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Abstract. Most effective human tutors possess the skill of adaptive sequencing of knowledge
and tasks. This skill is also the key function of many important tutoring systems and learnina,
environments . A number of workers in the field of intelligent tutoring systems have tried to
build a framework for intelligent knowledge and task sequencing . In this paper we briefly
discuss previous work on building a framework and strategies for knowledge and task
sequencing . Then we suggest several additional components we have designed to complete the
framework and describe a pragmatic strategy for multiple-kind, multiple-concept task
sequencing based upon the framework.

1 . Introduction
One of the most important duties of a human tutor into extend the student's knowledge of
a given subject. Extending the student's knowledge step by step, the human tutor decides
what to teach next and how to teach. The teacher provides the student with a sequence of
pieces of new knowledge and suggests a sequence of learning tasks to master the
knowledge. In Soviet psychology, a learning task is any teaching operation designed to
organize the student's learning activity. Learning tasks are the only way for the student to
acquire new pieces of knowledge. An effective human tutors skillfully adapts the sequence
ofknowledge and tasks according to the student's needs, abilities, and knowledge. Effective
tutor can generate an individual task sequence for any student.

Both knowledge sequencing and task sequencing are the key functions of many
tutoring systems. Task sequencing is also a function of many learning environments [13] .
A number of researchers in the field of intelligent tutoring systems have tried to build a
framework for intelligent knowledge and task sequencing. In the first part of the paper we
briefly discuss the problem itself, previous work on knowledge and task sequencing, and
the components of the framework suggested in several papers and projects . We refer to the
following systems, which demonstrate several components of the framework and several
strategies for knowledge and task sequencing : SCHOLAR [5], GCAI [1l], BIP [1], BIP-II
(20], WUSOR [7), QUADBASE [10], ReGIS [9], Assembler Tutor (AT) [171, Intelligent
Tutor for Basic Algebra (ITBA) [13], SCENT-3 [3,14], and TOBIE [18,19] .

In the second part of the paper we describe several additional components we have
designed to complete the framework and give a pragmatic strategy for multiple-kind
multiple-concept task sequencing based upon the framework. The complete framework and
the strategy was designed and tested for the Intelligent Tutor, Environment and Manual for
Introductory Programming (ITEM/IP). Details of ITEMAP development are given
elsewhere [4] . Here we consider features of ITEM/IP related to the topic of this paper.

2 . The curriculum and the student model for knowledge
sequencing

The tutoring system's choice of information to convey is limited to content from the
knowledge representation . How these pieces of knowledge are sequenced in instruction is
determined by the developmental level and current comprehension of the student, by the
teaching method, and by the evolutionary structure of information on the given subject,
represented in the system . [6, p.336]. The evolutionary structure forms a syllabus of
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knowledge [6] or curriculum [12] from which the tutor or coach can select. The student's
developmental level and current comprehension are represented by the student model. The
curriculum and the student model form the basis of any framework for intelligent task
sequencing. A variety of teaching strategies can be built upon this base to provide
knowledge sequencing according to a variety of teaching methods.

2.1 The simple case
The simplest curriculum (rather a syllabus) [8] is just a set of unrelated knowledge
elements (knowledge items) . Each knowledge element represents a subset of the expert's
knowledge, Depending on the subject, the amountofknowledge represented by the element
can be varied from an atomic skill or concept to a complexcurriculum topic . The simplest
student model is an overlay model [8]. The overlay student model represents student
knowledge as a subset of expert knowledge. To build the overlay model we should
augment each knowledge element with a tag (yes/no), which reflects whether the modelled
student has mastered this element of knowledge or not.

Combining the simplest curriculum with an overlay student model, we obtain the
simplest framework for knowledge sequencing. Such a framework is too weak to support
more intelligent knowledge sequencing than random floating from one element of
knowledge to another. This simplest framework was used in SCHOLAR for both random
knowledge sequencing and random question sequencing .

2.2 The advanced case
To form a real basis for intelligent knowledge sequencing we should represent in the
curriculum both the domain knowledge elements (KE) and the relationships between them .
The set of these relationships forms a pre-specified curriculum structure .

The advanced curriculum can be represented as a network of knowledge elements
(nodes) connected with relationships (links) . Several kinds of domain knowledge elements
of differentlevels of generality can be used to form the curriculum . Several kinds of links
can be used to represent pedagogically important relationships between knowledge
elements. The most important relationship is the prerequisite relationship, the only one
used in several projects to form the curriculum structure (GCAI, QUADBASE, ReGIS,
AT, TOBIE). The curriculum based on the prerequisite relationship can be used by a
teaching strategy to produce any admissible sequenceofrepresented knowledge.

To build "more intelligent" teaching strategies we can represent more information
about curriculum structure by adding more kinds ofrelationships. The systems BIP-II and
SCENT-3 use the links "part or ("component"), "is a" ("kind") ; and others to represent
important relationships between'KEs .

The genetic graph [7] is the most advanced approach to representation of the
curriculum. Its nodes represent elements of knowledge (originally procedural skills) of
varying level of expertise and its links include the relationships of analogy, specialization,
generalization, prerequisite, and deviation. Thus the genetic graph serves to represent static
relationships as well as evolutionary relationships. All these relationships can be used by
the tutoring system for advanced intelligent knowledge sequencing .

Another component required to build intelligent knowledge sequencing is an
advanced student model. Most systems use for this purpose an advanced overlay model
which can reflect more than two discrete states (yes, no) of student's knowledge on every
KE: from three states (SCENT-3) to seven states (ReGIS) or more. Some systems use
wide integer (QUADBASE) or real (GCAI) intervals to measure student knowledge of the
KE. To represent discrete states of knowledge the interval is divided into subintervals by
thresholds.
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2.3 Curriculum based knowledge sequencing and task sequencing
Several systems successfully use the curriculum and the student models described above for
knowledge sequencing . The curriculum is learnt element by element along the links .
Prerequisite links restrict the choice of the next knowledge element (all the prerequisite
KEs should be learnt beforehand) . Thus the set of prerequisite links defines implicitly all
"legal" orders of KE learning . The links and the student model are used by a teaching
strategy to generate the best KE sequence for the given student.

Knowledge sequencing provides a good basis for simple task sequencing. Asimple
task is single-concept task, that is, the teaching operation aimed to work with one KE
only . Having selected the current knowledge element, the system selects the best task or
chooses at random from a limited set of simple tasks related to the current knowledge
element. The system can select several tasks of different kinds for the student to master the
current KE . The student model is used to determine when to leave the current KE for the
next one. The most advanced plan-based approach for simple task sequencing was
developed in SCENT-3.

3. Task spectra for complex task sequencing
A complex task is a multiple-concept task - a teaching operation related to several
curriculum KEs. Presentation tasks (information, demonstration) present or explain the
related KEs. Problem tasks test the student's knowledge of the related KEs (To complete a
task a student should know all the related KEs) . The list of curriculum knowledge elements
related to the task is the task spectrum . The task spectrum links explicitly the complex
task with the curriculum and provides the tutoring system with a key to the sensible
choice of tasks .

The curriculum, the overlay student model, and the set of tasks augmented with
spectra form the framework for complex task sequencing . The problems of multiple-
concept task sequencing are not well-studied in the field of ITS. Three systems can build an
adaptive sequence of multiple-concept tasks for a student: namely, BIP, BIP-Il and ITBA .
These systems use the framework described above together with different strategies for task
sequencing . BIP uses unrelated curriculum with unrelated knowledge elements and a simple
strategy for task sequencing . More advanced task sequencing requires more knowledge
about curriculum to be represented either by links between KEs (BIP-II) or by links
between sets of KEs (ITBA) .

We propose a two-step teaching strategy for task sequencing. The first step is
compiling the list of all relevant (ready to be selected) tasks according to the current
student model. The task is relevant if it contains some "goal" concepts in the spectrum and
has all the spectrum KEs learnt or ready to be learnt. The second step is selecting the best
task from the list of relevant ones for a student at a given moment. The following simple
approaches have been used . BIP presents the task with the greatest number of unlearned
skills . ITBA presents the task with the fewest non-target skills. The BIP-II strategy is as
follows: if the student is doing well, then select the relevant task that has the fewest learnt
skills ; if the student is progressing slowly, then find the relevant task with the fewest
unseen skills .

4. Task complexities for the choice of the best task
Experience with BIP, BIP-II and ITBA systems demonstrates that task spectra related to
curriculum provide a good basis for compiling a lists of relevant tasks at each moment,
but spectra contain insufficient information from which to select the best task from the list
of relevant ones . Additional information about the student and the tasks should be taken
into account to select the best task .



To guide the choice of the best task in the ITEM/IP system [41 we used the notion
of task complexity. >From analysing the protocols of students solving programming
problems, we conjecture that each task has a measurable complexity. Furthermore, each
student at each moment prefers a particular value of complexity, an optimal value. The
task is less preferable to the student if its complexity is not optimal. The same idea was
suggested by another Soviet group in the domain ofmathematical differentiation [IS] . We
have noticed also that the optimal complexity is not fixed for the given student, but
increases according to the development ofhis or her experience in problem solving.

We have also suggested that the complexity of problem has two independent
components: conceptual complexity and structural complexity. The conceptual complexity
is just a number of not quite well learnt KEs in the task spectrum . Thus the conceptual
complexity of the task depends on the state of student's knowledge reflected in the student
model and should be computed directly in the process of learning . Structural complexity is
a constant part ofcomplexity. It reflects the number of steps required to solve the problem.
The structural complexity is added to task frame beforehand by measuring the model
solution of the task with special procedure.

Thus in ITEM/IP we use a precompiled set of tasks augmented with both spectra
and the structural complexities of tasks. We also use an advanced overlay model: a set of
counters corresponded to domain KEs and two additional counters foreach student- one for
the current optimal structural complexity and the other for the current optimal conceptual
complexity. Task spectra are used to compile a list of relevant tasks . The difference
between task complexities and optimal complexities for the given student are used to select
intelligently the best task from the set of relevant ones. The details of the selection
algorithm are given below. If the student solves the problem successfully the student
model complexities are set equal to the maximum of the solved task complexities and the
current student model complexities. If the student did not solve the problem, the student
model complexities are decreased.

S. A network for knowledge sequencing and task sequencing
The curriculum network and the advanced-overlay student model serve as the basis of the
framework forknowledge and task sequencing . The following four kinds of sequencing can
be built upon this framework: conceptual knowledge sequencing, procedural knowledge
(skills) sequencing, simple task sequencing, and complex task sequencing. Two kinds of
curriculum were used and studied in previous work: skills networks, in which KEs
represent skills (pieces of procedural knowledge), and conceptual networks, in which KEs
represent concepts (pieces of conceptual knowledge). Note that distinction between
procedural and conceptual knowledge is not clear-cut [16] . A skills network was used for
procedural knowledge sequencing, simple task sequencing, and complex task sequencing
(BIP, BIP-II, WUSOR, REGIS, AT, ITBA, TOBIE, SCENT-3). Conceptual network was
used for conceptual knowledge sequencing and simple task sequencing (GCAI,
QUADBASE).

A system capable of all the listed kinds of sequencing should be built upon both
conceptual and skills net. Two projects BIP-II and SCENT-3 [2), employ both kinds ofnets. Both systems use conceptual network to build the skills network beforehand and usethe skills network for task sequencing.

The domain model in ITEM/IP is a joint network that contains interconnected
elements of~conceptual and procedural knowledge. Really we used three kinds of nodes inthe network: high level programming concepts (for example: loop), constructs of the
programming language studied (for example white statement) and skills of using the
programming constructs in a context (for example using a negative condition in a while
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loop). The nodes are linked by the following relations : general/specific ("is a"), component
("part or), and usage. The latter relationship links a programming construct usage skill
with the construct itself (for example: the skill mentioned is linked to while by an "is a"
link and is linked to the "negative condition" constructby a usage link.

It should be noted that the spectra of the ITEMVIP complex tasks contain references
to skills only. A simple task is linked either to a construct or a skill. None of the tasks are
liriked to any concept. The special strategy is used to diffuse the changes in the student
model along the links. It allows the system to re-evaluate the student's knowledge of the
related KEs and to support the actual state of the student model, though most of the tasks
have skills only in their spectra.

The joint network is a good basis for knowledge sequencing and task sequencing .
The general view of the guided tutoring process supported by ITEMAP is as follows. The
system selects an optimal knowledge element and presents it to the student. Then the
system poses a number of tasks (either simple or complex) of different kinds which serves
to explain the element to the student, to force him to use this element and to check the
student's knowledge. Diffusion in the student model enables the system to control the
process of task sequencing. Then the new ready-to-be-learnt knowledge element is selected.

The teacher can limit the system's choice of next knowledge element by setting the
individual teaching order for the student. The teaching order is just a sequence of subsets of
knowledge elements. These subsets should be leamt sequentially subset by subset . If the
teaching order is set, then the system makes the choice of the next element to be presented
within the current subset of elements. When all the elements of the current subset have
been learnt the system moves to the next subset. The teaching order enables the teacher to
tune the system to his or her preferred order of teaching the-course . It makes the system
more flexible.

6. A strategy for sequencing tasks of different kinds
As noted, ITEM/IP is able to select the best task among the set of tasks of different kinds.
The problem of sequencing different kinds of tasks is difficult in general. It was solved
successfully by using a plan-based approach forsimple tasks in SCENT-3 system.

Sequencing of complex multiple-kind tasks is more difficult . All the systems RIP,
BIP-1I, and ITBA that provide complex-task sequencing are only able to do single-kind task
sequencing. In the future, ITBA may provide multiple-kind task sequencing . We use a
pragmatic approach to multiple-element multiple-kind task sequencing in ITEM/IP to
overcome general difficulties. ITEM/IP is able to select from five kinds of learning tasks:
presentation, demonstration, test, programming problem to analyse, and programming
problem to solve.

- Presentation tasks are simple tasks that introduce (or remind) the student ofa piece
ofconceptual knowledge: a programming concept or construct.

- Demonstration tasks explain constructs to the student by visual demonstration of
examples "in action".

- Test tasks check the student's understanding of a given programming construct . The
student is presented with an example of the given construct in a context and with
input data. He should mentally execute the example and enter the output data. Both .
demonstration and test are simple tasks related to the skill tested. These kinds of
tasks have several skills in spectra. One of them is the key-skill,' which is
demonstrated or tested by this task.

- Programming problem to solve is the most important kind of tasks. The
student is presented with the problem to be solved by developing a program.
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- Programming problem analysis tasks are inverted tasks. The student is
presented step by step with a solution to a programming problem. These two kinds
of tasks are complex. They serve to develop mastery of a number of skills, and these
skills are listed in the task's spectra .

Thus we have five distinct kinds of tasks to be used in order. First we present the
programming consttv-' strate how it works, then we test the
student's understanding, then we show by example how to use this construct to solve the
programming problem and finally we force the student to use the construct to solve a
programming problem.

Thus the process of mastering the given construct is divided into five stages
corresponding to five kinds of tasks, and each stage implies the use of the corresponding
kind of task to contribute to the learning ofthe construct. The use of the next kind of tasks
is not allowed, because the student is not ready to it . The use of the previous kinds of
tasks is allowed but these tasks do not contribute to the learning of the construct at this
stage. For example, if testing is the current learning stage for the given construct, we can't
use programming problems to master this construct, since it is not clear yet whether the
student has understood the semantics of the construct. Presentations, demonstrations and
tests are allowed, but only tests will contribute to the learning of the construct at this
stage .

We use the student model to reflect and control the stages of learning KEs. For each
domain KE the student model contains an positive-integer counter. The interval of possible
values for this counter is divided into subintervals by five thresholds (figure 1) . Each
interval corresponds to a stage of KE learning . Thus the value of the counter tells us the
stage of the corresponding concept and what kinds of tasks are optimal, allowed, or not
allowed to teach the concept. The current stage for a skill is computed as the minimum
stage of concepts related to_ the skill . If the counter value is zero, then the concept is not
ready to be leant_

The pragmatic approach to the process of teaching and learning the programming
concepts and constructs restricts the choice of the next task and enables us to build a
strategy for the best choice among dozens of tasks of five kinds. The key idea of this
strategy is that solving programming problems is the most important student activity. It
is during the process of.solving these problems that one can thoroughly understand various
programming concepts and constructs and learn to use them properly in order to achieve
the goals posed before him. This idea steams from the Soviet psychology . An algorithm
for the strategy is described briefly in figure 2.

Threshold No

	

1

	

2

	

3

	

4

	

5
Interval No

	

1 I 2 I 3 I 4 I 5 I 6
---------------------0----------------------------- )
Presentation

	

I - I +!I + I + I + I + I +
Demonstration

	

I - I - I +!i + I + I + I +
Test

	

+ I + I +
Problem to analyse I - I - I - I - I +!I + I +
Problem to solve

	

I - I - I - I - I - I +!I +
- notallowed to select
+ allowed to select
! optimal kind for this stage

Figure 1. Thresholds and intervals for construct's counter values in the
student model define constraints for the kinds of task selected .
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Step 1. Trying to select a programming problem to solve.
(a) Compile a list of all relevant programming problems . (The problem is relevant

if all the skills from the spectrum are on the fifth or sixth stage (see figure 1)

and at least one of skills is right on the fifth stage.)
If the list is empty compile a listof "not ready-5" skills and go to step 2.

(If the problem has all but one or two skills on the fifth or sixth stage and these

one or two on the fourth stage, add these one or to skills to "not ready-5" list .

These skills protect the problem from being relevant)
(b) Select the besttask from the list of relevant. For each relevant task we count the

weighted polynomial value. (Theparts of thepolygon are: squared differences

between structural complexity of the task and student's optimal structural

complexity : the same differences for the conceptual complexity and for the

number of "erroneous" skills in the task's spectrum .) The best problem is those

one that have minimal value.
Step 2. Trying to select a programming problem to analyze.

(a)

	

Compile a list of all relevant problems. If the list is empty than compile "not

ready-4" list and go to step 3.
(b)

	

Select the best task from the list of relevant . (Here one more part is added to

polygon: a number of "not ready-5" skills in the problem's spectrum .)

Step 3. Trying to select a test .

Step 4. Trying to select a demonstration

Step 5. Trying to select a presentation
(a)

	

Compile a list of all ready-to-be-learned concepts . If list is empty go to step 6.

Step 6. Mark the next subset of KE as ready-(o-be-learned. If we were working with last

subset of the teaching order, the guided teaching would be fi nished .

Figure 2. ITEM/1P algorithm for choice of the best teaching operation

7. Conclusion
We have built a framework for knowledge sequencing and .task sequencing, including

multiple-concept multiple-kind task sequencing . The framework consists of the domain

network (a combination of conceptual network and skills network), the advanced-overlay

student model (a set of counters, a set ofthresholds and optimal complexities), and a set of

learning tasks of different kinds, augmented with spectra and complexities . Some parts of

this framework were studied in the previous work of several authors, other parts were

suggested and designed by us .
We have also designed a strategy for multiple-kind multiple-concept task sequencing

that is based on a pragmatic approach to the teaching of programming concepts and

constructs . We have tested the strategy and the system itself in the learning process among

first-year students of the Moscow State University and f4-year-old students of Moscow

schools. The students found that the task-sequencing strategy seemed intelligent and they

usually agreed with the system's choice . Nevertheless advanced students in the second part

of the course preferred to select the next task on their own.
We consider the framework described above as a general framework for knowledge

sequencing and task sequencing . Different intelligent strategies can be built upon this

framework. We do not consider our pragmatic approach and the strategy described above as

general ones . We have tried to apply it to multiple-kind multiple-concept task sequencing

in other domains such as geography, but we have failed . We are now designing an
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authoring tool that will support the design of learning strategies in the form of production
rules operating within the the framework described above. We plan to use this tool to
compare various guided tutoring strategies in the classroom.
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