
EUROLOGO 91

E. Calabrese
University di Parma

Editor

PROCEEDINGS
Third European Logo Conference
Parma, Italy, 27-30 August 1991



TURINGAL - THE LANGUAGE FOR TEACHING THE PRINCIPLES OF

PROGRAMMING

Peter L. Brusilovsky

International Centre for Scientific
and Technical Information (ICSTI)

Kuusinen str. 21b
Moscow 125252, USSR

Abstract

Many beginners are far from being able to overcome the difficulties of the
elementary programming study based on such languages as Pascal, Basic,

C or Fortran. The success of the Logo "turtle graphics" ilas stimulated the
development of the new approach towards the elementary programming
teaching. This "mini-language" approach is discussed briefly in the paper. As

an example of mini-language we describe the language Turingal, which was
designed for the studying of elementary programming by the students of
special secondary mathematical schools.

423



P. L. Brusilovsky

1. Introduction
At present one of the industrial programming languages in the available

computer is likely to be taken so that one could get acquainted with the

principles of programming. At best it is Pascal, but, unfortunately, more often

Basic is used. Such a choice creates obstacles for the beginners in

programming.
First of all, "conceptual basis" of the industrial language together with

the main principles of programming includes a lot of secondary notions which

reflect the subtleties of the given language and it realization.
The abundance of new notions makes difficult to understand the

material property and doesn't assist in forming the structure of knowledge.

Moreover, the details and subtleties of the concrete language version cover

general notions and principles.
Second, basic actions of the industrial languages, namely, the

calculation and assignment, are not visual and are performed inside the

computer. As a result, the process of program execution is hidden from the

student and he sees the final output only. The absence of visualization

hampers the mastering of the semantics by the language operators. But

special analysis shows, that numerous errors appear exactly due to the wrong

understanding of the semantics by the language structures.

And, finally, practical application of the such languages as Basic,

Pascal, etc., that is, the writing of the first simple but informative and

i nteresting programs is possible only on learning a considerable language

subset. As a result, the first steps in the programming learning, the most

difficult ones, are not followed by the work on a computer.
The experience proves, that many beginners are far from being able to

overcome the difficulties of the elementary programming study. But is their

an alternative to the industrial languages? Are there any methods which

would help the beginner to master the principles of programming? Specialists

in the field of informatics repeatedly tried to develop special languages for the

supporting of the initial steps in programming study.

The "turtle graphics" of Logo language - a simple and visual means

to support the first steps of programming study - has played a great role in

this process [1,2,3]. The successful application of the "turtle graphics" has

stimulated the development of the new - approach towards the elementary

programming teaching. The beginners learn what programming is and study

424



425

TURINGAL ---The language for...

how to control an executive on a display. An executive (the robot, the turtle,

etc.) acts in a certain environment (microworld) and can perform a set of

commands. It changes its position and the environment according to these

commands. The executive can be controlled by means of a simple mini-

language which, in addition to the commands to control the executive,

includes more or less complicated structural statements (loop, condition, etc.).

The environment as well as the place of the executive in it is perma-

nently displayed on the screen, and, thus, the student is able to see the result

of command execution at once. When designing simple mini-language

programs, one can make the executive to perform various interesting actions

and watch the "animated pictures" on the screen. While learning a mini-lan-

guage quickly, the student from the first steps begins to write and debug the

informative programs that control the executive. During this process many of

the fundamental notions of programming are learned easily and quickly, the

skills of program development and debugging are acquired. For many

students the experience they get while using this language as well as the

general picture of programming is quite enough for achieving the needed level

of "computer literacy". For those, who need more spacious information the

experience of work with Ahe mini-language will essentially facilitate the

studying in future and mastering a real language.

The work by means of mini-language is not the end in itself but a

method of mastering a certain set of notions and skills. If this set contains not

only the notions of programming but concepts pertaining to the fields of

knowledge, a mini-language might be useful in other spheres. In this sense

an "ideal" mini-language doesn't exist [2], because the type of executive and

set of language controlling structures depend on the age and interests of the

students. There is, for instance the mini-language SOLO aimed at the student

of psychology [4].

At present two approaches to the realisation of mini-languages have

been formed. In accordance with the first approach a mini-language are

embedded (as Logo "turtle graphics") into one of the "big" languages of

programming as a simple and obvious subset which can serve as the base for

the learning. I n accordance with the second approach an original mini-lan-

guage is built for certain purposes of learning. The languages received with

the assistance of these approaches we shall agree to call sub-languages and

pre-languages correspondingly. Lately pre-languages have been more



P. L. Brusilovsky

actively created and used. The designing of pre-languages doesn't restrict the

author's imagination when choosing the executive and language structure. By

the beginning of the. 80s numerous pre-languages have been designed to

support various stages of the elementary programming learning and,

consequently, were different in their complexity and richness. One can get

the idea about various types of pre-languages by means ofseveral languages

to control the executive-robot which moves across the "world" of a CRT

screen: Maze [5], Karel [6], Josef [7].

Some interesting pre-languages have been designed and put in

practice in the USSR recently. Among them the following languages should

be mentioned: alpha-world, beta-world and KuMir (at the Department for

Mechanics and Mathematics of MSU), languages Tortoise and Turingal (at the

Department for Applied Mathematics and Cybernetics of the MSU), languages

of the environment Robotland (the Institute for Programming Systems). The

description of these languages can be found in the publication of the Soviet

journal "Informatika i obrazovanie" ("Informatics and education"). This work

[8] contains some requirements based on the experience to which the pre-
languages should satisfy so.that their usage will be effective. These

requirements are:

1. Simplicity of a language (as well as its conceptual model [2]).

2. Visibility of interpretation.

3. Attractiveness in learning.

4. Dialogue style of a language.

5. Module style of a language.

In addition to these requirements two more conditions of the effective .

mini-language usage ale to be mentioned.

First of all, in order to design and debug a program in a pre-language

a friendly programming environment is needed including a friendly editor and

i nterpreter. The friendly editor "knowing" the syntax of the language will help

the student to make the routine part of the work, i.e., the input and editing of

the program easier and will allow to be concentrated on its informative part.

By pressing one or two keys the beginning user will be able to input, delete,

and move the commands and language structures. This makes the input of

a program quicker and prevents many language errors. The friendly

interpreter helps to look into the working program, watch the sequence of the

statement execution, to debug the program step by step, and make experi-

426



restrict the
ucture. By

Dsigned to
ping and,
icy can get
languages
of a CRT

nd put in

;es should
rtment for
ti gal (at the
languages
ims). The
the Soviet

This work
the pre-

These

a effective

-language
editor and

will help
editing of

ative part.
ut, delete,
!e input of

e friendly

nce of the
<e experi-

TURINGAL - The language for ...

ments over it. During the work with such an interpreter the current environ-
ment condition and the text of current program, in which the performed
operator is stressed, are permanently displayed on the screen. When
performing a command the interpreter immediately introduces changes into

this environment, e.g., moves the robot on the screen, and stresses the next
operator. The visualization facilitates the mastering of semantic of compli-
cated controlling structures and helps to debug programs quickly. Friendly
environment that includes the structural editor and visualization can be

effectively used when teaching real languages, but for mini-languages the
designing of such an environment is less complicated.and this only adds to
a set of their merits. Ideally, the environment for a mini-language can include
an intelligent component to assist in the course of a problem solution and to
control the process of teaching [9,10].

Second, together with the language a set of informative problems

should be developed. These problems must be interesting for the student
both from the point of view a program-result received, and the process of

solution development. The set must contain the problems of various
complexity and encompass all necessary notions. If the student is able to
solve these problems without any assistance it will become solving the

informative problems by the student is the most effective way of the language

mastering and, consequently, of the language-supported concepts. A mini-
language, and environment for the work with it and a set of problems form the
interconnected triad. The main component in it is, of course, the language,
but, as the experience demonstrates, in case of missing of one of the compo-
nents in the triad possible effectiveness of a mini-language is considerably
decreased. Thus, for instance, a mini-language that looked very attractive

and for which a sufficient number of problems was not invented looses its
attractiveness very quickly.

In conclusion we shall analyze the problem of selection of control

structures in a pre-language and their syntax (in a sub-language they are
determined by an including language). As it was mentioned above more
successfully are dealt the languages that have module and dialogue style.

Modern programming languages offer a number of various structures of
control. When selecting structures for a mini-language the age of the students

should be taken into the consideration.

427



P. L. Qrusilovsky

For younger students one or two simple structures are sufficient. Such
a structure in Logo, for example, is the "repeat" loop. The older the students

are, the wider a set of the used structures can be and more complicated are

the structures. If the study of a pre-language is the preparation for the study

of a real language (Fortran, Pascal, Modula-2) it is recommended to borrow

the control structures from this language with the minimum adaptation. Such

a choice greatly facilitates the future mastering of the control structures

semantics of a real language. Some valuable advice on the organization of

convenient and easy to learn structures can be derived from special literature

on this subject [11]. An example a pre-language meeting all the requirements

mentioned above can be a pre-language Turingal. This language is designed

for the studying of elementary programming by the first-year students of

mathematical departments and students of special secondary mathematical

schools. It is aimed at the study of the main concepts of programming and

theory of algorithms as well as preparation for the study of Pascal.

2. Pre-language for applied mathematics students.

The main requirement during the development of a pre-language described

below was its ability to support the elementary stage of programming learning

for the first-year students of the Department of Applied Mathematics and

Cybernetics. The future professional mathematicians-programmers should

learn as early as possible the principal concepts and skills of modern

languages and programming. A pre-language for the students of this category

must provide practical mastering of such fundamental notions as an algorithm,

program, input data, result of execution, module, subroutine, condition,

statement, etc.

The students should acquire the skills of structural programming, the

development of programs from top to the bottom, decomposition of the

problem into sub-problems, stepwise refining and debugging of programs.

They have to get the idea about the main control structures of programming

l anguages; loop, branching, selection and call of subroutine. Thus the

necessary pre-language must provide the early backing of principles of the

theory of algorithms and main concepts contained in Pascal. All the enumer-

ated requirements allowed to make simple choice of the executive in a pre-

language and structures of control over it. As an executive in a pre-language

the Turing Machine executive was . chosen which is studied among the

428



:lent. Such

ie students

~li cated are

r the study

I to borrow

tion. Such

structures

nization of

ii literature

juirements

s designed

tudents of

thematical

riming and

I.

described

i g learning

catics and

Drs should

)f modern

s category

algorithm,

condition,

iming, the

on of the

programs.

gramming

Thus the

ales of the

e enumer-

a in a pre-

-language

mong the

429

TURINGAL - The language for ...

fundamentals of the theory of algorithms [12]. The environment in which the

executive is acting is the endless tape divided into cells. Each sell contains

one of the symbols of the given alphabet. The executive itself is a hypotheti-

cal automata surveying at a moment of time one of the cells on the tape.

This automat can perform three basic action: the shift to the right on

the cell, the shift to the left on the cell, putting a given symbol into the current

cell. In addition to that the automat can check what symbol is in the surveyed

cell of the tape and on this base make decisions about the following actions.

The programs for the traditional Turing machine are recorded as a table being

i n it the only structure of control over the sequence of actions. Unfortunately

such a structure doesn't allow to master the most wide-spread in modern lan-

guages control structures of the loop, branching, selection and call of a

subroutine. For the organization of a pre-language the decision was made to

design the structures of control as similar to the structures of Pascal as

possible. If one copes with them during the work with a pre-language, then

mastering of the control structures of Pascal will become easier. The

statements of a pre-language contained the elementary statements (com-

mands) of the executive control, as well as the control statements, namely:

combined, conditional, loop, selection and subroutine call.

The only differences from "classical" Pascal is the module and dialogue

style of the language. All the subprograms of a pre-language are independent

modules. All the elementary operators and call of sub-programs can be

performed during the dialogue. These differences are conditioned by the

requirements to the pre4anguage stated above. Finally, the transition

operator was not included into the language that help the mastering of
structural programming skills.

The new language was called Turingal, i.e., the combination in one

l anguage of the Turing machine executive and structures of control of Pascal

(Turingai = Turing automata + Pascal, as Turingoi [13]). As it was said above,

Turingal is the language of dialogue style. It means when the user input any

command of Turingal, then the interpreter performs it immediately. The result

of execution is visualized, that is, the changes are introduced into the

environment displayed on the screen. For the chosen executive the visualized

environment is the picture of a section on the Turing machine tape, under one

of the cells of it a special symbol is placed which reflects the current position

of the automata.



P. L. Brusilovsky

When the elementary operators "->" (shift to the right), "<- (shift to the

left) and <symbol> (the print of symbol) are inputed, the automata symbol is

shifted on the next cell, or a printed symbol appears in the cell above it. The

user can input each elementary operator by pressing single key. Using the

elementary operators in the dialogue mode the user can achieve any desirable

condition of the environment. Besides the elementary operators the student

can use the names of the modules (subroutines) defined by him in the course

of a dialogue. The interpreter supports a set of modules defined by each

user, which is displayed on the screen. When the user input the name of one

of the modules defined, the interpreter begins to perform the module step by

step. While doing it the result of every elementary operator is immediately

displayed on the screen. In addition to that, during the module execution its

flow of control is visualized, i.e., the current operator is stressed. The

visualization of the flow of control helps the student to understand the

semantics of the control structures of Turingal.

The module of Turingal is a string of symbols. The operators in the line

are separated from each other by the blanks which are the meaningful

symbols of the language. The string style of a module is the distinctive

feature, of Turingal and makes possible to display simultaneously on the

screen all the modules defined by the student and visualise actions on a

modules (subroutines) call. Such a syntax supports and encourages modern

structural and module style of programming. The semantics of a module-

subroutine on the whole as well as control operators (combined, conditional,
l oop, selection and subroutine call) i s absolutely analogues with the corre-

sponding operators of Pascal and that is why it doesn't require any explana-

tions here.

The semantics of the elementary operators has been discussed above.

The semantics of conditions should be -analyzed in more details. The

elementary condition in Turingal is just the sequence of symbols. At any

moment of a program running it is "true" only when the symbol viewed by the

automaton coincides at least with one symbol of the sequence. The inversion

of the elementary condition "the sequence of symbols" is "true" only when the

symbol viewed by the automaton doesn't coincide with either of the symbols

of sequence. All the sub-programs defined by the student have equal rights.

The call of any of them, including direct and hidden recursion, is allowed. In

this sense the set of Turingal modules is semantically equivalent to the

430



, i ft to the
symbol is
:e it. The
Using the

desirable -
s student
ie course
by each

ne of one
e step by
mediately

rcution its
ed. The

sand the

in the line

teaningful
distinctive
dy on the

'tans on a
modern

F module-
Dnditional,
the corre-
r explana-

red above.

ills. The

a. At any

tied by the
inversion
when the

e symbols
pal rights.
lowed. In
ant to the

REFERENCES

TURINGAL --The language for...

program of Pascal containing the set of subroutines of the top level. All these
facts prove the similarity of the controlling structures of these languages.

3. Conclusions

The pre-language Turingal was designed in 1985 at the Department of Applied
Mathematics and Cybernetics, Moscow State University. During several terms
this pre-language was the first language for teaching programming at some
classes of the first-year students of the department and of the Evening

Mathematical School at the department. The set of more than 100 problems
was designed for Turingal. The language Turingal and the environment for
it were realized on the Soviet mainframe computer BESM-6. The language

proved to be a good means at the initial stage of teaching programming.
Later, the intelligent tutoring system has been developed for the language

Turingal, which together with the environment of the language has formed the
intelligent educational environment [10].

1) Mayer R.E.: The psychology of; how novices learn computer program-
ming, Computing Surveys , 1981, v.13, n.1 -- P.121-141.

	

'

2) du Boulay J.B.H., O'Shea T., Monk J.: The black box inside the glass
box. Presenting computing concepts to novices, Int. Journ. Man-Machine
Studies , 1981, v.14, n.3. - P.237-249

3) Coombs M.J., Gibson R., Alty J.R.: Learning a first computer language:
strategies for making sense, Int. Journ. Man-Machine Studies, 1982,
v.16, n.4. -- P.449-486

4) Eisenstadt M.: A user-friendly software environment for the novice
programmer, Communication of ACM , 1983, v.20, n.12. - PA 058-1064

5) Mawaddat F.: Another experiment with teaching of programming
languages, SIGCSE bull.. 1981, v.13, n.2. -- P.49-56

431



P. L. Brusilovsky

6) Pattis R.E.: Karel - the robot, a gentle introduction to the art of pro-

gramming -- London: Wiley, 1981

. 7) Tomek I.: Josef, the robot, Computers and education , 1982, v.6, n.3. --

P.287-293.

8) Brusilovsky P.: Languages to study introductory programming (in

Russian), I nformatics and Education, 1990, v.5, n.2. p. 3-9

9) Witschital P., Stiege G., Kuehme T.: First experiences with the learning

game "TRAPS" - i n: Artificial Intelligence and Education. Bierman D.,

Breuker J., Sandberg J. (Eds.). Proc. of the 4-th International Conference

on AI and Education, Amsterdam: IOS - p.323-329.

10) Brusilovsky P.: Intelligent environment to study introductory programming

(in Russian), Gritsenko V., Dovgyallo A. (Eds.). The use of computer

technologies in teaching . - Kiev, 1990, - p.40-48.

11) Shneiderman B.: Software psychology: Human factors in computer and

i nformation systems. - Wintrop Publishers, Cambridge, MA, 1980.

12) Bohm C., Jacopini G.: Flow diagrams, Turing machines and language

with only two formation rules, Communications of the ACM, 1966, v.5,

n.5, p.366-371.

13) Pratt T.W.: Programming languages: Design and 'implementation. -

Englewood Cliffs: Prentice Hall, 1975

432


