
Course Sequencing for Static Courses? Applying ITS
Techniques in Large-Scale Web-based Education

Peter Brusilovsky

Carnegie Technology Education and

HCI Institute, Carnegie Mellon University

4615 Forbes Avenue, Pittsburgh, PA 15213, USA

plb@cs.cmu.edu

Abstract. We argue that traditional sequencing technology developed in the
field of intelligent tutoring systems could find an immediate place in large-scale
Web-based education as a core technology for concept-based course
maintenance. This paper describes a concept-based course maintenance system
that we have developed for Carnegie Technology Education. The system can
check the consistency and quality of a course at any moment of its life and also
assist course developers in some routine operations. The core of this system is a
refined approach to indexing the course material and a set of “scripts” for
performing different operations.

1 Introduction

Course sequencing is one of the oldest technology in the field of intelligent tutoring
systems (ITS). The idea of course sequencing is to generate an individualized course
for each student by dynamically selecting the most optimal teaching operation
(presentation, example, question, or problem) at any moment of education. An ITS
with course sequencing represents knowledge about the subject as a network of
concepts where each concept represents a small pieces of subject knowledge. The
learning material is stored in a database of teaching operations. Each teaching
operation is indexed by concepts it deals with. The driving force behind any
sequencing mechanism is a student model that is a weighed overlay of the domain
model – for every domain model concept it reflects the current level of student
knowledge about it. Using this model and some teaching strategy a sequencing engine
can decide which one of the many teaching operations stored in the data base is the
best for the student given his or her level of knowledge and educational goal.

Various approaches to sequencing were explored in numerous ITS projects. The
majority of existing ITS can sequence only one kind of teaching operations. For
example, a number of sequencing systems including the oldest sequencing systems [2;
14] and some others [8; 12; 15] can only manipulate the order of problems or
questions. In this case it is usually called task sequencing. A number of systems can

do sequencing of lessons that are reasonably big chunks of educational material
complete with presentation and assessment [3; 9]. Most advanced systems are able to
sequence several kinds of teaching operations such as presentation, examples, and
assessments [7; 13].

One could say that sequencing is an excellent technology for distance education.
In the situation where students can learn the subject at their own pace, it looks like a
great idea to have each student to learn the subject by the most beneficial
individualized way. Indeed, sequencing is now the most popular technology in
research-level Web-based ITS [4]. However, there is a significant distance between
the systems used in large scale Web-based education and research-level systems, even
if we only consider research systems that were used to teach real classes like ELM-
ART [Brusilovsky, 1996 #732] and 2L670 [De Bra, 1998 #1178]. In a modern large-
scale Web-based education context a single course provider operates tens to hundreds
of courses that has to be delivered to thousands of students grouped in classes. The
biggest concern of a provider is the problem of maintenance. To avoid problems with
installing and supporting multiple Web-based education (WBE) systems and teaching
the stuff how to use these systems, all serious providers tend to choose one single
course management system (CMI). Naturally the providers are choosing modern
commercial CMIs such as TopClass [17] or WebCT [18] that can support main needs
of a course provider from course material delivery to discussion forums to generation
of various course reports. Unfortunately, current CMI systems leave no space for
dynamic sequencing. The course model behind all these systems is a static sequence
(or a tree) of modules followed by static quizzes and assignments.

Could we find any use for the course sequencing ideas in this rigid context of
large-scale Web-based education? The answer is yes. We can suggest at least two
meaningful ways to do “sequencing of static courses”. First way is dynamic
generation of the course before the students hit it. Instead of generating a course
incrementally piece by piece, as in traditional sequencing context, the whole course
could be generated in one shot. While courses produced by this one-shot generation
are not as adaptive as incrementally sequenced courses, they still could be very well
tuned for individual students taking into account their individual learning needs and
starting level of knowledge. A good example of this approach is DCG system [16]. A
similar approach was also described in [1; 10]. Since a course generated with a DCG-
like system is static, it could be delivered by a regular CMI system.

While DCG-like approach fits technically to large-scale WBE context, it still has
two problems. First problem is that in most places Web-based education is still class-
based. Virtual class is still a class. The students from the same class have to learn the
same material in about the same time and even take exams at the same date.
Naturally, for a class-based WBE an individually generated course will not work.
This problem could be solved relatively easy by generating courses that are adapted to
the whole class of users. While the product of generation should be rather called
customized course than adaptive course, this approach allows a very good level of
individualization, especially for the case of reasonably homogeneous classes. We
think that in the future systems that can produce courses on demand from the same
body of teaching material would be very popular since that will enable a course

provider to accommodate to the needs of different customers. A DCG-like approach
has, however, another problem – a bootstrapping one. To produce the first customized
course a provider need to have a reasonably large database of well-indexed learning
material (at least, two to three times larger than the size of a typical course being
produced). The startup price of developing such a rich course in addition to the price
of the system is a big obstacle to using DCG-like approach.

The second approach to static sequencing suggested in this paper is least
ambitious. We suggest to use a course sequencing mechanism as a core of a course
maintenance system for static courses developed by a team of authors in a traditional
way. The very idea is simple. Since a sequencing mechanism can evaluate several
possible options for the “next steps” (i.e., presentation, example, assignment) in a
dynamic course and select the best one, it can also check whether the predefined
“next step” in a static course is a good one. If the next step is not really good, it can
report problems. For example, it can find a situation when an assessment requires
knowledge that are not presented yet or, vice versa, when presented knowledge are
never assessed. These kinds of course checking are absolutely necessary for any
serious course developer team such as Carnegie Technology Education, a WBE “arm”
of Carnegie Mellon University. Large-scale modern courses include hundred to
thousands of learning items that are produced by a team of developers. Through the
life of a course it could be updated and restructured several times. A concept-based
course maintenance system is as important for courseware engineering as a version
tracking system for software engineering.

This paper describes a concept-based course maintenance system developed at
Carnegie Technology Education. The system can check the consistency and quality of
a course at any moment of course life and also assist course developers in some
routine operations. The core of this system is a refined approach to indexing the
course material and a set of “scripts” for performing different operations. Next section
describes the indexing part and the section after that talks about scripts. We conclude
with some speculation about prospects of our work.

2 Content indexing

There are several possible ways to index the content from very advanced and
powerful to very simple. The reported approach supports the functionality that we
find essential while being still simple enough to used by course developers.

The simplest indexing approach could be referred as "plain" prerequisite-
outcome concept indexing. It is used in systems like Piano-Tutor [9] or InterBook [5].
Plain indexing associate a teaching operation with two sets of concepts - prerequisite
and outcome concepts. Plain approach does not distinguish different types of teaching
operations and use only two roles in which a concept can be involved in a teaching
operation: prerequisite and outcome. It also does not take into account relationships
between concepts. Plain indexing has shown to be useful in simple domains or with

coarse-grain level of domain modeling (all systems with plain indexing known to the
author use about 50 concepts).

The reported approach uses three extensions of plain indexing approach: typed
items, advanced concept roles, and links between concepts. Typed items let the
system distinguish several types of teaching operations. Advanced concept roles can
specify more roles of the teaching operations in regard to concepts. Both mechanisms
let the course developer specify more knowledge about the content and support more
powerful algorithms. The impact of links between concepts is a more precise student
modeling, prerequisite tracking, and richer navigation. Negative side of all three
extensions is increased authoring time. In particular, developing a connected concept
model of a domain takes considerable time of several domain experts. The increased
authoring time could be a problem for a "traditional" (single teacher) context of
course development but it is justified in a context of large-scale Web-based education.
Here indexing expenses constitute a small fraction of overall course development
expenses and are repaid by the possibility to help course designers with developing
and modifying courses.

The core of our framework is formed by concepts – elementary pieces of
learning material. The size of a concept is not fixed and may depend of a course. We
have several kinds of teaching operations in our courses – presentations, examples,
assignments, and multiple-choice questions. The type of the item is a part of the index
for the item. Concept-role pairs form the rest of the index. We use four kinds of roles
(in comparison with only two in InterBook and Piano-Tutor): light prerequisite,
strong prerequisite, light outcome and strong outcome. In comparison with “real” or
strong prerequisites and outcomes that tells that “deep” knowledge of a concept are
produced or demanded by a learning item, the light prerequisites and outcomes deal
with surface knowledge about a concept. We have to introduce these four roles to
accommodate the needs of real courses.

The course concepts are connected to form a heterarchy. We use one non-typed
parent-child link. This link has to express the value usually expressed by “part-of”
and “attribute-of” links. Creating a parent-child hierarchy without the need to type
links is relatively easy The meaning of this hierarchy is simple – the knowledge of a
parent concept is a sum of knowledge of child concepts plus some “integration extra”.

3 The use of indexing for courseware engineering

3.1 Prerequisite checking

Prerequisite checking is the one of the key benefits of concept indexing. It is
important for original course design as well as for a redesign when learning items are
moved or changed. With multiple-level indexing we are able to check prerequisites
for all learning items. Prerequisite check for linear courses is performed by a
sequencing engine that simulates the process of teaching with a student model. It
scans learning items in the order specified by the author, updates the student model,

and checks the match between the current state of the model and each following item.
The following prerequisite problems could be checked:
• Presentation prerequisites: a presentation item can be understood because all

prerequisite concepts are already presented up to the required level
• Question prerequisites: all concepts involved into all questions designed for a

presentation page are learned at least up to the advanced level when the page is
completed.

• Example prerequisites: all concepts involved into an example are learned to the
required level right in the section where an example is presented or before; strong
prerequisite concepts are learned at least up to the advanced level, weak
prerequisite concepts are learned at least up to the surface level

• Exercise prerequisites: at the point where an exercise is presented, all strong
prerequisite concepts are learned and demonstrated with examples, all weak
prerequisite concepts are at either learned or demonstrated with examples.

The prerequisite checking on the level of course items is especially important for
programming courses that usually have very few direct prerequisite relationships
between concepts. Most of programming concepts could be introduced independently
from other concepts. That’s why there could be many possible ways to teach the same
subject. However, adopting a particular approach to teaching the subject usually
results in lots of indirect prerequisites “hardwired” into educational material. One
example of indirect prerequisites is presentation-level prerequisites: A concept A does
not depend of concept B, but the way of presentation of A chosen by the author
required understanding of B . Another case is example-level or problem-level
prerequisites. A concept A does not depend of concept B and could be learned either
before or after B. However, in the current course material all available examples or
exercises that use B also include A. As a result, the material requires A to be learned
before B. All these kinds of prerequisites are very hard to keep in mind. The only way
to ensure that the course is built or redesigned with no prerequisite conflicts is careful
prerequisite checking.

3.2 Finding content “holes”

A failure to meet the prerequisites could mean either a problem with structure (the
item that could meet the prerequisite does exist in the courses but placed after the
checked item) or a problem with content (no item to cover the prerequisite). The
system can distinguish these two cases and provide a helpful report of a problem.
While the former problem could be often resolved by restructuring the material, the
latter indicates a need to expand the course material.

3.3 Consolidation of presentations

In a well-designed course each concept has to be presented in full in a single place
(subsection or section). It is the place where the student will be returning to refill the
gaps in his/her knowledge of a concept. This place is called the concept host section.
A concept could be introduced before its host section (to enable the student to learn or
practice other concepts) but hardly more than twice and not after the full presentation.
The system can check these rules using indexing. (Note: The same is not true about
examples. It’s quite desirable to have several examples for each concept).

Fig. 1. A fragment of a problem report for a Java course

3.4 Question placement and repositioning

Well-designed questions have one or two outcome concepts (question goal). The
system can automatically place new questions into the proper place in the course by
finding the host section of the question goal. With automatic placement course and
question design can be delegated to several authors without the loss of consistency. If
the course is re-structured the questions can be automatically repositioned.

3.5 Guidelines for question design

By matching concepts presented in a section and concepts assessed by the section
question pool it is easy to identify a set of concepts that can never be assessed. The
identified deficit could drive the question design process. Same procedure can also
ensure that the questions in the pool are reasonably evenly distributed among the
section concepts (to avoid the situation where 80% of questions are testing 20% of
concepts).

3.6 Matching presentations with examples and exercises

It is possible to check to what extent examples and exercises matches their place in
the course and to what extent they cover the presented content. It can be done by
matching the set of concepts presented in the section with the joint sets of goal
concepts of exercises and examples located in this section. In an ideal situation each
section should present, demonstrate (by examples) and assess (by exercises) about the
same sets of concepts. If there are too many concepts that are presented but not
covered by examples or exercises, the coverage is low. If there are too many concepts
that are covered by exercises or examples but not presented in the section (if there is
no prerequisite conflict they could be simply presented in previous sections) then the
relevance is low. Small mismatch between presentations, examples, and concepts is
not a problem, but bigger mismatch in either direction is a sign of poorly designed
section and an indication that something has to be redesigned.

3.7 Checking course design against the real course

An author could start the course design with a design document that lists all essential
concepts to be introduced in each section. The design document could be stored
separately from the course. The system can check how the real course matches the
original design by comparing where the author planned to introduce the key concepts
and where they are really introduced; how the set of target concepts is supported by
questions, examples, and exercises.

3.8 Presentation density and sectioning

While different concepts may require different amount of presentation, the overall
complexity of a content fragment could be measured by the number of concepts
presented in it. By controlling the number of concepts presented in each section we
can identify two types of problems: presentation density, where too many concepts
are presented in a relatively short section, and uneven distribution of content where
number of concepts presented in subsections of the same level significantly differs.

3.9 Controlling the difficulty of examples and exercises

Prerequisite indexing of exercises and examples specifies minimal requirements for
the concept level that have to be met to make an example or an exercise ready to be
taken. Its legal, however that some concepts have higher level of knowledge then it is
demanded by prerequisites. For example, a strong prerequisite concept of an example
has to be learned up to the advanced level. In real life, a student can reach this
exercise when he or she has already seen several examples with this concept or even
solved an exercise involving this concept. It makes this example easier for that
student. Generally, we can estimate difficulty or learning item by measuring a
difficulty between the target state of the goal concepts and the starting state. If all goal
concepts or an exercise have been already used in earlier solved exercises, the
exercise is quite simple. If none of them have even been used in examples, the
exercise is very difficult. The difficulty of an exercise is not a constant – it depends
on the place of the exercise in the course. It makes sense to control the difficulty of
examples and exercises in the course to make sure that none example or exercise is
too simple or too difficult.

There is research evidence that there exists an optimal difficulty of a learning
item for each individual student (i.e., that the student learns best when he or she is
presented with learning items with difficulty closed to optimal. We can’t use this
finding directly since our courses are static – all students go the same way. But it is
quite likely that different groups of users can handle different difficulties. It could be
used for making better-targeted courses for special categories of users.

4 Implementation and first experience

The first version of the system was completed in 1999 and evaluated on one of CTE
courses. With a help of the system we were able to find and fix a number of problems
in the course. The system is written in Java and supports prerequisite checking,
finding content “holes”, consolidation of presentations, and question placement and
repositioning. Currently the system is not completely interactive. The author has to
specify the course structure along with concept tags in a separate file. The situation
with question indexing is different - here concept tags are stored as a part of a

question. Checking scripts are simply called from a command line. An interactive
(GUI-based) version of the system is being developed.

The system was used to check two real courses. While the system turned out to
be very useful, we have encountered a problem. In addition to a revealing good
number of real large and small hidden problems the system has also reported a
number of problems that no real teacher would count as a problem. It turned out that
the course consistency rules behind the system are too rigid. In real life teachers can
perfectly tolerate a number of small inconsistencies in the course. Moreover, in some
cases the course may be formally “inconsistent” with a purpose. A teacher may want
to provoke student thinking by presenting an example that is based on a material that
is not yet presented but could be understood by analogy with the learned material.
Our quick answer to this problem was color coding the course problem report (Figure
1). In particular, the messages that always report a real problem in the course are
colored red not to be missed. The messages that report a problem that often may be
tolerable are colored green. We use three to four colors in our reports. A real solution
to this problem would be a more precise set of checking rules that is adapted to the
course “teaching approach” and, probably, a better indexing.

5 Prospects

We plan to continue the work on course maintenance system adding features and
checking it with incrementally larger volumes of course material. We see a very
important mission in this process. The outcome of this process is not only consistent
courses of higher quality, but also a large volume of carefully indexed learning
material. Thus we are decreasing bootstrapping cost of more flexible sequencing
technologies. We hope that this process will eventually lead to the acceptance of
more flexible approaches in large-scale Web-based education: first, to a DCG-like
course customization and later to real course sequencing.

References

1. Ahanger, G. and Little, T. D. C.: Easy Ed: An integration of technologies for multimedia

education. In: Lobodzinski, S. and Tomek, I. (eds.) Proc. of WebNet'97, World

Conference of the WWW, Internet and Intranet, Toronto, Canada, AACE (1997) 15-20

2. Barr, A., Beard, M., and Atkinson, R. C.: The computer as tutorial laboratory: the Stanford

BIP project. International Journal on the Man-Machine Studies 8, 5 (1976) 567-596

3. Brusilovsky, P.: ILEARN: An intelligent system for teaching and learning about UNIX.
In: Proc. of SUUG International Open Systems Conference, Moscow, Russia, ICSTI

(1994) 35-41

4. Brusilovsky, P.: Adaptive and Intelligent Technologies for Web-based Education.

Künstliche Intelligenz , 4 (1999) 19-25

5. Brusilovsky, P., Eklund, J., and Schwarz, E.: Web-based education for all: A tool for

developing adaptive courseware. Computer Networks and ISDN Systems. 30, 1-7 (1998)

291-300
6. Brusilovsky, P., Schwarz, E., and Weber, G.: ELM-ART: An intelligent tutoring system

on World Wide Web. In: Frasson, C., Gauthier, G. and Lesgold, A. (eds.) Intelligent

Tutoring Systems. Lecture Notes in Computer Science, Vol. 1086. Springer Verlag, Berlin

(1996) 261-269

7. Brusilovsky, P. L.: A framework for intelligent knowledge sequencing and task
sequencing. In: Frasson, C., Gauthier, G. and McCalla, G. I. (eds.) Intelligent Tutoring

Systems. Springer-Verlag, Berlin (1992) 499-506

8. Brusilovsky, V.: Task sequencing in an intelligent learning environment for calculus. In:

Proc. of Seventh International PEG Conference, Edinburgh (1993) 57-62

9. Capell, P. and Dannenberg, R. B.: Instructional design and intelligent tutoring: Theory and

the precision of design. Journal of Artificial Intelligence in Education 4, 1 (1993) 95-121
10. Caumanns, J.: A bottom-up approach to multimedia teachware. In: Goettl, B. P., Halff, H.

M., Redfield, C. L. and Shute, V. J. (eds.) Intelligent Tutoring Systems. Springer-Verlag,

Berlin (1998) 116-125

11. De Bra, P. and Calvi, L.: 2L670: A flexible adaptive hypertext courseware system. In:

Grønbæk, K., Mylonas, E. and Shipman III, F. M. (eds.) Proc. of Ninth ACM International
Hypertext Conference (Hypertext'98), Pittsburgh, USA, ACM Press (1998) 283-284

12. Eliot, C., Neiman, D., and Lamar, M.: Medtec: A Web-based intelligent tutor for basic

anatomy. In: Lobodzinski, S. and Tomek, I. (eds.) Proc. of WebNet'97, World Conference

of the WWW, Internet and Intranet, Toronto, Canada, AACE (1997) 161-165

13. Khuwaja, R., Desmarais, M., and Cheng, R.: Intelligent Guide: Combining user

knowledge assessment with pedagogical guidance. In: Frasson, C., Gauthier, G. and
Lesgold, A. (eds.) Intelligent Tutoring Systems. Lecture Notes in Computer Science, Vol.

1086. Springer Verlag, Berlin (1996) 225-233

14. McArthur, D., Stasz, C., Hotta, J., Peter, O., and Burdorf, C.: Skill-oriented task

sequencing in an intelligent tutor for basic algebra. Instructional Science 17, 4 (1988) 281-

307
15. Rios, A., Pérez de la Cruz, J. L., and Conejo, R.: SIETTE: Intelligent evaluation system

using tests for TeleEducation. In: Proc. of Workshop "WWW-Based Tutoring" at 4th

International Conference on Intelligent Tutoring Systems, San Antonio, TX (1998),

available online at http://www-aml.cs.umass.edu/~stern/webits/itsworkshop/rios.html

16. Vassileva, J.: Dynamic Course Generation on the WWW. In: Boulay, B. d. and

Mizoguchi, R. (eds.) Artificial Intelligence in Education: Knowledge and Media in
Learning Systems. IOS, Amsterdam (1997) 498-505

17. WBT Systems: TopClass, Dublin, Ireland, WBT Systems (1999) available online at

http://www.wbtsystems.com/

18. WebCT: World Wide Web Course Tools, Vancouver, Canada,

WebCT Educational Technologies (1999) available online at http://www.webct.com

