
Domain, Task, and User Models for an Adaptive
Hypermedia Performance Support System

Peter Brusilovsky
School of Information Sciences

University of Pittsburgh
Pittsburgh PA 15260

peterb@mail.sis.pitt.edu

David W. Cooper
Antech Systems Inc.

1214 Progressive Dr., Suite 101
Chesapeake, VA 23320 USA
dcooper@antechsystems.com

Abstract
Electronic Performance Support Systems (EPSS) is a
challenging application area for developing intelligent
interfaces. Some possible scenarios for using domain, task,
and user models for adaptive performance support were
explored in the context of the Adaptive Diagnostics and
Personalized Technical Support (ADAPTS) project.
ADAPTS provides an intelligent, adaptive EPSS for
maintaining complex equipment.

Keywords
Performance support, task model, user model, domain model,
adaptive hypermedia, adaptive presentation.

INTRODUCTION
Modern advanced diagnostic systems can tell a technician
what is wrong or what is about to go wrong in a system; in
some cases, they can even identify where the problem lies.
Modern interactive electronic technical manuals (IETM)
provide a wealth of information about a system: how it is
constructed, operates, and what do in a case of each particular
problem. The focus of the ADAPTS, an electronic
performance support system (EPSS) for maintenance
technicians [5] integrates adaptive guidance from diagnostics
systems with adaptive access to technical information, thus
supporting both sides of the process: what-to-do and how-to-
do-it. ADAPTS is a comprehensively adaptive system. It
adjusts the diagnostic strategy to who the technician is and
what the technician is doing, dynamically adapting the
sequence of setups, tests, and repair/replace procedures based
on the technician’s responses. New activities are planned
depending on the technician’s responses to current
recommended activities. ADAPTS assembles information
content on the fly in response to the steps of that diagnostic
process. The technician receives dynamically selected
technical support information appropriate for the contexts of

the setup, test, and remove/replace procedure being
performed. Key to the adaptive functionality is knowledge
about the domain, maintenance tasks, and a user represented
in domain, task, and user models. The domain and the task
models provide the framework for structuring the content of
IETM and representing the user knowledge. The user model
determines what task to do, what technical information to
select to describe the task, and how to best display that
information for a given technician.
The goal of this paper is to present in detail the models used
in the ADAPTS system and demonstrate how integrated task
and domain models can be used to build an adaptive
performance support system. ADAPTS has a number of
others interesting design aspects, but they are left outside the
scope of this paper. For more information about ADAPS
project the reader can consult [5]

ADAPTS: THE USER’S VIEW
The cycle of work with ADAPTS consists of two main sub-
processes: adaptive diagnostics and adaptive interaction with
a technician performing a task. The adaptive diagnostics in
the ADAPTS prototype is performed by a modified version
of a toolset [6] developed by Qualtech Systems, Inc. (QSI).
On each step of the diagnostic process, the diagnostic engine
selects the most relevant task for the user to perform. This
task is a chunk of work that is variable in size and
complexity, which consists of a sequence of subtasks such as
various operations on equipment and checking measurable
and observable parameters. The interaction with a technician
performing a task is maintained by an adaptive hypermedia
interface that provides adaptive guidance though the
sequence of subtasks and adaptive presentation of relevant
material for each performed subtask. The user interacts with
the adaptive hypermedia engine through a standard Web
browser. The results of the user’s work with the task
(confirmation that all subtasks are completed, results of the
observations, or failure to perform the tasks) are passed to the
diagnostic engine. Depending on the results, the diagnostic
engine dynamically selects the next task to perform and starts
the next cycle of work.
The adaptive hypermedia interface consists of two main
windows – the outline frame (left frame on figure 1) and the
content presentation frame (right frame on figure 1). Each
frame can present several types of information. The user can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’02, January 13-16, 2002, San Francisco, California, USA.
Copyright 2002 ACM 1-58113-459-2/02/0001…$5.00.

select the desired type of information using named tabs on the
top of each frame.
The main function of the outline frame is to provide an
adaptive checklist of the task being performed. The adaptive
task checklist helps each technician navigate through
computer-presented maintenance information by suggesting
an optimal path and indicating the current state of performing
the task. It applies several adaptive navigation support
techniques.
What differentiates adaptive navigation support from
traditional hypermedia-based performance support is the
customization to each technician’s knowledge, experience,
and preferences. Typical hypermedia systems identify a
predefined course through technical information. ADAPTS,
on the other hand, dynamically defines a unique course each
time it presents technical information. In this case, the
adaptive diagnostics components serves as the expert
technician, driving the troubleshooting strategy based on a
dynamic assessment of time, effort, payoff, resources, and a
specific technician’s knowledge and experience with a
specific troubleshooting scenario. In determining a

recommended course of troubleshooting, the expert model’s
consultation with the user model ensures a match between
what needs to be done and what the technician has the ability
to do. Not only is the recommended course of action geared
toward a specific technician, but also the directions associated
with performing that action under the current set of
circumstances.
ADAPTS uses a collapsible checklist of steps to guide the
technician through a troubleshooting procedure. ADAPTS
determines how to present this checklist based on a
dynamic assessment of the user’s expertise with that
procedure. For example, ADAPTS collapses a subtask
outline if the technician is experienced with the subtask.
Inexperienced technicians automatically receive an
expanded outline of subtasks that reveals details.
Experienced technicians may expand the outline if they
choose, and are given greater flexibility to navigate within
the checklist. Inexperienced technicians are given more
assistance in step-by-step navigation. As a technician
completes a step within the checklist, color-coding and
icons identify completed, current, and remaining steps.

Figure 1. The ADAPTS interface consists of the adaptive outline frame (left), adaptive content presentation frame (right),
and an applet for communication with adaptive diagnostic engine (top left)

The duty of the content presentation frame is to display the
relevant support information for the subtask selected in the
outline frame. The problem here is that the amount of
potentially relevant information could be very big and it’s a
serious challenge for a technician to find the information that
is most suitable to his experience and context of work. While
several navigation “tabs” are provided to classify the support
information into several types and present each type in a
separate window, the amount of information in each of these
windows is still potentially too big. To provide further
support ADAPTS uses an adaptive hypertext presentation
technique called stretchtext [4] to present a sequence of
paragraphs of support information.
Stretchtext expands and collapses procedural paragraphs to
reveal or hide details, similar to the expanding and
contracting outline used for the procedural checklist (Figure
4). The use of stretchtext in ADAPTS is similar to its use in
such systems as MetaDoc [2] or PUSH [15]. For example, a
particular paragraph could be collapsed in the default
presentation if a technician is familiar with the information
presented in this paragraph or if this information is not very
relevant to the current context. It could also be collapsed if a
technician is experienced with current procedural subtasks.
The technician is free to expand and contract the stretchtext at
will. To support the use of procedural information, the
navigation component also custom-selects links to supporting
information that will be offered to each technician.
Technicians who are inexperienced with a step will be offered
links to fundamental concepts, background information, and
training segments (such as video clips or simulations).
Experienced technicians will be offered links to more concise
information that omits fundamentals that have already been
mastered. Because the user model is continuously updated,
the navigation path continuously adapts to the technician’s
changing level of expertise.
ADAPTS not only custom-selects links for a technician, it
also cues the technician to the relevance of the links that are
offered. Cues may be visual, such as different icons or
different colors; textual, such as annotations or comments; or
sorting, which places the most relevant links at the top of a
list. Furthermore, the tabs are used to categorize information,
and the content available under each tab is adaptive.
Regardless of the technique used, the goal remains the
same—guiding the technician to custom-selected support
information that is not only applicable to the current context,
but also appropriate given the technician’s expertise.

THE DOMAIN AND TASK MODELS
The key to the intelligent performance of ADAPTS is the
representation of knowledge about the domain (a system to
troubleshoot) and the maintenance tasks to be performed. The
domain model mirrors the hierarchy of systems, subsystems,
and components in the target system. The hierarchy starts
with the whole system (i.e., an aircraft) and follows

traditional decomposition of the system down to the
elementary components.
ADAPTS distinguishes three types of components in the
domain model. An addressable unit is the lowest level type of
a component. Any part of the system that is referred directly
by the manual and has to be viewed or manipulated by
technicians is an addressable unit. Usually, no other user
knowledge about an addressable unit may be anticipated but
the knowledge where it is located.
A replaceable unit is the second level type of a component.
Any component that could be replaced (i.e., removed and
installed) is a replaceable unit. In addition to the knowledge
about its location, we could say about a replaceable unit that a
user has or has not experience in removing/installing it, has or
has not experienced it broken, etc.

Aircraft (SH-60)

Sonar

Subsystem 1 Subsystem 2

Subsystem 1.2Subsystem 1.1

Replaceable Unit AReplaceable Unit B

. . .

. . .

Addressable Unit X Addressable Unit Y

. . .

Figure 2: The structure of the domain model
A system (subsystem) is the highest-level type of component.
The difference between a system and a replaceable unit (or a
set of replaceable units) is that the system consists of several
sub-components that interact with each other, so there is a
theory of operation related to the system and we could
measure the user’s knowledge about it. A system also
constitutes the lowest troubleshooting level. No
troubleshooting is possible within a replaceable unit.
The knowledge about the maintenance tasks is represented in
a form of task model. The task model in ADAPTS consists of
a relatively large set of maintenance tasks hierarchically
composed of sub-tasks and steps. The upper levels of task
hierarchy are used by both components of ADAPTS: the
diagnostic engine and the adaptive hypermedia interface. The
lower levels of the hierarchy are used by the adaptive
interface only; for the purpose of performance support some
elementary diagnostics task are broken into subtasks and
steps. Each subtask is a piece that is meaningful for a
technician and supported by a reasonably-sized description in
the IETM.

There are procedural subtasks and logical subtasks. A
procedural subtask represents some part of work to be done
for performing the task. A logical subtask may be required to
provide references to a special kind of information. For
example, if some task requires the user to do A, B, C, and D
(in this order), then doing A, doing B, doing C, or doing D
will be procedural subtasks. Viewing precautions, task
overview, or required instruments involved (typical task
components in an IETM) are logical subtasks.
The components of the task hierarchy are connected with the
components of the domain hierarchy by relationship
“involve” (i.e., “subtask 29 involves RU19 and RU290”).
Each task or subtask is connected to all domain model
components that are essentially involved in performing this
task (Figure 3). In other words, if a lower or higher-level
component is manipulated (tested or repaired) on a subtask,
there is a link between them. Connections between tasks and
components are made on the highest possible level. For
example, if whole task T10 involves troubleshooting of
system S78, then the connection should be made between
T10 and S78, not between any subtasks of T10 and S78.

Task 19

Subtask 19.1
Subtask 19.2

Subtask 19.1.1 Instrument A

Subtask 19.1.2

Subsystem S3involves

Addressable Unit A133
involves

Replaceable Unit R11involves

involves

Figure 3. Task hierarchy and its connection to
components

IETM CONTENT INDEXING
To support the user in performing a diagnostic task ADAPTS
uses a variety of information types stored in its database (see
Figure 4) which are collectively called rich content. In
addition to textual documents and diagrams, which are typical
components of IETMs, the rich content could include various
pieces of multimedia: color photos, training videos,
animations, and simulations. Moreover, the rich content could
include variations of the same information fragment oriented
to the users with different levels of experience. One of the
functions of ADAPTS is to find pieces of the rich content that
are relevant to the selected subtask, and to adaptively present
it to the user. This functionality depends on the links between
the domain model and the rich content. Establishing a
connection between documents (i.e., IETM pieces) and the
domain model is usually called indexing. Indexing is a key to
both user modeling and adaptation. Various kinds of indexing
applied in adaptive hypermedia systems are reviewed in [3].

ADAPTS applies two kinds of indexing of the rich content.
The first type is role-based indexing of fragments with
components. Conceptually, it means that a piece of the rich
content is linked by typed links with all components involved
in it, while the type of links indicate the type of involvement
(i.e., its role). For example, a piece of video that shows how
to remove a component is indexed with a pair (component
ID, role=“Component Illustrated in Removal and Installation”).
Similarly, a figure that shows the location of a component is
indexed with a pair (component ID, role=“General Component
Location”).
The second kind of indexing refers to tasks and subtasks. The
reason for indexing a fragment of the rich content with a task
or a subtask is that the fragment explains how to perform the
task or provide some other task-supporting information (i.e.,
“Listing of Materials Used in Task”, “Discussion of Interferences”).
For each piece of rich content, both the type of explanation
and the level of explanation differ according to several
factors. The type of explanation differs according to the
material available for the content, such as text, figure,
animation, or video, and its purpose. The level of explanation
differs according to the estimated ability of the user to
comprehend that material (for example, a reminder oriented
to an expert who has done this task many times, or a complete
description for a technician who has never performed the
task). Tasks are usually indexed as a one-to-one relationship
with a set of rich content dealing with a specific concept or
topic. The specific rich content that is accessed from the set
(to support each step in the task) depends on the user model.
In contrast, a one-to-many indexing scheme is used with
components so the technician sees many links as optional
navigation paths.
In general, roles are used to identify the context within which
a certain concept (component, system, task) appears. These
roles are categorized in various ways so that the adaptive
engine can make decisions on how and where the content will
be displayed in the interface. ADAPTS uses an elaborated set
of roles developed by domain experts. There are 13
component-related and 17 task-related roles. Note that roles
are by nature dependent on the subject matter, and can be
added as needed during authoring.

THE USER MODEL
The user model is the source for personalizing the content
and navigation in ADAPTS. The core of user modeling
approach in ADAPTS is estimating technician’s experience
with system tasks and components of various levels – from
subsystems to addressable units. The experience is calculated
from various evidences of user experience collected by the
system. To maximize the user modeling power ADAPTS
uses a multi-aspect overlay user model. A technician’s
experience with a component or a task is judged on many
aspects, each weighted to indicate its relative influence on the
decision. The user model independently accumulates several
aspects (roles) of the experience and knowledge of each
technician for each component or task. In total, there are 12

aspects for evaluating user experience with components and 8
aspects for evaluating user experience with tasks (Table 1).
Aspects used in ADAPTS include whether and how often a
technician has reviewed, observed, simulated, expressed
understanding (self- evaluation), previously worked on, or
received certification on specific equipment or procedures.
The aspects of the user model are designed to map one-to-one
with user actions. In other words, if the user was
troubleshooting a subsystem in a simulator, the corresponding
simulation counter will be updated; if he removed a
component, the corresponding hands-on counter will be
updated; if he watched an indicator or turned a switch, yet
another counter will get an increase. Whatever is done that is
relevant is immediately reflected in the user model. Note that
there are two different types of counters: those that record
computer-based experience (i.e., user read the text or seen a
movie) and those that record real experience (user turned real
switch or installed a real component). Accordingly, we have
two ways of watching the user and updating counters: tracing
what the user is doing on the computer with the adaptive
interface (requested pages, figures, movies), and “watching”
what the user is doing with the real system. Both ways of user
modeling are made possible due to rich content indexing
presented in the previous subsection of this paper.
ADAPTS can easily trace what the user is reading or
watching when working with different parts of IETM. If a

page is requested, we assume it is read (with some
probability). If a movie was requested, we assume the user
watched it. The connections between IETM pages and the
domain model enable the system to update relevant aspects
for the involved components of the domain and task
models. For example, if a piece of graphic material indexed
with a pair “component=C88, role=“General Component
Location”, then the review counter Aum for C88 (seen the
location in a picture) is incremented, and so on. If all IETM
material is properly indexed, it is easy to update the user
model after each visited page, figure, animation, or movie.
For each component related to the visited piece of the
IETM, the system will increment the proper model counter
using the table of roles and the types of rich content.
Similarly, indexing of IETM components with tasks and
subtasks enables the system to update the aspect counters
for the “tasks” part of the user model. ADAPTS can’t really
“watch” what the user is doing with the aircraft, but with
ADAPTS performance support interface where the user
should confirm (or reject) that he has completed a subtask
or the whole task, we can reliably update the user model by
watching what tasks or subtasks the user reported as done.
The update of the aspect counters for the “tasks” part of the
user model is straightforward: the corresponding counter for
the performed task or subtask is simply incremented (or

Table 1. User Characterization Aspects. These aspects are used to characterize the ability of users. Each aspect is
weighted according to its importance in determining overall ability.

UCF
ID

Applicability Action Type Weight Comments

1 addressable_unit review 1 see the location in a picture
2 addressable_unit observe 2 find the unit in real life
3 replaceable_unit review 2 review info about component in IETM
4 replaceable_unit observe 3 watch someone do a task related to this component
5 replaceable_unit simulation 4 do a simulation involving this primary component
6 replaceable_unit hands_on 5 work on this component
7 subsystem review 2 review info about this subsystem in IETM
8 subsystem observe 3 watch someone work on this subsystem
9 subsystem simulation 4 do a simulation involving this subsystem
10 subsystem hands_on 5 work on this subsystem
11 subsystem certification 6 user has been certified on this subsystem
12 subsystem self_eval 4 user thinks he understands this subsystem
13 task review 2 review this entire task in IETM
14 task observe 3 watch someone do this specific task
15 task simulation 4 interactive simulation of this specific task
16 task hands_on 5 did this specific task
17 task certification 6 have been certified on this specific task
18 task self_eval 3 user thinks he can do this specific task
19 step review 1 see this step in IETM
20 step hands_on 2 did this step successfully

decremented if the user can’t perform the task). The update
of the historic “components” part is done using connections
between tasks and components. For example: if the
performed activity is a removal of component C66, a hands-
on counter for C66 has to be updated. If the performed
activity implies that the user watched the indicator I99, then
the “observe” counter for I99 has to be updated. If the
performed activity implies troubleshooting of a system S6,
then a counter for S6 has to be updated. Different levels of
activities are to be used to update action-based historic
counters for different levels of components.
The adaptive hypermedia component does not use the
multi-aspect historic model directly. Instead, it uses scalar
values that estimate the proficiency of a user in locating,
operating, and repairing equipment or performing each step

of a recommended procedure. To move from a historic
multi-aspect model to the needs of the adaptive hypermedia
interface, ADAPTS uses a simple weighted polynomial.
The weights represent relative importance of different
components of user’s experience, and were set by domain
experts.
The user model continues to evolve as a technician uses
the ADAPTS system, beginning with a stereotype that
seeds the model for technicians with certain backgrounds.
No formal test is used to initialize the model. The model
grows in size as it records the technician’s experience. It
will follow a pattern of rapid expansion initially as new
material is accessed for the first time, followed by
decreasing growth rate up to a limit imposed by the extent
of the domain model.

How do I do it?
What is it?
Where is it?
What's it related
to?
What does it do?
How does it work?
Where am I?
How am I doing?

User Model

Checked or used (real life) (2)
Reviewed electronic info (1)

Controls & indicators Weight

Worked on (hands on) (5)
Used simulation of (4)
Watched video of (3)
Revewed electronic info (2)

Component Weight

Certified on (6)
Worked with (hands on) (5)
Expressed understanding (self-eval) (4)
Used simulation of (4)
Watched video of (3)
Reviewed electronic info (2)

Subsystem Weight

Performed (real life) (2)
Revewed electronic info (1)

Step Weight

Certified on (6)
Performed (hands on) (5)
Used simulation of (4)
Watched video of task (3)
Expressed ability to perform (self-eval) (3)
Reviewed electronic info (2)

Task Weight

What am I supposed
to do?
What next?

Expert
Model

(Teamate)

Domain Model

Personal
Display

Subsystem

Component

Controls &
indicators

...
(addressable
unit)

(replaceable
unit)

Task
Step

Step

Step

Step

...

 Video clips
(Training

tapes)
Schematics

Engineering
Data

Theory of
operation

Block
diagrams

Equipment
Siimulations

Equipment
Photos

Illustrations

Troubleshooting
Procedures

Customized for
Novice, Intermediate,

& Expert
Technicians

Characterizes declarative knowledge, procedural
knowledge, and operational skills in terms of the number
of times the techician has worked with or learned about
the following.

Knowledge base to:
Assist
Advise
Define
Describe
Explain
Illustrate
Locate
Monitor
Review
Show examples
Show relationships
Simulate

Technician

Figure 4. Adaptive hypermedia interface used information about the task and about the user to provide a personalized

presentation of the sequence of steps to be performed and the supporting information for each step.

CONCLUSION
ADAPTS is an electronic performance support system that
integrates an adaptive diagnostics engine with adaptive access
to supporting information. Integrated performance support
systems bring together an expert system-like problem solving
engine and an on-line information system. ADAPTS provides
comprehensive adaptive support on several stages of
troubleshooting from identifying the source of troubles to
determining the course of actions to guiding the user through
the troubleshooting process to assembling the individualized
set of supporting materials (Figure 4).
The ADAPTS system was initially developed as a proof-of-
concept research project using operational technical manual
data from a Navy H-60 helicopter program. During this initial
phase, the focus was on developing the adaptive user
interface, integrating the Condition Based Maintenance
(CBM) software, and experimenting with the response of the
system to variations in the user model. The first version of the
system was implemented in 1999. More recently, a follow-up
SBIR contract was granted to review the usability of the
system in both an aiding (performance-oriented maintenance
assistance) and training contexts. The results of this usability
study will be reported later in a separate paper.

RELATED WORKS
The combination of structured domain models and overlay
student models has been popular in the field of intelligent
tutoring systems for more than 20 years and was used in
dozens systems starting from early projects BIP [1] and
GCAI [18]. More recently, this combination became popular
in the field of adaptive hypermedia [4] and is used now in
nearly every adaptive hypermedia system.
Task models have been staying in the center of the area of
intelligent user interfaces for more than ten years.
Traditionally, they were used by two groups of IUI systems:
model-based interface development environments and
intelligent help systems. Model-based interface development
environments [20] applied several kinds of models including
task models to facilitate the design and development of user
interfaces [22; 23; 24]. Intelligent help systems used task
models and various plan recognition techniques [7; 12; 14;
26] to deduce higher-level goals of the user while observing
their interface-level actions [9; 16; 27; 28]. In some more
recent intelligent help systems, the task model was used as a
basis for the development of long-term individual user
models [19; 21; 28]. There were also a few attempts to use
task models in adaptive hypermedia systems [11; 13; 25]. In
all these systems, task models were used to filter the
potentially relevant set of links. FLEXCEL [13], an adaptive
hypermedia help system for EXCEL, was able to filter the
links to help information using the knowledge of the current
user task. HYNECOSUM [25] and SWAN [11] provided a
filtered view to the very large hyperspace of relevant
documents using the knowledge about a set of tasks that are
typical for the particular kind of user.

Finally, ADAPTS belongs to the class of intelligent
performance support systems, an emerging type of user-
oriented intelligent system. Other systems in this class known
to us are described in [8; 10; 17].
The reported work inherited a lot from the works cited above
and attempted to integrate together and extend several
adaptation techniques investigated earlier. To provide a more
reliable adaptation to the user, ADAPTS applies integrated
domain and task models together with the overlay user model.
In addition to simple link filtering, ADAPTS applies
stretchtext-based adaptive presentation and several types of
adaptive navigation support. We think that the suggested
combination of models as well as presented adaptation
techniques could be very useful for intelligent performance
support systems in various domains.

ACKNOWLEDGMENTS
The ADAPTS project was funded by the Office of Naval
Research grant to the Information Technology Branch of the
Naval Air Warfare Center–Aircraft Division (NAWCAD) in
St. Inigoes, MD.
This work was the result of collaboration among
researchers from NAWCAD, Carnegie-Mellon University,
University of Connecticut, Antech Systems, Inc.,
http://www.antechsystems.com, and Qualtech Systems, Inc.,
http://www.teamqsi.com.

REFERENCES
[1] Barr, A., Beard, M., and Atkinson, R. C.: The computer

as tutorial laboratory: the Stanford BIP project.
International Journal on the Man-Machine Studies 8, 5
(1976) 567-596

[2] Boyle, C. and Encarnacion, A. O.: MetaDoc: an adaptive
hypertext reading system. User Modeling and User-
Adapted Interaction 4, 1 (1994) 1-19

[3] Brusilovsky, P.: Adaptive hypermedia, an attempt to
analyze and generalize. In: Brusilovsky, P., Kommers, P.
and Streitz, N. (eds.): Multimedia, Hypermedia, and
Virtual Reality. Lecture Notes in Computer Science,
Vol. 1077. Springer-Verlag, Berlin (1996) 288-304

[4] Brusilovsky, P.: Methods and techniques of adaptive
hypermedia. User Modeling and User-Adapted
Interaction 6, 2-3 (1996) 87-129

[5] Cooper, D. W., Veitch, F. P., Anderson, M. M., and
Clifford, M. J.: Adaptive diagnostics and personalized
technical support (ADAPTS). In: Proc. of IEEE
Aerospace Conference, Aspen, Colorado (1999) Paper
Number 4.602

[6] Deb, S., Pattipati, K. R., and Shrestha, R.: QSI’s
Integrated Toolset. In: Proc. of IEEE Autotestcon,
Anaheim, CA (1997) 408-421

[7] Desmarais, M. C., Giroux, L., and Larochelle, S.: The
diagnosis of user strategies. In: Bullinger, H.-J. and

Shackel, B. (eds.) Human-Computer Interaction.
Elsevier, Amsterdam (1987) 185-189

[8] Fischer, G. and Ye, Y.: Personalized delivered
information in a software reuse environment. In: Bauer,
M., Gmytrasiewicz, P. J. and Vassileva, J. (eds.) User
Modeling 2001. Lecture Notes on Artificial Intelligence,
Vol. 2109. Springer-Verlag, Berlin (2001) 178-187

[9] Fox, T., Grunst, G., and Quast, K.-J.: HyPlan - a context-
sensitive hypermedia help system, Arbeitspapiere der
GMD No. 743, GMD, Germany (1993)

[10] Francisco-Revilla, L. and Shipman III, F. M.: Adaptive
medical information delivery: combining user, task,
and situation models. In: Lieberman, H. (ed.) Proc. of
2000 International Conference on Intelligent User
Interfaces, New Orleans, LA, ACM Press (2000) 94-
97, available online at:
http://lieber.www.media.mit.edu/people/lieber/IUI/Fran
cisco/Francisco.ps

[11] Garlatti, S., Iksal, S., and Kervella, P.: Adaptive on-line
information system by means of a task model and spatial
views. Computer Science Report, Eindhoven University
of Technology, Eindhoven (1999) 59-66

[12] Goodman, B. A. and Litman, D. J.: On the interaction
between plan recognition and intelligent interfaces. User
Modeling and User-Adapted Interaction 2, 1 (1992) 83-
115

[13] Grunst, G.: Adaptive hypermedia for support systems.
In: Schneider-Hufschmidt, M., Kühme, T. and
Malinowski, U. (eds.): Adaptive user interfaces:
Principles and practice. North-Holland, Amsterdam
(1993) 269-283

[14] Hecking, M.: How to use plan recognition to improve the
abilities of the intelligent help system SINIX Consultant.
In: Bullinger, H.-J. and Shackel, B. (eds.) Proc. of
Interact´87, the IFIP TC13 Second International
Conference on Human-Computer Interaction, Stuttgart,
North-Holland (1987) 657-662

[15] Höök, K., Karlgren, J., Wærn, A., Dahlbäck, N.,
Jansson, C. G., Karlgren, K., and Lemaire, B.: A glass
box approach to adaptive hypermedia. User Modeling
and User-Adapted Interaction 6, 2-3 (1996) 157-184

[16] Hoppe, H. U.: Intelligent user support based on task
models. In: Schneider-Hufschmidt, M., Kühme, T. and
Malinowski, U. (eds.): Adaptive user interfaces:
Principles and practice. North-Holland, Amsterdam
(1993) 167-181

[17] Johnson, C., Birnbaum, L., Bareiss, R., and Hinrichs, T.:
Integrating organizational memory and performance
support. In: Proc. of International Conference on

Intelligent User Interfaces, IUI’99, Redondo Beach, CA,
ACM Press (1999) 127-134, available online at
http://www.acm.org/pubs/articles/proceedings/uist/29108
0/p127-johnson/p127-johnson.pdf

[18] Koffman, E. B. and Perry, J. M.: A model for generative
CAI and concept selection. International Journal on the
Man-Machine Studies 8 (1976) 397-410

[19] Linton, F., Joy, D., and Schaefer, H.-P.: Building user
and expert models by long-term observation of
application usage. In: Kay, J. (ed.)
SpringerWienNewYork, Wien (1999) 129-138

[20] Myers, B., Hudson, S. E., and Pausch, R.: Past, present
and future of user interface software tools. In: Carroll, J.
M. (ed.) HCI In the New Millennium. Addison-Wesley,
New York (2001) 213-233

[21] Nessen, E.: SC-UM: user modelling in SINIX
consultant. Applied Artificial Intelligence 3 (1989) 33-
44

[22] Puerta, A.: A model-based interface development
environment. IEEE Software 14, July/August (1997) 40-
47

[23] Schreiber, S.: Specification and generation of user
interfaces with the BOSS system. In: Blumenthal, B.,
Gornostaev, J. and Unger, C. (eds.) Human-Computer
Interaction. Lecture Notes in Computer Science, Vol.
876. Springer-Verlag, Berlin (1994) 107-120

[24] Szekely, P., Luo, P., and Neches, R.: Beyond interface
builders: Model-based interface tools. In: Proc. of
INTERCHI’93, New York, ACM (1993) 383-390

[25] Vassileva, J.: A task-centered approach for user
modeling in a hypermedia office documentation system.
User Modeling and User-Adapted Interaction 6, 2-3
(1996) 185-224

[26] Wærn, A.: Local plan recognition in direct manipulation
interfaces. In: Moore, J., Edmonds, E. and Puerta, A.
(eds.) Proc. of 1997 International Conference on
Intelligent User Interfaces, Orlando, Florida, ACM
(1997) 7-14

[27] Wasson, B. and Akselsen, S.: An overview of on-line
assistance: from on-line documentation to intelligent help
and training. The Knowledge Engeneering Review 7, 4
(1992)

[28] Winkels, R. G. F.: User modelling in help systems. In:
Norrie, D. H. and Six, H. W. (eds.) Computer Assisted
Learning. Lecture Notes in Computer Science, Vol. 438.
Springer-Verlag, Berlin (1990) 184-193

