
WADEIn II: A Case for Adaptive Explanatory Visualization

Peter Brusilovsky and Tomasz D. Loboda
School of Information Sciences, University of Pittsburgh

Pittsburgh, PA 15260

{peterb, tol7} @ pitt.edu

ABSTRACT
Adaptive explanatory visualization is an attempt to integrate two
promising approaches to program visualization: adaptive
visualization and explanatory visualization. The goal of this paper
is to demonstrate the ideas of adaptive explanatory visualization
using a practical example. The paper introduces the WADEIn II
system for the visualization of expression evaluation in the C
programming language, shows how expression evaluation
visualizations can be made adaptive, and explains our approach to
the adaptive generation of explanations.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation –
animation, combined, visual; K.3.2 [Computers and Education]:
Computer and Information Science Education – computer science
education;

General Terms
Design, Human Factors, Languages

Keywords
Adaptive visualization, program visualization, explanations, user
modeling, expression evaluation

1. INTRODUCTION
Program visualization is considered to be one of the most
powerful educational tools in Computer and Information Science
education. Visualization can provide a clear visual metaphor for
explaining complicated concepts and uncovering the dynamics of
important processes that are usually hidden from the student’s
eye. For many years, the focus of visualization research has been
upon developing better tools and exploring new contexts.
Relatively few studies of the effectiveness of visualization have
been performed because the benefits of visualization seemed
obvious to any researcher or teacher. Yet, several experiments [4;
12] have shown just the opposite; that the educational benefits
from observing visualizations are unexpectedly low. Often, the
presence of a well-developed visualization failed to help students

understand what was taking place inside a program or an
algorithm. Since discovering this, several researchers and teams
have focused their efforts on the constructive use of visualization.
We can distinguish three promising approaches to "useful
visualization," which are: engaging, explanatory, and adaptive
visualization.
The idea of engaging visualization [10] is to change the students
from passive observers to active learners by engaging them in
some activity related to visualization. Several options have been
explored, ranging from "light activities," such as having students
develop their own data sets for a given visualization to "heavy
activities," such as asking the student to construct the whole
visualization themselves, instead of watching a "prepared" one.
Most of these innovations brought positive results [4; 6; 7].
The idea of explanatory visualization is to augment every
animated step within the visualization with natural language
explanations. The role and content of these explanations center on
describing what is going on, why it happens, and how it relates to
general programming principles. The need to supplement
visualization with explanations was first expressed over 10 years
ago [1; 2; 12], and early studies demonstrated that explanations do
indeed help the students understand what they see [2]. More
recently, Kumar [9] suggested a model-based framework for the
dynamic generation of explanations, exploring it in a set of
problets [5; 8; 11]. In multiple evaluations, the generated
explanations have been shown to be effective for improving
student learning.
Adaptive visualization is based on the assumption that a student
may have unequal levels of knowledge about the different
elements of a program or algorithm that is being visualized. The
theory behind adaptive visualization is to inversely match the
level of detail in the visualization of each construct or step to the
student’s level of knowledge about it: The lower the student’s
level of understanding about a construct, the greater the level of
detail in its visualization. This approach allows a student to focus
attention on the least understood components while still being
able to understand the whole visualization. Our early studies with
a simple mini-language confirmed that adaptive visualization
improves the student understanding of the visualization [1]. More
recently, we developed the WADEIn system [3] to explore the
value of system-adapted visualization in the context of the C-
programming language. Several classroom studies of WADEIn
brought encouraging results: more than of the 80% students in our
classes found the WADEIn system and its adaptive visualizations
helpful or very helpful.
The focus of our current work is the integration of two beneficial
visualization approaches – adaptive and explanatory visualization.
In order to explore this combination, we went on to develop the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiSCE’06, June 26–28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006…$5.00.

48

WADEIn II system. In WADEIn II we redesigned the adaptive
visualization, basing it on the previous version of the system
while extending it with explanations that are generated using a
variant of Kumar’s model-based approach. It is important to
realize that WADEIn II does not simply add together adaptation
and explanation, it attempts to integrate them. The very content of
the generated explanations is adapted to the changing level of the
user’s knowledge. WADEIn II was implemented and pilot-tested
in the Fall of 2005 and is currently being used in an introductory
programming course.
The goal of this paper is to demonstrate adaptive explanatory
visualization using the expression evaluation context supported by
WADEIn II. Expression evaluation is a relatively complicated
topic that has rarely been supported by visualization tools. In this
paper, we present WADEIn II, show how expression evaluation
visualization can be made adaptive, and explain our approach to
the adaptive generation of explanations.

2. THE OBJECT OF VISUALIZATION
WADEIn II is a Web-based visualization tool for students
learning the C language in introductory programming courses. It
uses adaptive visualization and textual explanations to portray the
process of expression evaluation. It supports twenty-four C
operators, e.g. addition, modulo, and less-or-equal (although
WADEIn II does not address pointer arithmetic problems). The
system visualizes and explains these operators (which are explicit
concepts) as well as several implicit concepts that may appear in

that context. The progress that students make with explicit
concepts is being tracked and is shown to them.

Concepts modeled implicitly are: (1) reading a variable, (2)
implicit casting, and (3) logical value representation. For
example, the logical value representation models the fact that in
the C language, zero is treated as false and any non-zero value is
treated as true. This concept may appear in the context of many
operators, e.g. less-than, equal, or logical OR. The student’s
knowledge of implicit concepts is traced, but not shown to them,
because implicit concepts are more difficult to identify.

3. STUDENT’S VIEW
3.1 User Interface Segmentation
The user interface (Figure 1) is divided into four regions: Goals
and Progress (A), Settings (B-E), Navigation (F-H), and the
Blackboard (I-M). The Goals and Progress region contains a list
of explicit concepts being learned, along with progress indicators
known as skillometers that allow students to monitor their own
progress.
The Settings region appears even before expression evaluation is
begun. First of all, it allows the student to pick an expression to be
evaluated. They can either select a predefined expression or enter
their own expression. They can also change the initial values of
the variables that appear in the expression, e.g. expression B % 7
contains variable B. Finally, the student can switch between
system modes, that is, exploration and knowledge evaluation. In

Figure 1. The user interface of WADEIn II system – exploration mode.

49

the exploration mode, the student is presented with the order of
evaluation (as restricted by the precedence of operators) and all
the visualizations and explanations the system has to offer. It is
the exploration mode that the student will start to use when
learning a new concept. In this mode they will be building the
corpus of their knowledge. The second mode, the knowledge
evaluation mode, has been designed to let students check their
level of knowledge. First, the student has to indicate the order of
evaluation they believe to be correct. Then they are shown the
correct order and can compare it with their own answer. Next,
students are asked to provide values for all operations in the
current expression. These two modes serve different purposes. In
the exploration mode, knowledge is accumulated and organized.
In the knowledge evaluation mode it is checked. This separation
is also maintained on the student modeling level, which is
described in Section 3.4.
The Navigation region lets the student navigate the expression
evaluation. It can be done on a step-by-step or operator-by-
operator basis, whether forward or backward. Additionally, it is
possible to quickly jump to the beginning or the end of the
evaluation.

The Blackboard region is where all visualizations and
explanations are presented. Both are explained in detail in
Sections 3.2 and 3.3. Additionally, this region displays the
original expression, the order of evaluation, and values for the
variables in the expression currently being evaluated.

3.2 Visualizations
WADEIn II is capable of showing the evaluation of every
operation in detail. Depending on the kind and complexity of the
operation, its visualization can include up to five stages, as
introduced below. Each stage may include several steps. Many
steps are animated to help students follow changes. The system
adapts the speed of those animations to the progress of the
student. More adaptation details are given in section 3.4. Different
colors are used to contextualize and group visual events. Green is
used to highlight the current operation. Yellow is used to visualize
the value of that operation. Red is used to visualize the reading
and writing of variable values and finally, cyan is used in pre- and
post-visualizations. Each color carries information about its
specific context.

1. Variable read:
If the current operation contains variables, their values need
to be read before the evaluation can continue. Reading a
variable is visualized in three steps. First, the name of the
variable is highlighted in red. Second, an animation shows
that the current value of that variable is being inserted into
the operation. That value will also be shown in red. Third,
after the value has been inserted, its color changes from red
to green.

2. Value production:
The evaluation of many operations yields a number. This
number replaces the operation. For instance, 2 && 0 yields
0, therefore 0 will replace 2 && 0 in the expression. This
process is visualized in four steps. First, the operation (2
&& 0) is highlighted in green. Second, its value (0) is
shown in yellow. Third, the value replaces the operation in

an animation. Fourth, inserting a value into an expression
changes the color from yellow to green.

3. Variable write:
The evaluation of assignment operations yields a number.
For example, A = 7 yields 7. However, apart from
visualizing the value (see VALUE described above) a side
effect, the change in the variable value, needs to be
visualized as well. This is done in three steps after the value
(7) of the operation has been shown (the first step of
VALUE visualization). First, the value (7) is highlighted in
red. Second, an animation shows that this value becomes
the new value of the variable in question (variable A will
receive the value 7). Third, the value highlighted in red
changes back to yellow. At this point the VALUE
visualization can be resumed.

4. Pre:
Pre-increment and pre-decrement operations change the
value of a variable. For example, the ++A operation will
add 1 to the current value of variable A. After the value has
been changed, the new value has to be read into the
expression. This process is visualized in four steps. First,
the operation (++A) is highlighted in cyan. Second, an
animation shows that this operation changes the value of
the variable in question (A). Third, another animation shows
that the new value of the variable is read into the
expression. That value will also be shown in cyan. Fourth,
inserting the value changes the color to green.

5. Post:
Post-increment and post-decrement operations change the
value of a variable. For example, the A-- operation subtracts
1 from the value of variable A. That subtraction happens
after the rest of the evaluations in the current expression
have ended. This is visualized in six steps. First, the
operation (A--) is highlighted in cyan. Second, an animation
notes that the value of the variable in question (A) will be
changed later. Third, another animation shows that the
current value of the variable (A) is read into the expression.
That value will also be shown in cyan. Fourth, inserting the
value changes the color to green. Fifth, after the rest of the
evaluation ends, the variable in question (A) is highlighted
in cyan. Sixth, an animation shows that the previously
remembered operation (subtract 1) is finally executed,
changing the value of the variable (A).

Some of the concepts in our domain are more difficult than others.
We thought it would be beneficial to make the student aware that
they are dealing with difficult concepts. We identified the
following four concepts as difficult: (1) logical values
representation, (2) integer to double implicit cast, (3) double to
integer implicit cast, and (4) post-decrement and post-increment.

Our system features four visual flags for the four most difficult
concepts. The flags are highlighted in orange when a particular
concept is encountered. For instance, the logical values
representation flag will be highlighted in the context of the less-
than operator, to remind the student that in the C language, zero
denotes false and any non-zero value denotes true. Please note
that the flags cannot be used by the student to monitor their

50

progress. They do not represent the student‘s knowledge level.
They are only visual indicators or reminders of the difficulty of
the subject and are used only in the context of the current
operation.

3.3 Explanations
There is no guarantee that a particular set of visualizations will be
easily understood by all students. Some visualizations can be
confusing, especially when the students do not know the material.
The addition of a natural language description of these visual
events can be a very helpful way of providing the necessary
clarification.
WADEIn II is equipped with textual explanations that accompany
visualizations. Each visualization step has an explanation. Some
of the explanations may be empty. For example, the 2 + 3
operation is visualized in four steps (as in the Value visualization
from the previous section): highlight operation, show value,
animate value, and insert value. When the operation is
highlighted, a short introduction to the summation operator is
presented. Next, when the value is shown, an explanation is given
that 2 and 3 sum up to 5. The explanation does not change in the
next step when the value is being animated, to limit the number of
changes on the screen to one. Otherwise, students may get
confused as to which change they should be attending. This is
especially important when an animation is taking place. A
visually subtle change, like changing explanatory text, may not be
noticed while movement is taking place elsewhere on the screen
simultaneously. The explanation for the last step of 2 + 3
operation is empty, because the summation operator was
considered easy enough to not require any additional explanations
at this step of the visualization. More difficult operators, such as
modulo, would have had additional text presented.
Each explanation is constructed from one or more fragments of
text. Each fragment addresses a different idea. The system decides
which fragments to present depending upon the student’s level of
knowledge. This adaptive behavior is described in detail in
section 3.4. The quality of explanations is very important. Bad
wording can increase a student’s confusion instead of helping
them to understand the material better. The explanations used in
WADEIn II have been developed by a group of programming and
education experts.

3.4 Adaptation
Informational needs change as the learner gains more insight into
the learning material. For example, the basics are very important
at the beginning, but gradually become less and less relevant. At a
certain point they start becoming irrelevant – the student has
mastered them and would not benefit from seeing them any more.
Overly detailed presentations might discourage the student. They
might stop using the tool convinced that there is nothing more
they could learn. They also might get frustrated by being forced to
see things that they already know, over and over again. That is
why keeping track of the student’s progress and adapting to it is a
very important feature of an educational tool.
Each concept in WADEIn II is described in terms of exploration
knowledge (kex) and evaluation knowledge (kev). These types of
knowledge represent the student’s progress in the two modes
available to the system. Progress for easier concepts should
happen quicker than for the more difficult ones. That is why each

concept is additionally described by a complexity level, which is
defined by the domain expert.
WADEIn II uses five types of student activity as input to student
models:

• oex: The student sees the order of evaluation (exploration
mode).

• ex: The student sees the visualization of a particular
operation (exploration mode).

• oev: The student indicates the order of evaluation
(knowledge evaluation mode).

• evOk: The student provides a correct value of an operation
(knowledge evaluation mode).

• evErr: The student provides an incorrect value of an
operation (knowledge evaluation mode).

By default, the system assumes the student has no initial
knowledge (kinit) of any concept. However, the student can set
his/her initial level when registering for the system.

The formulas for the two types of knowledge are:

i

ievErrexioexoexiexex
iinitiex c

nlngng
kk ,,,

,,
*** −+

+= ,

i

ievErrevioevoevievOkev
iinitiev c

nlngng
kk ,,,

,,
*** −+

+= ,

where i is the index of the concept, g is the knowledge gain, l is
the knowledge loss, n is the number of times a particular student
activity has occurred, and c is the complexity of the concept.
Levels of both types of knowledge can range from 0 to 5. The g
and l are parameters of the model and define its sensitivity.
Higher values of g and lower values of l will cause the model to
reach the upper bound (5) more quickly.
The two knowledge levels are represented differently on the skill-
o-meters: Exploration knowledge is indicated by the length of the
progress bar while evaluation knowledge is indicated by the
intensity of the bar’s color (the higher the level of knowledge the
more intense the color). That distinction helps students plan their
goals better. For instance, they can see that even though they have
made a considerable amount of progress in the exploration mode
they have not yet confirmed their knowledge of that concept in
the evaluation mode.
As the student progresses, the behavior of the system changes.
The speed of the visualization animations gradually increases
until finally the animations are replaced by a single-step action.
Explanations are constructed from fragments of text. Each
fragment is relevant only until the student reaches a certain level
of knowledge. After that threshold has been reached, that
particular fragment is hidden and is no longer a part of that
explanation. At a certain point, no explanations are shown any
more.
Note that the above formulas assume the linear change (gain or
loss) of knowledge. This is a simplification that was reused (with
some updates) from the earlier, successful version of the system

51

[3]. It is one of the future goals of our project to identify the most
appropriate student modeling approach for adaptive visualization.

4. INSTRUCTOR’S VIEW
To enable instructors to tune the system to their preferred way of
teaching expressions, WADEIn II allows an instructor to divide
the set of all the C language operators into subsets (called topics)
and introduce them to students topic by topic. For each topic, the
instructor can create a set of exercises. Each exercise includes a
set of suggested expressions and specifies the system mode:
exploration or knowledge evaluation. Using that approach, it is
possible to create two separate sets of expressions (exploration
and evaluation of concepts) in the same topic. Because of that, the
teacher is able to evaluate student knowledge on different
expressions than were used in the exploration mode.

5. IMPLEMENTATION
WADEIn II is a client-server Web application deployed in a
classic three-tier architecture. The front-end is a Java applet and
the back-end, a Java servlet connected to a relational database.
The servlet initializes the applet and later serves as an
intermediate layer bridging the user interface and the database.
The database stores all the system settings, textual explanations
and user models. Java 1.4.2 has been used and the system may be
accessed from any machine equipped with an Java-enabled web
browser, without the need to install any additional software. The
system is accessible at:

http://www.sis.pitt.edu/~paws/system_wadein.htm.

6. CONCLUSIONS AND FUTURE WORK
WADEIn II demonstrates how visualization can be made adaptive
and how adaptive explanation can be added to it, in the specific
case of expression evaluation. For our team, this work is a
component of a large-scale project on studying adaptive
explanatory visualization. In the context of this project, we want
to explore this innovative kind of visualization, in order to
introduce different concepts in several contexts. Through multiple
studies, we want to determine how to make visualization more
useful through adaptation and generated explanations. In our
project, we continue to collaborate with the team of Dr. Kumar at
Ramapo College of New Jersey, and we welcome other teams to
join our efforts. We hope that this paper has provided sufficient
details to engage researchers and practitioners who may be
interested in adaptive explanatory visualization, motivating
further research on this topic.

7. ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. 0426021. We would like to
thank Sergey Sosnovsky, Rosta Farzan, and Roman Bednarik for
their valuable input. Additionally, we would like to thank
anonymous reviewers.

8. REFERENCES
[1] Brusilovsky, P. Program visualization as a debugging tool

for novices. In: Proc. of INTERCHI'93 (Adjunct
proceedings), (Amsterdam, 24-29 April 1993), 29-30.

[2] Brusilovsky, P. Explanatory visualization in an educational
programming environment: connecting examples with
general knowledge. In: Blumenthal, B., Gornostaev, J. and
Unger, C. (eds.) Human-Computer Interaction. Lecture
Notes in Computer Science, Vol. 876. Springer-Verlag,
Berlin, 1994, 202-212.

[3] Brusilovsky, P. and Su, H.-D. Adaptive Visualization
Component of a Distributed Web-based Adaptive
Educational System. In: Intelligent Tutoring Systems. Vol.
2363. Springer-Verlag, Berlin, 2002, 229-238.

[4] Byrne, M.D., Catarambone, R., and Stasko, J.T. Evaluating
animations as student aids in learning computer algorithms.
Computers & Education, 33, 5 (1999), 253-278.

[5] Dancik, G. and Kumar, A.N. A tutor for counter-controlled
loop concepts and its evaluation. In: Proc. of 2003 Frontiers
in Education Conference (FIE 2003), (Boulder, CO,
November 5-8, 2003), Session T3C.

[6] Hundhausen, C.D., Douglas, S.A., and Stasko, J.T. A meta-
study of algorithm visualization effectiveness. Journal of
Visual Languages and Computing, 13, 3 (2002), 259-290,
available online at
http://lilt.ics.hawaii.edu/~hundhaus/writings/VL2000-
Experiment.pdf.

[7] Jarc, D.J., Feldman, M.B., and Heller, R.S. Assessing the
benefits of interactive prediction using Web-based algorithm
animation courseware. ACM SIGCSE bulletin. 32, 1 (2000),
377-381.

[8] Kumar, A.N. Learning the interaction between pointers and
scope in C++. In: Proc. of 6th Annual Conference on
Innovation and Technology in Computer Science Education
(ITiCSE'2002), (Canterbury, UK, June 25-27, 2001), ACM
Press, 45-48.

[9] Kumar, A.N. Model-based generation of demand feedback in
a programming tutor. In: Kay, J. (ed.) Supplementary
Proceedings of the 11th International Conference on
Artificial Intelligence in Education (AI-ED 2003). IOS Press,
Amsterdam, 2003, 425-432.

[10] Naps, T.L., Eagan, J.R., and Norton, L.L. JHAVE – an
environment to actively engage students in Web-based
algorithm visualizations. ACM SIGCSE bulletin. 32, 1
(2000), 109-113.

[11] Shah, H. and Kumar, A.N. A tutoring system for parameter
passing in programming languages. ACM SIGCSE bulletin.
34, 3 (2002), 170-174.

[12] Stasko, J., Badre, A., and Lewis, C. Do Algorithm
Animations Assist Learning? An Empirical Study and
Analysis. In: Proc. of INTERCHI'93, (New York,
Amsterdam, 24-29 April 1993), ACM, 61-66.

52

