
Adaptive, Engaging, and Explanatory Visualization
in a C Programming Course

Peter Brusilovsky and Michael Spring
School of Information Sciences

University of Pittsburgh
Pittsburgh PA 15260

{peterb, spring} @ mail.sis.pitt.edu

Abstract: This paper discusses three ways to improve the educational value of program
visualization: engaging visualization, explanatory visualization, and adaptive visualization.
We present some tools that we have developed to explore adaptive, engaging, and explanatory
visualization in the classroom: a system for exploring the calculation of C expressions
(WADEIn) and a set of small learning environments for exploring some of the "muddiest
points" of C. We also provide some results of our most recent study of the WADEIn system in
the classroom and summarize the directions for future work.

Introduction

Interactive visualization is a powerful educational tool. Visualization can provide a clear visual metaphor
for understanding complicated concepts and uncovering the dynamics of important processes that are usually hidden
from the student’s eye. Visualization has been used to enhance the teaching of various subjects ranging from
chemistry (Yaron et al., 2001) to mechanics (Hampel, Keil-Slawik & Ferber, 1999) to physics (McKenna &
Agogino, 1997). One of the most active application areas for educational visualization research is visualization of
program execution in the context of Computer and Information Science (CIS) education. Program visualization is
considered one of the most powerful educational tools in CIS education. Visualization has been explored in the
context of machine-level languages (Butler & Brockman, 2001), various high-level languages (Domingue &
Mulholland, 1998; Haajanen et al., 1997; Tung, 1998), and algorithms and data structures (Brown & Najork,
1996).

For many years, the focus of visualization research was on developing better tools and trying visualization
in various contexts. Few studies of the effectiveness of visualization were done since the benefits of visualization
appeared evident for many researchers and teachers. Yet, It has been shown in several experiments (Byrne,
Catarambone & Stasko, 1999; Stasko, Badre & Lewis, 1993) that the educational effect of observing visualizations
is unexpectedly low. Often students failed to understand what was happening inside a program or an algorithm in
the presence of a well-developed visualization. Several researchers and teams has focused their efforts on "making
visualization work". We see three promising approaches to "useful visualization" that can be called engaging
visualization, explanatory visualization, and adaptive visualization.

Proponents of engaging visualization suggest that the major problem of traditional visualization is its
passive nature. In traditional visualization, the role of the student is simply to watch what's happening on the
screen. The only kind of action that is allowed (and not even in every system) is to control the pace of visualization.
Several psychological theories used in education - from activity theory to constructivism stress that a student has to
be actively engaged in the educational process for the learning to happen. Guided by this prospect several projects
have attempted to build some more engaging visualization and to measure its efficiency. Several ways were
suggested to engage the students and to make them work more actively with the visualization. These techniques
range from "light activity" such as developing personal data sets for visualization to "heavy activity" such as asking
the student to construct the whole visualization instead of watching a "prepared" one. These techniques brought
positive results (Hundhausen, Douglas & Stasko, 2002). From our point of view, the most attractive way to engage
the student is to ask her to predict the results of animation. This way has been shown to be effective (Byrne,
Catarambone & Stasko, 1999), it is easy to implement, and it allows visualization to be used not only for
presentation but also for evaluation.

Proponents of explanatory visualization argue that the students often fail to learn from visualization
because they can't understand what they see - what has happened, why it has happened and how the particular
behavior connects to general knowledge presented in class (Brusilovsky, 1994). The idea of explanatory
visualization is to augment every animated step of visualization with natural language explanations. The role of the

explanations is to tell what is going on, why it happens, and how it relates to general principles. It has been shown
that explanations indeed help the student to understand what they see (Brusilovsky, 1994). The programming
"problets" developed by Amruth Kumar (Kumar, 2001; Shah & Kumar, 2002) provide very impressive examples of
explanatory visualization. Adaptive visualization is based on an assumption that a student may have different level
of knowledge of different elements of a program or an algorithm that is being visualized. In the case of a program,
the student may know some high-level language constructs or machine level language commands better than others.
For the case of algorithm animation the student may understand some steps of an algorithm better than others. In
this context, regular visualization that animates all constructs or steps for each student with the same level of details
may be the wrong approach. For a troublesome construct the level of detail may not be deep enough for the student
to understand its behavior. A visualization of a well-understood construct with unnecessary details may distract the
student and make it harder to focus on and thus comprehend the behavior of the constructs that are still poorly
understood. The idea of adaptive visualization is to match the level of detail in the visualization of each construct or
step to the level of student knowledge about it. The less the level of understanding of a construct, the greater the
level of detail in the visualization. Naturally, with a demonstrated increase in student knowledge about specific
constructs, the level of visualization of those constructs should decrease. This approach allows a student to focus
attention on the least understood components while still being able to understand the whole visualization. An
experimental evaluation of adaptive visualization in the context of program debugging has confirmed that adaptive
visualization can improve student learning (Brusilovsky, 1993).

We have explored all three ways of improving the efficiency of visualization listed above focusing most on
adaptive and explanatory visualization (Brusilovsky, 1992; Brusilovsky, 1993; Brusilovsky, 1994). The work has
been performed in a rather simple context of an educational mini-language, Tortoise (Brusilovsky et al., 1997). Our
current challenge is to explore the scalability of engaging, explanatory, and adaptive visualization in a more
challenging and more practical context of a C programming course. We have developed several Web-based tools that
offer engaging, explanatory, and adaptive visualization of various aspects of C program execution. We have used
these tools in several undergraduate courses and conducted studies of the impact. This paper presents some of our
tools: a system for exploring the calculation of C expressions (WADEIn) and a set of small learning environments
for exploring some of the "muddiest points" of C. We also provide some results of or most recent study of the
WADEIn system in the classroom and summarize the directions of the future work.

WADEIn: An Adaptive Visualization of Expression Evaluation

For the students in our programming and data structure courses based on C language, expression evaluation
is one of the most difficult concepts to understand. They have problems with both understanding the order of
operator execution in a C expression and understanding the semantics of operators. To help the students, we have
developed a Web-based Adaptive Expression Interpreter (WADEIn, pronounced wade-in). WADEIn allows the
student to explore the process of expression evaluation step-by-step with detailed animation as well to check their
understanding of the order and the results of evaluation. From a research point of view, the goal of WADEIn is to
explore adaptive and engaging visualization. At the moment, WADEIn does not use explanatory visualization.
Since this paper is focused on what an effective visualization can be, we present the WADEIn system from a user
point of view. Technical details such as student modeling mechanism, the architecture, and the implementation can
be found in a paper on the earlier version of the system.

The core of WADEIn is an expression interpreter that can work in either exploration or evaluation mode. In
exploration mode the user can observe the process of evaluating a C expression step-by-step. An expression can be
typed in or one can be selected from a menu of expressions. At the beginning of evaluation, the system indicates the
order in which various operations in the expression will be performed (Fig. 1). After that, the system starts
visualizing the execution of each operation. The goal here is to show the results and the process of executing an
operator. To show the results, the system visualizes a "shrinking" copy of the original expression and the values of
all involved variables.

The execution of every operation is split into several sub-steps. First, the system highlights the operations
to be executed and its operands on the "shrinking" copy of the expression and re-writes them to the evaluation area
field (gray rectangle in the center of the window). Next, it shows the value of the expression (2 on Fig. 1). In case
of assignment and increment/decrement operations, WADEIn also shows the new value of the variable involved
(Fig. 1). In the next sub-step, it replaces the whole highlighted operation in the "shrinking" copy with the calculated
value. If a variable has changed its value as a side effect of evaluation, it also changes the value of the variable (Fig.
2). On this sub-step the system may use animation by "flying" the numbers from the working field to their
destinations in an expression or in the variable area. Finally, the system removes all highlighting, "shrinks" the
simplified expression, and prepares for the next step.

Evaluation
area

Shrinking
copy

Figure 1. The user starts working with an expression. Numbers in circles show the order of calculation. The applet starts
visualizing the execution of the first operation ++K (the current value of variable K shown below is 1).

Figure 2. The results of calculating an operation are "flying in" to replace the original operation and operands in a
working expression and the old value of the variable involved.

The level of detail in executing an operation depends on the user’s current level of knowledge. For the minimal
level of knowledge (1.0), the system will perform all sub-steps and will show the animation in slow motion. As the
user learns an operation and his or her knowledge level improves from 1 to 5, the system gracefully degrades the
level of detail in the visualization by increasing the speed of animation and removing some sub-steps. For the
highest level of knowledge (5.0) there are no sub-steps and no animation - the operation is executed in one step. To
make the adaptive behavior of visualization more transparent, we choose to visualize the system's opinion about
student knowledge with progress indicator bars. Students have expressed a clear preference for the progress bars as a
way to understand the work done and the work left to be done.

To control the process of expression interpretation, the user has six buttons. First and Last let the user
move to the beginning or the end of expression execution; Next_OP and Prev_OP let the user move in one step to
the beginning of interpretation of the next or previous operation; Next and Prev move the user one adaptive step
forward and backwards. Normally, the user would use only Next button (or simply hit the return key). Other buttons
can be used to watch the same operations and sub-steps again and again forwards and backwards or to skip sub-steps
or operations. This variety of ways to control the evaluation supports the multiple uses of WADEIn. The primary
use of WADEIn is for the students to explore in detail the newly presented operators. This is exactly the context
that the adaptive Next and Prev buttons support. It is known that the students who are new to the environment and
the domain prefer to use a single button to navigate through learning material. Yet we also anticipate more skilled
users who need more control over the execution such as teachers using WADEIn to present new operators in class or
students returning to WADEIn for quick targeted experiments in the process of problem solving or exam
preparation.

To make student work in exploratory mode more engaging and active, we allow the student to provide
both the expressions and the data for the evaluation process. While a good set of interesting expressions to explore
can be provided by a teacher (these expressions are available through the pop-up menu to the right of the Start
button), the student can enter and visualize any syntactically correct expression. In addition, before the start of
visualization, students can provide their own values for all the variables used by the system. As we have mentioned
above, this form of engaging is known to be efficient.

Figure 3. At the beginning of executing an expression in the evaluation mode, the system requests the user to mark the
order in which the operators will be executed.

The evaluation mode provides another way to engage students as well as to evaluate their knowledge. Here
the student has to do most of the work that is done by the system in the exploration mode. In the evaluation mode
the student starts working with the new expression by indicating the order of execution of the operations in the
expression (Fig. 3). After that, the system corrects errors, shows the correct order of execution, and starts evaluating
the expression (Fig. 4). The interface in the evaluation mode is quite similar to the one of exploration mode - the
execution of every operation is adaptively visualized. However, if the student knowledge of the current operation is
lower than a predefined threshold, the system will not calculate the result of the operation, but instead challenge the
student to provide the result (Fig. 4). If the user makes an error, the correct result is provided, so the calculation of
the expression is always correct. To keep the student engaged and challenged, the well-understood operations are
performed by the system in exploration mode. To allow the use of evaluation mode for exercises and knowledge
evaluation, student freedom of navigation through the solution is limited. Only two actions are possible - quit an
exercise and move to the next operator.

Figure 4. In evaluation mode, the system requests the result of each operation from the user if his or her level of
knowledge about this operation is low.

Explanatory Visualization of the "Muddiest Points" of C Language

The C language is not designed as a language for teaching programming, but it is used heavily in a variety
of programming courses including introductory programming and data structures. Every teacher dealing with C or
C++ in class is well aware of some of the "muddy points" of the C language that are known to create problems for
nearly every student. Such topics as buffer overflow, pointer assignment, pointer arithmetic's are hard to explain and
hard to understand. The mastery of these topics is critical for student success. To help teachers to explain these
topics and students to comprehend them we have developed a set of learning environments for the "muddiest
points" of C.

Our environments use the idea of explanatory visualization. Each environment presents visually one or
more problem situations - small programs that demonstrate some aspect of the C language. On the screen the
student can see the program code and a visual representation of data. They are designed to help the student
understand the concept being demonstrated. Working with problem situations, the student can navigate through the
execution of the target program forwards and backwards. As in many other program visualization environments,
each step of the execution is visualized - i.e., the environment dynamically shows all changes in data introduced by
the current step and any output generated by the step. Output is presented in a "console" window located under the
code of the program (Figures 4 and 5). In addition, each step is followed by a natural language explanation of what
has happened, why it has happened, what hidden problems are demonstrated and which lessons can be learned from
the step. These explanations mimic narration that a teacher usually presents when demonstrating program execution
in the classroom. It is these explanations that we consider critical for understanding program visualization.

The presented environments constitute our first attempt to use explanatory visualization in the context of
teaching C. Our priority was not to "make it right" from the first attempt, but to create a useful tool that we can
immediately use in the classroom for teaching and research. So far they have already been used in one class of about
30 students. Our current focus is on making these environments more engaging, allowing the students to do a bit
more than just playing the visualization forwards and backwards. For example, some environments (Figure 5) allow
the students to try different representations of data, others explore the benefits of random access to the code lines or
changing the data used by the program. Our research agenda includes evaluating the value of explanations in the
explanatory visualizations and the student attitude to our different attempts to make learning more active.

Figure 5. An environment for explanatory visualization of the buffer overflow problems.

Figure 6. An environment for explanatory visualization of C Pointer problems

WADEIn: Some Classroom Study Results

We routinely run classroom studies of all educational tools developed in our lab. During the first semester
of using a tool in the classroom we usually run a formative pilot study to uncover (through discussions with the
students) obvious problems and to determine critical aspects to be evaluated. It helps us to design a questionnaire
that we use to run a set of more formal studies in the following semesters. During the study we make a tool
available (through the Web) for all students. Each tool is introduced during the lecture and often used as a teaching
tool during a lecture. At the end of the course, we asked students to fill in a non-mandatory questionnaire. In our
evaluation we only consider questionnaires filled by students who performed some sufficient amount of work with
the system to understand and appreciate it. For example, in the case of WADEIn “sufficient work” means working
with at least 20 expressions in both demonstration and evaluation mode. Since several versions of WADEIn have
been used in the classroom over four semesters, we have results of three formal studies. Data from the most recent
study provide some evidence in favor of our adaptive visualization is shown below. The data were collected from 29
students who tried between 20 to 441 different examples with WADEIn over the duration of the course. As shown
in Figure 7, student attitudes to WADEIn and its features are very positive. More than 80% students found
WADEIn and its adaptive nature helpful with about 30% students providing highly positive answers and none
selecting negative answers. By our standards, this is a very impressive results making WADEIn one of the most
useful tools we have ever developed.

Students' attitude to the system

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

WADEIn helped to
understand C

operations

The ability to visualize
substeps was

important

Adaptive level detail in
visualization was

helpful

Animation with flying
numbers were helpful

Evaluation mode was
useful

Strongly agree Agree No strong opinion
Disagree Strongly disagree

Figure 7. Student attitude to WADEIn and its features

Summary and Future Work

This paper discussed the problems of developing effective program visualization to be used in
programming and data structure courses. We have explored engaging, adaptive, and explanatory visualization. In our
current work we explore different ways to improve the effectiveness of visualization in different systems (and
different modes inside WADEIn). The goal is to evaluate the separate "added value" of each in the most appropriate
context. However, our true believe is that the best value can be provided by using these three promising ways at the
same time. Indeed, they are not contradictory, but complementary. Explanatory visualization can be naturally used
in several ways to engage students. For example, Kumar's problems always challenge the student with the task of
predicting the answer before presenting the full explanation (Kumar, 2001; Shah & Kumar, 2002). Adaptation can
empower both engaging and explanatory visualization. For example, to keep the student interest and motivation the
system will challenge the student to predict the results of the least known execution steps as done in WADEIn's
evaluation mode. Likewise, to prevent the student from drowning in the flow of explanations, the system can
generate detailed explanations for the least known operations. In our future work we plan to explore different
combinations of engaging, adaptive, and explanatory visualization. Our ultimate goal is to maximize the value of
educational visualization for every student. In addition, we are interested in using engaging, adaptive, and

explanatory visualization in some contexts different from program visualization. We believe that the benefits of
these powerful ways to expand visualization can be demonstrated in multiple domains.

References

M. H. Brown and M. A. Najork. "Collaborative Active Textbooks: A Web-Based Algorithm Animation System for an
Electronic Classroom"; In Proceedings of the IEEE Symposium on Visual Languages (VL'96) (pp. 266-275). 1996.

P. Brusilovsky. "Adaptive visualization in an intelligent programming environment"; In Proceedings of the East-West
International Conference on Human-Computer Interaction (pp. 46-50). ICSTI. 1992.

P. Brusilovsky. "Program visualization as a debugging tool for novices"; In Proceedings of the INTERCHI'93 (Adjunct
proceedings) (pp. 29-30). 1993.

P. Brusilovsky. "Explanatory visualization in an educational programming environment: connecting examples with
general knowledge"; In Proceedings of the 4th International Conference on Human-Computer Interaction,
EWHCI'94 (pp. 202-212). Berlin: Springer-Verlag. 1994.

P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and P. Miller. "Mini-languages: A way to learn programming
principles"; Education and Information Technologies, vol. 2(1), pp. 65-83. 1997.

J. E. Butler and J. B. Brockman. "A Web-based learning tool that simulates a simple computer architecture"; SIGCSE
Bulletin - inroads, vol. 33(2), pp. 47-50. 2001.

M. D. Byrne, R. Catarambone, and J. T. Stasko. "Evaluating animations as student aids in learning computer algorithms";
Computers & Education, vol. 33(5), pp. 253-278. 1999.

J. Domingue and P. Mulholland. "An Effective Web Based Software Visualization Learning Environment"; Journal o f
Visual Languages and Computing, vol. 9(5), pp. 485-508. 1998.

J. Haajanen, M. Pesonius, E. Sutinen, J. Tarhio, T. Teräsvirta, and P. Vanninen. "Animation of user algorithms on the Web";
In Proceedings of the VL '97, IEEE Symposium on Visual Languages (pp. 360-367). IEEE. 1997.

T. Hampel, R. Keil-Slawik, and F. Ferber. "Explorations - A New Form of Highly Interactive Learning Materials"; In
Proceedings of the WebNet'99, World Conference of the WWW and Internet (pp. 463-468). AACE. 1999.

C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. "A meta-study of algorithm visualization effectiveness"; Journal o f
Visual Languages and Computing, vol. 13(3), pp. 259-290. 2002.

A. N. Kumar. "Learning the interaction between pointers and scope in C++"; In Proceedings of the 6th Annual Conference
on Innovation and Technology in Computer Science Education (ITiCSE'2002) (pp. 45-48). ACM Press. 2001.

A. McKenna and A. Agogino. "Engineering for middle schools: A Web-based module for learning and designing with
simple machines"; In Proceedings of the FIE'97, Frontiers in Education Conference (pp. 1496-1501). Stipes
Publishing L.L.C. 1997.

H. Shah and A. N. Kumar. "A tutoring system for parameter passing in programming languages"; ACM SIGCSE Bulletin,
34, 3 (2002), 170 - 174.

J. Stasko, A. Badre, and C. Lewis. "Do Algorithm Animations Assist Learning? An Empirical Study and Analysis"; In
Proceedings of the INTERCHI'93 (pp. 61-66). ACM. 1993.

S.-H. S. Tung. "Visualizing Evaluation in Scheme"; Lisp and Symbolic Computation, vol. 10(3), pp. 201-222. 1998.

D. Yaron, R. Freeland, D. Lange, and D. J. Milton. Using Simulations to Transform the Nature of Chemistry Homework.
Carnegie Mellon University, Pittsburgh (2001),

