

 Int. J. Cont. Engineering Education and Lifelong Learning, Vol. 13, Nos.1/2, 2003 75

 Copyright © 2003 Inderscience Enterprises Ltd.

Course sequencing techniques for large-scale web-
based education

Peter Brusilovsky
Department of Information Science and Telecommunications,
School of Information Sciences, University of Pittsburgh,
135 North Bellefield Ave., Pittsburgh, PA 15260, USA
E-mail: peterb@mail.sis.pitt.edu

Julita Vassileva
Computer Science Department, University of Saskatchewan,
1C101 Engineering Bldg.,57 Campus Drive, Saskatoon, SK,
S7N 5A9, Canada
E-mail: jiv@cs.usask.ca

Abstract: We argue that traditional sequencing technology developed in the
field of intelligent tutoring systems could find an immediate place in large-
scale web-based education. This paper discusses two models that have been
explored by the authors – the dynamic course generation system DCG and the
concept-based course maintenance system CoCoA. DCG includes components
for domain authoring and for automatic generation of adaptive courses on the
WWW. It allows automatic generation of individualised courses according to
the learner’s goal and previous knowledge, and can dynamically adapt the
course according to the learner’s success in acquiring knowledge. . CoCoA can
check the consistency and quality of a course at any moment of its life and also
assists course developers in some routine operations.

Keywords: Course sequencing; personalisation; adaptive courseware;
learning object.

Reference to this paper should be made as follows: Brusilovsky, P. and
Vassileva, J. (2003) ‘Course sequencing techniques for large-scale web-based
education’, Int. J. Continuing Engineering Education and Lifelong Learning,
Vol. 13, Nos. 1/2, pp.75-94.

Biographical notes: Peter Brusilovsky is an assistant professor of Information
Science and Intelligent Systems at the University of Pittsburgh. He received his
PhD in Computer Science from the Moscow ‘Lomonosov’ State University in
1987. His research interests lie in the areas of adaptive hypermedia, adaptive
web-based systems, student and user modelling, intelligent tutoring systems,
and web-based education. He has authored over 80 technical papers and has
edited several books and special journal issues.

Julita Vassileva is an associate professor of Computer Science at the University
of Saskatchewan. She received her PhD in Mathematics and Computer Science
from the University of Sofia, Bulgaria in 1992. Dr. Vassileva’s research
interests are in the areas of artificial intelligence in education and user
modelling. More recently, her research has focused on creating and motivating
virtual learning communities using multi-agent systems, agent negotiation,
coalition formation and peer-to-peer systems. She has authored over 60
technical papers and co-edited two volumes.

 76 P. Brusilovsky and J. Vassileva

1 Introduction

Course sequencing is a well-established technology in the field of intelligent tutoring
systems (ITSs). The idea of course sequencing is to generate an individualised course for
each student by dynamically selecting the most optimal teaching operation (presentation,
example, question, or problem) at any moment. By optimal teaching operation we mean
an operation that in the context of other available operations brings the student closest to
the ultimate learning goal. Most often, the goal is to learn the required set of knowledge
up to a specified level in a minimal amount of time. However, it is easy to imagine other
learning goals, such as minimising student error rates in problem solving.

An ITS with course sequencing represents knowledge about the subject as a network
of concepts where each concept represents a small piece of subject knowledge. The
learning material is stored in a database of teaching operations. Each teaching operation
is indexed by the concepts it deals with. The driving force behind any sequencing
mechanism is a student model that is a weighted overlay of the domain model – for every
domain model concept it reflects the current level of student knowledge about it. Using
this model and some teaching strategy a sequencing engine can decide which one of the
many teaching operations stored in the database is the best for the student given his or her
level of knowledge and educational goal.

Various approaches to sequencing were explored in numerous ITS projects. The
majority of existing ITSs can sequence only one kind of teaching operation. For example,
a number of sequencing systems including the oldest sequencing systems [1,2] and some
others [3–5] can only manipulate the order of problems or questions, an approach usually
called task sequencing. A number of systems can do sequencing of lessons – reasonably
big chunks of educational material complete with presentation and assessment [6,7]. The
most advanced systems are able to sequence several kinds of teaching operations such as
presentation, examples, and assessments [8–10].

One could say that sequencing is an excellent technology for distance education.
Indeed, sequencing is now the most popular technology in research-level web-based ITS
[11]. However, there is a significant difference between the systems used in large-scale
web-based education and research-level systems, even if we only consider research
systems that were used to teach real classes such as ELM-ART [12] and 2L670 [13]. In a
modern, large-scale web-based education context a single course provider operates tens
to hundreds of courses that have to be delivered to thousands of students grouped into
classes. The biggest concern of a provider is the problem of maintenance. To avoid
problems with installation, support and training, all serious providers of multiple
web-based education (WBE) systems tend to choose one single course management
system (CMS).

Usually the providers choose modern commercial CMSs such as TopClass [14],
BlackBoard [15] or webCT [16] that can support the main needs of a course provider
from course material delivery to discussion forums to generation of various course
reports. Unfortunately, current CMS systems leave no space for dynamic sequencing.
The course model behind the majority of these systems is a static sequence (or a tree) of
modules followed by static quizzes and assignments. Even the most advanced CMS
systems such as TopClass never go beyond the classic computer-assisted instruction
approach (CAI). This approach offers some limited ways to change the student’s path
through the material on the basis of his or her performance on a quiz. This static structure
contradicts the traditional sequencing approach that accepts no predefined structure and

 Course sequencing techniques for large-scale web-based education 77

instead builds the sequence on the fly, presenting the student with one teaching activity at
a time.

Could we find any use for the course sequencing ideas in this rigid context of large-
scale web-based education? Our answer is ‘yes’. The goal of this paper is to present three
approaches that make it possible to use the benefits of adaptive sequencing in the context
of practical web-based courses delivered through a standard CMS system.

2 Three approaches for the use of course sequencing in the context of
large-scale web-based education

The first approach that we describe is to use a course sequencing mechanism as the core
of a course maintenance system for traditional statically sequenced courses developed by
a team of authors. The idea is simple. Since a sequencing mechanism can evaluate
several possible options for the ‘next steps’ (i.e., presentation, example, assignment) and
select the best one, it can also check whether the ‘next step’ predefined by the author in a
traditionally developed course is a good one. If the next step is not really appropriate, the
mechanism can report problems. For example, it can find a situation when an assessment
requires knowledge that has not been presented yet or, vice versa, when the presented
knowledge is never assessed. This kind of course consistency checking is necessary for
any serious course development team. Large-scale modern courses include hundreds to
thousands of learning items that are produced by a team of developers. Throughout the
lifespan of a course it could be updated and restructured several times. A concept-based
course maintenance system is as important for courseware engineering as a version
tracking system is for software engineering. The strength of this first approach is that it
can be used with any existing course and provide visible benefits. Its weakness is that the
main benefit of dynamic sequencing – the ability to adapt the course to an individual
student – is not applied here. This approach is implemented in the CoCoA system
described in Section 4 of this paper.

A more progressive way of developing web-based courses, one that is growing in
popularity, supports courseware reusability [17]. It assumes that courses are developed
from reusable content objects that are stored in special pools and databases. The coming
generation of CMSs provides stronger support for courseware reuse, thereby enabling
authors to produce new courses from existing material faster. One of the major goals of
courseware reuse is to support course customisation, i.e., by producing several versions
of the same course, from the same rich set of learning objects, but targeted to different
audiences. This context provides a fertile ground for another sequencing approach –
adaptive courseware generation.

The idea of adaptive courseware generation is to generate a course suited to the needs
of the students before they encounter it. Instead of generating a course incrementally, as
in a traditional sequencing context, the whole course could be adaptively generated in
one shot. This approach has several strong advantages. First, it can deliver an impressive
level of adaptivity for small homogeneous groups of students by taking into account their
learning goals and starting level of knowledge. Second, since all students will be
following the same course, the shared context will allow them to communicate and learn
from each other. Third, since a course generated in this way is static, it can be delivered
by a regular CMS. The weakness of this approach is that the courses produced by one-

 78 P. Brusilovsky and J. Vassileva

shot generation are not as adaptive as incrementally sequenced courses. This approach is
supported by the DCG system [10] by ‘switching off’ the dynamic re-planning option.
This system is presented in section 3 of this paper. Similar one-shot customised course
generation approaches were suggested in [18–22].

The last of the approaches that we are suggesting is dynamic courseware generation.
As in the previous approach, the goal of dynamic courseware generation is to generate an
individualised course taking into account a specific learning goal and the initial level of
the student’s knowledge. The difference is that the system with dynamic generation
observes and adapts to student progress with the generated course. If the student’s
performance does not meet expectations, the course is dynamically re-planned. The
benefit of this approach is that it applies as much adaptivity to an individual student as
possible in the context of CMSs. Through dynamic regeneration each student is able to
get a highly personalised course for his/her needs. Between regenerations, the course
stays static and can be delivered with any CMS. This approach is well suited for
individual students taking a self-study distance-learning course. These students can be
employees in an organisation who have different experience and background knowledge,
or students in an online university with different ages, backgrounds and goals. An
appropriate solution would be to generate a fully individualised course. Such a course
would be specifically generated to take into account the students’ existing knowledge,
goals, and timeframe, adapting dynamically to their difficulties and rate of progress.
DCG, proposed in 1992 [10], allows this type of dynamic courseware generation. Note
that for a class- or group-based education, the use of the individualised generation
approach requires some coordination of the planning mechanism on the group level. This
is necessary to ensure reasonable group cohesion (for example, on the level of lectures or
other large course fragments), while still allowing for individual variation in the paths
followed by the students.

The goal of this paper is to promote the approaches listed above. In the next two
sections we present the two systems -- CoCoA and DCG -- that can successfully apply
course sequencing in the context of practical web-based education. In the following
chapter we analyse common features of these systems to stress key steps towards using
sequencing in practical web-based education. In our conclusion, we analyse differences
between the systems and speculate about the future of course sequencing techniques in
the context of large-scale web-based courses. We consider the approaches introduced to
be an important evolution from the currently dominant static web-based courses to the
more flexible and adaptive web courseware of the future.

3 DCG – dynamic generation of customised courses

The Dynamic Course Generation system (DCG) is a compromise between an ITS and a
traditional CAI approach. It uses a concept structure as domain knowledge
representation. A course generated by DCG looks like a traditional structured course.
However, this course is generated individually for every student to achieve a certain
learning goal (a concept or topic that has to be learned). The generation takes into
account the already existing knowledge of the student and can accommodate differences
in the individual’s way and pace of acquiring the material.

The core of the DCG architecture is the explicit representation of the domain concept
structure, separated from the teaching materials and pedagogical tasks [23,10]. The DCG

 Course sequencing techniques for large-scale web-based education 79

uses a structure of concepts (represented as a set of rules) as a roadmap to generate a plan
of the course. Given a certain goal concept that the learner wants to acquire and a student
model containing the concepts already known by the learner (initialised with a pre-test), a
planner component searches for a route that connects the concepts known by the learner
with the goal concept. The learner sees a sequence of teaching materials related to each
concept from the plan. At every point the learner can be tested on his/her knowledge of
the current concept by presenting a set of test items. A student model is created for every
learner. This model is a numeric overlay on the concept structure, i.e. the student’s
knowledge of each concept is represented as a number within a certain interval. If the
learner is not able to achieve the threshold score for a given concept that is needed to
proceed further towards the goal, a new plan is constructed. The new plan avoids the
difficult concept.

In the next sections, the architecture and functionality of the DCG are presented in
more detail.

3.1 Content representation and dynamic planning

The Domain Structure contains the concept/topic structure of the subject knowledge to be
taught. It is represented as an AND/OR graph. The nodes represent the elements of
knowledge (concepts, topics, rules etc.). If two nodes A and B are connected with a third
one, C, with an ‘AND’ arc, this means that both nodes A and B have to be taught when
following the arcs from C. Otherwise, they would be considered as alternatives, i.e. there
is a choice of nodes to be taught, either A or B. The arcs in the graph represent
relationships between the concepts. These relationships can have various semantics. For
example, if nodes A and B are connected with node C with an AND-relationship of type
‘aggregation’, this means that C contains sub-components A and B. If they are connected
with an OR-relationship of type ‘generalisation’, this means that C is a general concept
with possible instances A or B. There are many other possible semantic relationships, for
example, causal, temporal, analogy, simple prerequisite, etc.

The simplest way to define a Domain Structure is to use only one possible semantic
relationship, for example, to link domain concepts/topics with prerequisite links. In this
way one obtains a curriculum-like structure that can be used to guide the sequencing of
content. This structure was proposed first in [24] and can be seen appearing in the
literature under different names: content model [25], pedagogical structure of the domain
[26,27], or pedagogical content knowledge [28,29].

It is possible to organise the domain concepts/topics into a set of smaller, possibly
interrelated AND/OR-graphs, representing relatively independent sub-areas of the
domain, different ‘views’, or different levels of granularity.

Every node and every link from the Domain Structure is associated with a set of
teaching materials (TMs), which instantiate different ways to teach the concept/topic (e.g.
introduce, explain, give an example, exercise, or test). The Domain Structure is used for
creating a plan of the course contents (a sub-graph of Domain Structure) to achieve a
given teaching goal (concept). This plan is called ‘Content Plan’ and the process –
‘Content Planning’. During course execution TMs are selected by different instructional
tasks to teach the concepts/topics to the student.

The teaching materials contain presentation and testing-units that carry out the
communication with the student, i.e. they are in fact what the student sees on the screen.

 80 P. Brusilovsky and J. Vassileva

Each TM is focused on a given concept or relationship. The TMs are classified according
to their pedagogical function. Examples of types of TMs that can be used to teach a
concept include an introduction, a motivating problem, an explanation, a help item, an
exercise, or a test. In this sense TMs are equivalent to the ‘instructional primitives’ in
Van Marcke’s GTE system [30]. TMs carry out a dialogue with the student. For example,
exercises and tests are represented with a set of smaller units providing a pre-stored
correct answer to the exercise/test, hint or help, explanation, eventually intermediate
stages of solving the problem, etc. TMs of type ‘test’ have in addition two associated
weights denoting to what extent the student’s correct/incorrect answer means that the
student knows/doesn’t know the concept(s), which they are supposed to test. The TMs
are also classified with respect to the media they use, i.e. textual, graphical image,
animation, video etc.

3.2 Planning the presentation of a given concept

The DCG content planner by itself cannot decide how to present the selected contents
(the current concept or relation) to the learner, i.e. what pedagogical type of TMs to
select, or how to sequence several TMs to teach a given concept. . For this purpose
another planning process in the DCG creates a presentation plan for each concept. This
planning process uses a graph-representation of Teaching Tasks (see Figure 1) similar to
the one proposed by Van Marcke [30], which expresses pedagogical knowledge, of how
to teach a concept. Like the Domain Structure, the instructional task decompositions can
be represented with AND/OR graphs, however, here the nodes represent teaching tasks
and the links – task-decomposition methods.

Figure 1 An example of a teaching task hierarchy for the generic task ‘give exercise’

The AND-links in the teaching task structure represent links to sub-tasks of a certain task
according to a certain task-decomposition method. The OR-links correspond to
alternative task-decomposition methods. For example, Fig. 1 represents the generic task
‘Give exercise’ which can be decomposed into a sequence of the following sub-tasks:

 Course sequencing techniques for large-scale web-based education 81

‘Make exercise’, ‘Verify’, ‘Remedy’ (adapted from Van Marcke [30]). The sub-task
‘Remedy’ can be decomposed in different ways according to different methods
(OR-types of links shown in Figure 1 with dotted lines).

A set of Teaching Rules manages the selection of content and presentation plans
according to the cognitive style or learning preferences of the student [31,32]. Most of
the rules are generic (i.e. domain independent).

DCG first decides which concepts will be taught, i.e. dynamically creates a content
plan of the course. The representation of instructional tasks and methods allows the
system to plan dynamically how to present the contents related to the current concept in a
way suited to the learner, i.e. what types of TMs to select and how to sequence them. The
full DCG architecture including pedagogical planning of the presentation is shown in
Figure 2.

Figure 2 The DCG architecture: content and presentation planning

3.3 Dynamic course re-planning

During the presentation of the course to the student, if the student answers the test items
correctly, i.e. demonstrates that he/she has acquired the concepts, he/she progresses along
the course and no changes to the course are necessary. However, if the student fails to
demonstrate knowledge of a concept, a re-planning of the course follows. Re-planning
takes place first at the presentation level, i.e. an alternative sequence of teaching
materials or pedagogical method for presentation of the concept is shown to the student.
If the student fails again, the content planner generates a new sequence of concepts
leading to the goal concept, starting from the current state of student knowledge as
recorded in the student model.

 82 P. Brusilovsky and J. Vassileva

3.4 Implementation and deployment of DCG

The modularity of the architecture allows the use of the system in various modes:

• ‘one-shot’ planning – creating a content plan for a student with particular existing
knowledge and a teaching goal and no further adaptation to his/her individual
progress during the course

• dynamic planning – creating a content plan as in the one-shot planning, but with the
possibility to re-plan the contents of the course (i.e. the concepts/topics taught)
during execution, if the student is not able to acquire a certain concept.

The DCG was implemented in several domains in the period 1995-97, including teaching
about the structure and functioning of a simple electric toaster, teaching the theory of
jazz, case-based medical diagnosis and training mechanical skills (typewriting). The
platform was IBM PC 486 in a MS-Windows environment. The planner was
implemented in C++ and the interfaces (authoring, student) – in OpenScript. Asymetrix
ToolBook© was used as an authoring tool for creating the TMs since it allowed a fairly
easy creation of TMs with advanced graphics and multimedia.

In order to evaluate the effort spent for creating an hour of instruction, the time spent
for authoring was divided by the sum of the durations of all possible courses that can be
generated by the system (with all possible teaching goals and several typical initial states
of knowledge of students). Different results were obtained for the different domains, but
all of them were less than 20 hours of authoring for one hour of instruction. This is quite
a favourable result even in comparison with traditional CAL courseware, and especially
in comparison with authoring for ITS, since the lowest average time of design and
authoring for one hour of intelligent instruction quoted by different authors is around 100
hours. If the Domain Structure allows for the generation of numerous alternative courses
for different goals, the extra effort required to design and edit the Domain Structure
seems well justified.

The one-shot and the dynamic modes of DCG were implemented and used
successfully in a web-based educational system [33,34]. In this system, the planner, the
domain knowledge structure and the permanent student model reside on the server. The
student downloads an executor on the client together with the course plan and the TMs,
which are web pages, spread throughout the WWW. The executor presents the TMs
according to the plan and creates a temporary student model on the client, which tracks
the progress of the student through the session.

The DCG on the web worked in the domain of ‘computer based training’ (Figure 3)
and the authoring effort was approximately the same as in the full version – 18 hours of
authoring for one hour of instruction.

 Course sequencing techniques for large-scale web-based education 83

Figure 3 The DCG+WWW interface

4 CoCoA: analysis and consistency checking of static web-based courses

Concept-based Courseware Analysis (CoCoA) is a course maintenance system developed
at Carnegie Technology Education (http://www.carnegietech.org/). CoCoA can check the
consistency and quality of a course at any moment of the course life and also assist
course developers in some routine operations. The core of this system is a course-
sequencing engine that works in an ‘inverted way’ to analyse the quality of sequencing in
a static human-authored course. As in many other sequencing systems, the key to the
sequencing power of CoCoA is a structured domain model and a refined approach to
indexing the course material.

4.1 Domain modelling and content indexing

The core of the CoCoA framework is a domain model made of concepts – the elementary
pieces of domain knowledge. The size of a concept is not fixed and may depend on the
course. The course concepts are connected to form a heterarchy (it is not a hierarchy
since it has a number of root nodes, each forming an overlapping hierarchy). To simplify
the domain model authoring the concepts are connected using one non-typed parent-child
link. This link has to express the value usually expressed by ‘part-of’ and ‘attribute-of’
links. The meaning of this link is simple – the knowledge of a parent concept is the

 84 P. Brusilovsky and J. Vassileva

sum of knowledge of child concepts plus some ‘integration’ knowledge. Creating a
parent-child network without the need to type links is relatively easy.

The domain concepts in CoCoA are used to index the course content, i.e. to connect
elements of learning material called learning items (somewhat similar to the TMs in
DCG) with the domain knowledge. There are several possible ways to index the content
varying from very advanced and powerful to very simple.

The CoCoA approach is an extension of plain prerequisite-outcome concept indexing
that was used in systems like Piano-Tutor [7] or InterBook [35]. Plain prerequisite-
outcome indexing associates a teaching operation with two sets of concepts – prerequisite
and outcome concepts. This approach does not distinguish among different types of
teaching operations and allows only two roles in which a concept can be involved in a
teaching operation: prerequisite and outcome. It also does not take into account
relationships between concepts. Plain indexing has shown to be useful in simple domains
or with coarse-grain level of domain modelling (all systems with plain indexing known to
us to date use about 50 concepts).

The CoCoA approach uses relationships between concepts and two extensions of
plain indexing: typed items and advanced concept roles. Typed items let the system
distinguish among several types of teaching operations. Advanced concept roles can
specify more roles of the learning items in regard to concepts. CoCoA is able to
distinguish among several kinds of learning items – presentations, examples,
assignments, and multiple-choice questions. The type of an item is a part of the index for
the item. Concept-role pairs form the rest of the index. Four kinds of roles are used in
CoCoA (in comparison with only two in InterBook and Piano-Tutor): light prerequisite,
strong prerequisite, light outcome and strong outcome. Strong prerequisite or strong
outcome means that ‘deep’ knowledge of a concept is demanded or produced by a
learning item, while a light prerequisite or outcome deals with surface knowledge of a
concept. These four roles were introduced to accommodate the needs of real courses.

Typed items and advanced concept roles let the course developer specify more
knowledge about the content and support more powerful algorithms. The negative side of
these extensions is increased authoring time. The increased authoring time could be a
problem for a ‘traditional’ (single teacher) context of course development but it is
justified in a context of large-scale web-based education. Here indexing expenses
constitute a small fraction of overall course development expenses and are repaid by the
possibility of helping course designers with developing and modifying courses. The rest
of this section describes several kinds of courseware checking that were developed in the
CoCoA system. All these kinds are powered by the rich knowledge representation
described above and course sequencing algorithms.

4.2 Inverted sequencing for courseware engineering

Prerequisite checking. Prerequisite checking is one of the key benefits of concept
indexing. It is important for original course design as well as for a redesign when
learning items are moved or changed. With multiple-level indexing we are able to check
prerequisites for all learning items. In CoCoA, prerequisite checking for linear courses is
performed by a sequencing engine that simulates the process of teaching with an overlay
student model. It starts with an empty overlay model, scans learning items in the order
specified by the author, updates the student model, and checks the match between the

 Course sequencing techniques for large-scale web-based education 85

current state of the model and each subsequent item. The following prerequisite
consistency rules can be checked:

• Presentation prerequisites: a presentation item can be understood because all
prerequisite concepts are already presented up to the required level.

• Question prerequisites: all concepts involved in all questions designed for a
presentation page are learned at least up to the advanced level when the page is
completed.

• Example prerequisites: all concepts involved in an example are learned to the
required level within the section where the example is presented or before; strong
prerequisite concepts are learned at least up to the advanced level, weak prerequisite
concepts are learned at least up to the surface level.

• Exercise prerequisites: at the point where an exercise is presented, all strong
prerequisite concepts are learned and demonstrated with examples, all weak
prerequisite concepts are either learned or demonstrated with examples.

The prerequisite checking on the level of course items is especially important for
programming courses that usually have very few direct prerequisite relationships between
concepts. Since most programming concepts could be introduced independently from
other concepts, there are many conceptually possible ways to teach the same subject.
However, adopting a particular approach to teaching the subject usually results in
invisible indirect prerequisites ‘hardwired’ into educational material. One example of
indirect prerequisites is presentation-level prerequisites: a concept A does not depend on
concept B, but the method of presentation of A chosen by the author required
understanding of B. For example, an author may decide to present ‘for loop’ in
comparison with ‘while loop’, thus creating an indirect prerequisite link from ‘while
loop’ to ‘for loop’. Another case is example-level or problem-level prerequisites. A
concept A does not depend on concept B and could be learned either before or after B.
However, in the current course material all available examples or exercises that use B
also include A. As a result, the material requires A to be learned before B. All these kinds
of prerequisites are very hard for developers to keep in mind. The only way to ensure that
the course is built or redesigned with no prerequisite conflicts is careful prerequisite
checking.

Finding content ‘holes’. A failure to meet the prerequisites could mean either a problem
with structure (the item that could meet the prerequisite does exist in the courses but is
placed after the item being checked) or a problem with content (no item to cover the
prerequisite). The system can distinguish these two cases and provide a helpful report of
a problem. While the former problem could often be resolved by restructuring the
material, the latter indicates a need to expand the course material.

Consolidation of presentations. In a well-designed course each concept has to be fully
presented in a single place (subsection or section). It is the place where the student will
be returning to refill the gaps in his/her knowledge of a concept. This place is called the
concept host section. A concept could be introduced before its host section (to enable the
student to learn or practice other concepts), but never more than twice and not after the
full presentation. The system can check these rules using indexing. (Note: The same is
not true about examples. It is desirable to have several examples for each concept.)

 86 P. Brusilovsky and J. Vassileva

Question placement and repositioning. Well-designed questions have one or two
outcome concepts (the question’s goal). The system can automatically place new
questions into the proper place in the course by finding the host section of the question
goal. With automatic placement, course and question design can be delegated to several
authors without the loss of consistency. If the course is restructured the questions can be
automatically repositioned.

Guidelines for question design. By matching concepts presented in a section and concepts
assessed by the section question pool it is easy to identify a set of concepts that cannot be
assessed. The identified deficit could drive the question design process. The same
procedure can also ensure that the questions in the pool are reasonably evenly distributed
among the section concepts (to avoid the situation where, for example, 80% of the
questions are testing 20% of the concepts).

Matching presentations with examples and exercises. It is possible to check to what
extent examples and exercises match their place in the course and to what extent they
cover the presented content. This checking can be done by matching the set of concepts
presented in the section with the joint sets of goal concepts of exercises and examples
located in this section. In an ideal situation each section should present, demonstrate (by
examples) and assess (by exercises) the same sets of concepts. If there are too many
concepts that are presented but not covered by examples or exercises, the coverage is
low. If there are too many concepts that are covered by exercises or examples but not
presented in the section (if there is no prerequisite conflict they could be simply
presented in previous sections) then the relevance is low. A minor mismatch between
presentations, examples, and concepts is not a problem, but a major mismatch in either
direction is a sign of a poorly designed section and an indication that something has to be
redesigned.

Checking course design goals against the real course. An author could start the course
design with a design document that lists all essential concepts to be introduced in each
section. The design document could be stored separately from the course. The system can
check how the real course matches the original design by comparing where the author
planned to introduce the key concepts and where they were really introduced; how the set
of target concepts is supported by questions, examples and exercises.

Presentation density and sectioning. While different concepts may require different
amounts of presentation, the conceptual complexity of a content fragment could be
measured by the number of concepts presented in it. By controlling the number of
concepts presented in each section we can identify two types of problems: presentation
density, where too many concepts are presented in a relatively short section, and uneven
distribution of content where the number of concepts presented in subsections of the
same level significantly differs.

Controlling the difficulty of examples and exercises. Prerequisite indexing of exercises
and examples specifies minimal preparatory requirements for the concept level. It is
normal, however that when starting an exercise or an example some concepts have a
higher knowledge level than is demanded by prerequisites. For example, a strong
prerequisite concept of an example has to be learned up to the advanced level. In real life,
a student can encounter this exercise when he or she has already seen several examples
with this concept or even solved an exercise involving this concept. In this situation, the

 Course sequencing techniques for large-scale web-based education 87

exercise is easier for that student. Generally, we can estimate the difficulty of a learning
item by measuring the difficulty difference between the target state of the goal concepts
and the starting state. If all goal concepts of an exercise have already been used in earlier
solved exercises, the exercise is quite simple. If none of them has been used in examples,
the exercise is very difficult. Thus, the difficulty of an exercise is not a constant – it
depends on the placement of the exercise in the course. It makes sense to control the
difficulty of examples and exercises to make sure that no example or exercise is too
simple or too difficult.

There is research evidence that there exists an optimal difficulty of a learning item for
each individual student (i.e., that the student learns best when he or she is presented with
learning items of near optimal difficulty). It is quite likely that different groups of users
can handle different difficulties. CoCoA’s tools for controlling the difficulty of examples
and exercises could be used for making courses with levels of difficulty targeted at
different categories of users.

4.3 Implementation and first experience

The first version of the system was developed in Java and evaluated on real courses
developed by Carnegie Technology Education (CTE) in collaboration with Carnegie
Mellon University faculty. With the help of the system it was possible to find and fix a
number of problems. The first version supported prerequisite checking, finding content
‘holes’, consolidation of presentations and question placement and repositioning. Since
the original learning contents in CTE courses were not indexed with metadata and the
CMS used by CTE had no place for them, CoCoA required the author to specify the
course structure along with concept tags in a separate file. The situation with question
indexing was different – here concept tags were stored as parts of the questions. Various
checking procedures could be called using a Java command line interface.

The first version of the system was used to check two real courses. While the system
turned out to be very useful, we encountered a problem. In addition to revealing a
substantial number of real large and small hidden problems the system has also reported a
number of problems that no real teacher would consider a problem. It turned out that the
course consistency rules behind the system are too rigid. In real life teachers and students
can tolerate a number of small inconsistencies in the course. Moreover, in some cases the
course may be designed formally ‘inconsistent’ for a reason. A teacher may want to
provoke student thinking by presenting an example that is based on material that has not
yet been presented, but could be understood by analogy with the learned material. To
respond to this problem, the second version of the system applied colour coding in the
course problem report (Figure 4). In particular, messages that report real problems in the
course are coloured red – not to be missed. On the other hand, messages reporting
problems that often may be tolerable are coloured green. We used three to four colours in
our reports.

 88 P. Brusilovsky and J. Vassileva

Figure 4 A fragment of a problem report for a Java course

5 Main steps in implementing sequencing mechanisms in large-scale web-
based education courses

While DCG and CoCoA systems are quite different they share many common features.
Studying the common parts of these two systems is important in understanding which
components are required of any sequencing system to be used in large-scale web-based
education. The most important similarity can be seen in knowledge structuring used by
DCG and CoCoA to represent knowledge about the domain to be taught and the learning
material.

The heart of both DCG and CoCoA knowledge representation is a structured domain
model that is composed of a set of small domain knowledge elements (DKEs). Each DKE
represents an elementary fragment of knowledge for the given domain. This model is
used in all known sequencing engines. In different systems DKEs are named differently –
concepts, knowledge items, topics, knowledge elements, learning objectives, learning
outcomes, but in all cases they denote elementary fragments of domain knowledge. For
simplicity, we will be calling these DKE concepts. Depending on the domain, the
application area, and the choice of the designer, concepts can represent bigger or smaller

 Course sequencing techniques for large-scale web-based education 89

pieces of domain knowledge (see Figure 5). Domain concepts form a domain model. The
simplest form of the domain model is a model without links between concepts. We call it
a set model or vector model since the set of concepts has no internal structure. In the
more advanced kind of domain model, concepts are related to each other, thus forming a
kind of semantic network. This network represents the structure of the domain covered
by a system or a course. We call this kind of model a network model (Figure 6). Note that
both DCG and CoCoA use a network domain model (AND-OR graph in the case of DCG
and heterarchy in the case of CoCoA). While a vector model can also be applied for
sequencing needs [7,35], a network model is more powerful and has a wider
applicability.

Figure 5 An example of concept structure showing two levels of detail. The concept ‘Repetition’
 is expanded on a lower level of detail. The concepts are connected with prerequisite links

Figure 6 Bridging the gap between the world of knowledge and the world of learning materials.
 A network domain model is connected with learning items by multi-concept indexing

 90 P. Brusilovsky and J. Vassileva

The second key to sequencing is a connection between domain model concepts and
fragments of learning material, called teaching materials in DCG and learning items in
CoCoA. For a sequencing engine, the fragments of learning material are not black boxes
as they are in traditional courses, but teaching tools that the engine can skilfully handle.
The sequencing engine sees the knowledge behind the teaching material. This is possible
since every fragment is connected (or indexed) with elements of domain knowledge, i.e.,
with concepts.

There are many known ways of indexing – a review can be found in [36]. For the
purpose of this paper it is enough to distinguish two major approaches: single-concept
indexing in which each fragment of educational material is related to one and only one
domain model concept (Figure 7), and multi-concept indexing in which each fragment
can be related to many concepts (Figure 6). While DCG uses single-concept indexing,
CoCoA uses multi-concept indexing. This choice does not stem from differences between
the applications of the systems, but rather reflects two different indexing approaches
explored by the authors in the past [8,10]. Both approaches are popular in various
sequencing systems. Single-concept indexing is simpler and more intuitive for the
authors. Multi-concept indexing is more powerful, but it makes the system more complex
and requires more highly skilled authoring teams. It is probably a good idea to choose
single-concept indexing whenever it is meaningful from the educational point of view
(i.e., in smaller systems and simpler domains). At the same time, in many cases, using
multi-concept indexing is imposed by the nature of the domain. For example, in
programming and mathematics, elementary constructs and operators are often selected as
domain model concepts. In that case a hypermedia system that needs to have reasonably
precise indexing must use a multi-concept indexing approach, since most examples and
problems involve several constructs and operators.

The final touch in knowledge representation is to represent more knowledge about
fragments of learning material in addition to their connection to concepts. Some
advanced sequencing systems represent and use different additional information such as
duration, complexity, or type of a learning item (Figure 7). Of all these, both CoCoA and
DCG choose to represent one aspect – the (pedagogical) type of the item, i.e., a
presentation, an introduction, a question, an example, a test item, etc. While the use of
this information in CoCoA and DCG is quite different, both authors believe that knowing
the type of every learning item is very beneficial for both dynamic sequencing and
consistency checking. Besides, this kind of knowledge is very easy for an author to
provide.

Figure 7 Example of single-concept indexing. The concept ‘Logic of repetition’ is related with
 several learning materials of different type

 Course sequencing techniques for large-scale web-based education 91

The three types of knowledge about the domain and the learning material listed above are
used in many (though not all) known sequencing engines and the authors believe that
they are essential for making sequencing work in the context of large-scale web-based
education.

6 The future of course sequencing in practical web-based education

This paper presents three meaningful approaches for using sequencing technologies in the
context of practical web-based education: two of them based on dynamic planning of the
course content and presentation as in DCG, and one based on the sequencing technique to
verify the consistency of traditionally authored courses, as in CoCoA. In this paper we
demonstrate that despite the sharp difference between the modern CMSs currently used
to create and host the majority of web-based courses and the ‘intelligent’ systems with
course sequencing, there are several ways to use adaptive course sequencing in modern
web-based education. Another issue, however, is whether and when this will happen. In
this context, it is important to consider the differences between the three approaches
presented in the paper.

There is no doubt that dynamic courseware generation in the form supported by the
fully functional DCG system can provide most benefits by building a personalised course
for every learner. At the same time, while the DCG approach fits technically to large-
scale WBE context, it has two problems. The first problem is that in most places web-
based education is still class-based. A virtual class is still a class. The students from the
same class have to learn the same material in about the same time and even take exams
on the same date. As we noted in section 2, some advanced group-level planning
coordination is required to make individually generated courses work in a class-based
WBE. This kinds of ‘group-coordinated individual generation is possible, but has not yet
been developed and investigated. In this context a one-shot generation of a course
adapted to a class of users provides a cheaper alternative. While the product of generation
should be called ‘customised course’ rather than ‘adaptive course’, this approach allows a
fair level of individualisation, especially in the case of reasonably homogeneous classes.
We believe that systems that can produce courses on demand from the same body of
teaching material would be very popular in the future, since they will enable a course
provider to accommodate the needs of different customers at a fairly small cost.

Still, the major obstacle for both DCG and CoCoA is the initial knowledge
representation (the concepts structure and indexing of teaching materials with respect to
concepts, roles, etc.). Bootstrapping a system like DCG is quite expensive. To produce
the first customised course, a provider needs to have a reasonably large database of
well-indexed learning material (at least, two to three times larger than the size of a typical
course being produced). The start-up price of developing and indexing a pool of rich
course material could be an obstacle to using a DCG-like approach for a small company
and it may not be a worthwhile investment for a small number of students or for a student
population that is relatively homogeneous.

In this situation another difference between the three approaches has to be taken into
account. The CoCoA approach requires minimal investment into preparation of an
indexed material – only the items already included in the course have to be indexed.
Moreover, the CoCoA approach can be used incrementally with partially indexed

 92 P. Brusilovsky and J. Vassileva

material. The larger the proportion of indexed material, the more problems could be
discovered by CoCoA. Therefore it is likely that courseware-checking approaches similar
to CoCoA will be the first to be used in the context of large-scale courses. They will
provide an immediate benefit to the authoring teams. The outcome of this process is not
only consistent courses of higher quality, but also a large volume of carefully indexed
learning material.

The authors are very optimistic about the future of course sequencing approaches in
large-scale web-based educational systems, since indexing learning materials with
metadata is becoming an important trend in practical web-based education. This trend has
been fuelled by recent works on courseware reuse, learning pools, learning object
libraries and metadata standards [17,37,38]. We expect that large volumes of consistently
indexed learning materials will decrease the bootstrapping cost for more flexible
sequencing technologies. The course developers in large courseware publishing teams
will realise the fact that when the variety of courses that can be generated can meet the
various needs of the learners, the cost compares favourably to traditional authoring. We
hope that this process will eventually lead to the acceptance of more flexible approaches
in large-scale web-based education such as DCG-like adaptive course generation and
full-scale courseware sequencing [8,9].

Acknowledgements

The authors thank Helen Bretzke, Christopher Cox, Darina Dicheva and the anonymous
reviewers for their comments on the earlier versions of this paper.

References
1 Barr, A., Beard, M. and Atkinson, R.C. (1976) ‘The computer as tutorial laboratory: the

Stanford BIP project’, International Journal on the Man-Machine Studies, Vol. 8, No. 5,
pp.567–596.

2 McArthur, D., Stasz, C., Hotta, J., Peter, O. and Burdorf, C. (1988) ‘Skill-oriented task
sequencing in an intelligent tutor for basic algebra’, Instructional Science, Vol. 17, No. 4,
pp.281–307.

3 Brusilovsky, V. (1993) ‘Task sequencing in an intelligent learning environment for calculus’,
in Proc. of Seventh International PEG Conference, Edinburgh, pp.57–62.

4 Eliot, C., Neiman, D. and Lamar, M. (1997) ‘Medtec: a web-based intelligent tutor for basic
anatomy’, in S. Lobodzinski and I. Tomek (Eds.) Proc. of WebNet’97, World Conference of
the WWW, Internet and Intranet, Toronto, Canada, AACE pp.161–165.

5 Rios, A., Millán, E., Trella, M., Pérez, J.L. and Conejo, R. (1999) ‘Internet based evaluation
system’, in S.P. Lajoie and M. Vivet (Eds.) Artificial Intelligence in Education: Open
Learning Environments, IOS Press, Amsterdam, pp.387–394.

6 Brusilovsky, P. (1994) ‘ILEARN: an intelligent system for teaching and learning about
UNIX’, in Proc. of SUUG International Open Systems Conference, Moscow, Russia, ICSTI
pp.35–41.

7 Capell, P. and Dannenberg, R.B. (1993) ‘Instructional design and intelligent tutoring: theory
and the precision of design’, Journal of Artificial Intelligence in Education, Vol. 4, No. 1,
pp.95–121.

 Course sequencing techniques for large-scale web-based education 93

8 Brusilovsky, P. L. (1992) ‘A framework for intelligent knowledge sequencing and task
sequencing’, in C. Frasson, G. Gauthier and G.I. McCalla (Eds.) Intelligent Tutoring Systems,
Springer-Verlag, Berlin, pp.499–506.

9 Khuwaja, R., Desmarais, M. and Cheng, R. (1996) ‘Intelligent guide: combining user
knowledge assessment with pedagogical guidance’, in C. Frasson, G. Gauthier and A. Lesgold
(Eds.) Intelligent Tutoring Systems, Lecture Notes in Computer Science, Springer Verlag,
Berlin, Vol. 1086, pp.225–233.

10 Vassileva, J. (1992) ‘Dynamic CAL-courseware generation within an ITS-shell architecture’,
in I. Tomek. (Ed.) Computer Assisted Learning. Lecture Notes in Computer Science, Vol. 602,
Springer-Verlag, Berlin, pp.581–591.

11 Brusilovsky, P. (1999) ‘Adaptive and intelligent technologies for web-based education’,
Künstliche Intelligenz, Vol. 4 pp.19-25,
available online at http://www2.sis.pitt.edu/~peterb/papers/KI-review.html.

12 Brusilovsky, P., Schwarz, E. and Weber, G. (1996) ‘ELM-ART: an intelligent tutoring system
on World Wide Web’, in C. Frasson, G. Gauthier, and A. Lesgold (Eds.) Intelligent Tutoring
Systems. Lecture Notes in Computer Science, Springer Verlag, Berlin, Vol. 1086, pp.261–269.

13 De Bra, P. and Calvi, L. (1998) ‘2L670: a flexible adaptive hypertext courseware system’,
in K. Grønbæk, E. Mylonas and F.M. Shipman III (Eds.) Proc. of Ninth ACM International
Hypertext Conference (Hypertext’98), Pittsburgh, USA, ACM Press, pp.283–284.

14 WBT Systems (1999) TopClass, Dublin, Ireland, WBT Systems, available online at
http://www.wbtsystems.com/

15 Blackboard Inc. (2002) Blackboard Course Management System, Blackboard Inc., available
online at http://www.blackboard.com/

16 WebCT (2002) WebCT Course Management System, Lynnfield, MA, WebCT, Inc., available
online at http://www.webct.com

17 Verhoeven, B., Cardinaels, K., Van Durm, R., Duval, E. and Olivié, H. (2001) ‘Experiences
with the ARIADNE pedagogical document repository’, in Proc. of ED-MEDIA’2001 – World
Conference on Educational Multimedia, Hypermedia and Telecommunications, Tampere,
Finland, AACE, pp.1949–1954.

18 Ahanger, G. and Little, T.D.C. (1997) ‘Easy Ed: an integration of technologies for multimedia
education’, in S. Lobodzinski and I. Tomek (Eds.) Proc. of WebNet’97, World Conference of
the WWW, Internet and Intranet, Toronto, Canada, AACE, pp.15–20.

19 Caumanns, J. (1998) ‘A bottom-up approach to multimedia teachware’, in B.P. Goettl,
H.M. Halff, C.L. Redfield and V.J. Shute (Eds.) Intelligent Tutoring Systems, Springer-Verlag,
Berlin, pp.116–125.

20 Kettel, L., Thomson, J. and Greer, J.(2000) ‘Generating individualized hypermedia
applications’, in Proc. of Workshop on Adaptive and Intelligent Web-based Education Systems
at 5th International Conference on Intelligent Tutoring Systems (ITS’2000), Montreal,
Canada.

21 Masthoff, J. (2002) ‘Automatic generation of a navigation structure for adaptive web-based
instruction’, in P. Brusilovsky, N. Henze and E. Millán (Eds.) Proc. of Workshop on Adaptive
Systems for Web-Based Education at the 2nd International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems (AH’2002) Proceedings, Málaga, Spain,
pp.81–91.

22 Melis, E. Andres, E., Büdenberder, J., Frishauf, A., Goguadse, G., Libbrecht, P., Pollet, M.
and Ullrich, C. (2001) ‘ActiveMath: a generic and adaptive web-based learning environment’,
International Journal of Artificial Intelligence in Education, Vol. 12, No. 4, pp.385-407.

23 Diessel, T., Lehmann, A. and Vassileva, J. (1994) ‘Individualised course generation: a
marriage between CAL and ICAL’, Computers and Education, Vol. 22, Nos.1/2, pp.57–64.

24 Peachey, D.R. and McCalla, G.I. (1986) ‘Using planning techniques in intelligent tutoring
systems’, International Journal on the Man-Machine Studies, Vol. 24, pp.77–98.

 94 P. Brusilovsky and J. Vassileva

25 Van Marcke, K.(1992) ‘Instructional expertise’, in C. Frasson, G. Gauthier. and G.I. McCalla,
(Eds.) Proc. of Second International Conference, ITS’92, Berlin, Springer-Verlag,
pp.234–243.

26 Mitrovic, A., Djordjevic, S. and Stoimenov, L. (1996) ‘INSTRUCT: modeling students by
asking questions’, User Modeling and User Adapted Interaction, Vol. 6, No. 4, pp.273–302.

27 Vassileva, J. (1990) ‘A classification and synthesis of student modelling techniques in
intelligent computer-assisted instruction’, in D.H. Norrie and H.W. Six (Eds.) Proc. of 3rd
International Conference, ICCAL’90, Berlin, Springer-Verlag, pp.202–213.

28 Calderhead, J. (1991) ‘Representations of teachers’ knowledge’, in P. Goodyear (Ed.)
Teaching Knowledge and Intelligent Tutoring, Ablex, Norwood, N.J., pp.269–278.

29 Leinhardt, G. (1998) ‘Situated knowledge and expertise in teaching’, in J. Calderhead (Ed.)
Teachers’ Professional Training, Falmer, London, pp.146–168.

30 Van Marcke, K. (1992) ‘A generic task model for instruction’, in S. Dijkstra (Ed.)
Instructional Models for Computer-Based Learning Environments, NATO ASI Series,
Vol. F104, Springer-Verlag, Berlin, pp.234-243.

31 Vassileva, J. (1995) ‘Dynamic courseware generation: at the cross point of CAL, ITS and
authoring’, in Proc. of International Conference on Computers in Education, ICCE’95,
Singapore, AACE, pp.290–297.

32 Vassileva, J. (1998) DCG + GTE ‘Dynamic courseware generation with teaching expertise’,
Instructional Science, Vol. 26, Nos. 3/4, pp.317–332.

33 Vassileva, J. (1997) ‘Dynamic course generation on the WWW’, in B.du Boulay, and R.
Mizoguchi (Eds.) Artificial Intelligence in Education: Knowledge and Media in Learning
Systems, IOS, Amsterdam, pp.498–505.

34 Vassileva, J. and Deters, R. (1998) ‘Dynamic courseware generation on the WWW’, British
Journal of Educational Technology, Vol. 29, 1, pp.5–14.

35 Brusilovsky, P., Eklund, J. and Schwarz, E. (1998) ‘Web-based education for all: a tool for
developing adaptive courseware’, Computer Networks and ISDN Systems, Vol. 30, Nos. 1–7,
pp.291–300.

36 Brusilovsky, P. (2002) ‘Developing adaptive educational hypermedia systems: from design
models to authoring tools’, in T. Murray, S. Blessing and S. Ainsworth (Eds.) Authoring Tools
for Advanced Technology Learning Environments: Toward Cost-Effective Adaptive,
Interactive, and Intelligent Educational Software, Ablex, Norwood, In Press.

37 IEEE LTCS WG11(2001) The Semantic Document v3.4, Computer Managed Instruction
Working Group of the IEEE Learning Technology Standards Committee, available online at
http://ltsc.ieee.org/wg11/index.html

38 IEEE LTCS WG12 (2001) LOM: Working Draft Document v6.1, Learning Object Metadata
Working Group of the IEEE Learning Technology Standards Committee, available online at
http://ltsc.ieee.org/wg12/doc.html

