Java applet and can launch within web
browsers. It loads three types of data to make the
visualization: a) document vectors with titles, b) list of terms,
and c) document URL’s. They are fed into the applet in two
different ways: using <PARAM> tags in HTML- and XML-
based communication with a server. The first method works
in a static manner, which cannot dynamically update the
contents being visualized but the second method makes it

possible for the applet to send a request to the server for new
data, enabling the applet to update the current visualization.
The applet and the server communicate in a predefined
XML-formatted protocol.

3.4. Spatial mapping with the spring model

ADVISE 2D organizes and visualizes documents based
on the spring modeling algorithm. The spring modeling
algorithm or FDP (Force Directed Placement) is a heuristic
approach to graph drawing, based on a hypothetical physical
(mechanical) system in which the graph’s edges are replaced
by springs while the vertices (nodes) are replaced by rings.
The springs attract the rings if they are too far apart and
repel them if they are too close [1; 4]. It can be used to sort
randomly placed nodes into a desirable layout that satisfies
the aesthetics of visual presentation.

2/

)/log(

dCF

CdCF

rr

dss

=

=

Equation 3 The forces formula for the spring model

The forces acting on every node include spring force and

repulsion force. The resultant of these forces can be
calculated and, under the influence of spring force between
connected nodes and repulsion force between unconnected
nodes, the graph will automatically adjust itself until the
system reaches a stable state. It calculates this resultant of
forces by including the spring and repulsion forces that act
on every node, in an iteration of the loop until the graph
reaches a stable state [6]. Equation 3 shows the calculations
of spring force and repulsion force in this spring model. Cs,
Cd, Cr are constants such as spring length, spring stiffness,
spring type, and initial configuration, which control the
forces acting on nodes and their movements.

In ADVISE 2D, both spring forces and repulsion forces
were considered to show their relationships in terms of
similarities. When a system launches and reads in the data
needed, it randomly places every document on the map. The
spring algorithm begins from this state and iterates until it
reaches a stable state. In this stable state, the documents are
arranged according to their similarity values and are then
finally visualized on the map.

4. Customizing ADVISE 2D to work with
program examples

To achieve the goals of our current project, our context-
independent system ADVISE 2D was customized to provide
adaptive knowledge-based visualizations of annotated
program examples. The customized system is referred to as
NavEx ADVISE since both the spatial representation and the
adaptive icons are generated using the knowledge-based

representation of program examples produced by the NaxEx
system [9]. As we mentioned in the introduction, NavEx was
designed to provide personalized access to code examples
through adaptive navigation support. NavEx provides
guidance regarding relevant examples that students should or
shouldn’t explore by displaying an adaptive icon (Figure 7).
To generate this icon dynamically for each example, NavEx
takes into account the programming knowledge presented by
each example, the current state of the student's knowledge,
and his/her past interaction with the examples.

4.1 Knowledge-based example indexing

The key to this functionality is the knowledge-based
indexing of each annotated example with a set of concepts
from the C-programming domain. The concepts used are C
language constructs such as decl_var, void, include,
main_func, etc. The indexing is done automatically by a
domain-specific parser. After all examples are indexed,
concepts of each of the examples are split into prerequisites
and outcomes. Outcomes are concepts that are illustrated by
that example. Prerequisites are concepts that should be
learned before exploring the example. The splitting is
automatic, but it is driven by the teacher’s individual
approach to concept- sequencing within the course. To tune
the indexing to a specific teaching approach, a teacher must
provide a set of representative examples for each course
lecture. More details about the indexing procedure can be
found in [3]. The result of concept indexing and division is
shown in Figure 6.

This knowledge-based example indexing was used by
NavEx ADVISE to produce a spatial layout for the
repository of examples. The concept index of each example
was converted into a term vector as explained in section 3.1.
To produce a course-independent layout, the indexing does
not distinguish prerequisite and outcome concepts, but takes
into account how frequently each concept is found in each
example (and some concepts can present in several places
within the same example). The resulting layout is based on
deep knowledge-level similarity between the examples.

Figure 6 Concept indexing and division

4.2 The adaptive annotation of examples

The adaptive annotation of examples in NavEx ADVISE
was produced using the same icons and algorithms as in the
original NavEx system. Thus the same example in the
NavEx list and on the NavEx ADVISE map bears an
identical annotation at the same moment in time. Both views
provide two kinds of annotation: progress-based and
prerequisite-based. The progress-based annotation shown as
a partially-filled green bullet (Figure 7) is calculated as
simply the percentage of example code lines already
explored by the student, compared to the total number of
annotated lines in this example. Computation of
prerequisite-based “readiness” for an example is based on a
concept-level model of student knowledge. The example is
considered ready for exploration if all of its prerequisite
concepts are already known to the student to a specified
extent. The system approximates the student's level of
knowledge for each concept by monitoring student activities
within the system (i.e., example exploration) and by
consulting a centralized student model that collects
evidences of student knowledge from multiple sources (i.e.,
reading a tutorial section or answering a quiz).

Not ready to be accessed

Ready to be accessed

Figure 7 Annotation clues in NavEx

The adaptive annotations support a natural “flow” for

exploration of concepts and examples. Once a student starts
to work with examples, only those that are ready to be
accessed will have no prerequisites. As a user explores an
example and reviews a certain number of annotations
(defined by a dynamic threshold), an example is considered
to be completed (although their progress may remain below
100%). At the same time, all of the associated concepts are
marked as learned. If there exist some examples whose
prerequisites are now all marked learned, these open up to be
explored and the flow continues on. For more details refer to
[3].

Conclusions

This paper presents our attempts to apply adaptive,
knowledge-based visualization to guide students of
introductory programming courses to most of the items in a
repository of educational examples. We presented the
NavEx ADVISE visualization system, which combines a
spatial similarity-based visualization with the adaptive
annotation of educational objects. Both the spatial layout and
the adaptive annotations are generated by using a

knowledge-based indexing of program examples with
programming concepts. The system was developed by the
targeted customization of the generic ADVISE 2D
visualization tool, which had previously been developed in
our lab.

Both the NavEx and NavEx ADVISE systems are
currently being used in an introductory programming course.
Our earlier exploration of NavEx demonstrated that students
appreciate the guidance provided by adaptive annotations
and that it encourages students to explore significantly more
examples [9]. Our current challenge is to determine the
value of adaptive visualization in its role of supporting
student access to educational examples.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 0447083.

References

[1] Battista, G. D., Eades, P., Tamassia, R., and Tollis, I. G.,
"Algorithms for drawing graphs: an annotated bibliography",
Computational Geometry: Theory and Applications 4, 1994,
pp 235-282.

[2] Brusilovsky, P., WebEx: "Learning from examples in a
programming course", In: Fowler, W. and Hasebrook, J.
(eds.) Proc. of WebNet'2001, World Conference of the WWW
and Internet, Orlando, FL, AACE, 2001, pp 124-129.

[3] Brusilovsky, P., Yudelson, M., and Sosnovsky, S., "An
adaptive E-learning service for accessing Interactive
examples", In: Nall, J. and Robson, R. (eds.) Proc. of World
Conference on E-Learning, E-Learn 2004, Washington, DC,
USA, AACE, 2004, pp 2556-2561.

[4] Eades, P., "A Heuristic for Graph Drawing". Congressus
Numerantium 42, 1984, pp 149-160.

[5] Leuski, A. and Allan, J., "Interactive information retrieval
using clustering and spatial proximity", User Modeling and
User Adapted Interaction 14, 2-3, 2004, pp 259-288.

[6] Liu, X., Shizuki, B., and Tanaka, J., "Dynamic Parameter
Spring Modeling Algorithm for Graph Drawing", In: Proc. of
International Symposium on Future Software Technology
(ISFST2001), Zheng Zhou, China, 2001, pp 52-57.

[7] Olsen, K. A., Korfhage, R. R., Sochats, K. M., Spring, M. B.,
and Williams, J. G., "Visualisation of a document collection:
The VIBE system", Information Processing and
Management 29, 1, 1993, pp 69-81.

[8] Salton, G., Automatic Text Processing, Addison-Wesley
Publishing Co., Reading, MA.

[9] Yudelson, M. and Brusilovsky, P., "NavEx: Providing
Navigation Support for Adaptive Browsing of Annotated
Code Examples", In: Looi, C.-K., McCalla, G., Bredeweg, B.
and Breuker, J. (eds.) Artificial Intelligence in Education:
Supporting Learning through Intelligent and Socially
Informed Technology. IOS Press, Amsterdam, 2005, pp 710-
717.

