
Distributed intelligent tutoring on the Web

Peter Brusilovsky
School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213 USA
E-mail: plb@cs.cmu.edu

Steven Ritter
Department of Psychology, Carnegie Mellon University,

Pittsburgh, PA 15213 USA
 E-mail: sritter@cmu.edu

Elmar Schwarz
Department of Psychology, Carnegie Mellon University,

Pittsburgh, PA 15213 USA
E-mail: schw1302@uni-trier.de

Abstract: The World-Wide Web is an inherently distributed environment. As the
web becomes a more important medium for education, we need to consider how
different educational systems might interact. Adaptive systems are especially
promising in this regard, since they offer the potential to customize themselves to
suit students who have not yet used the system. In this paper, we describe our efforts
to construct an integrated system which incorporates conceptual instruction through
InterBook and problem-solving interaction through PAT Online. InterBook and PAT
Online are two separate Web-based adaptive tutoring systems. To achieve a better
level of adaptivity these systems interact and exchange information about the user’s
progress.

Introduction

As the World-Wide Web (WWW) becomes a more important educational medium, it is
essential that authors of web-based educational applications consider making their systems more
adaptive and intelligent. In the classroom, a teacher can compensate for the fact that software is
unadaptive, but web-based educational applications are often used by very different classes of users
without the assistance of a human teacher. Until very recently all educational applications on the
WWW were non-adaptive. Now, there are several examples of more-or-less adaptive Web-based
tutoring systems: CALAT [16], ELM-ART [4], PAT-OnLine, Albatros [12], and InterBook [5].
Another emerging class of adaptive Web-based applications which could be used for education is
adaptive information systems such as ILEX or PEBA [14]. The key to adaptivity in all systems
mentioned above is a student model (also called a user model). For each user of the system, the
student model maintains up-to-date information about his or her goals, knowledge, background, etc.
The more precise and correct the student model is, the more advanced the types of adaptation that
can be supported.

We expect that many more adaptive Web-based systems will be developed in the coming years.
Moreover, reasonably soon a course teacher will have a selection of different adaptive systems
which can be used to teach the same subject. In many cases, these systems complement each other

well and it would make sense to combine them. For example, an InterBook-like system could
support conceptual learning, while a PAT OnLine-like system could support problem solving in the
same domain. Ideally, a teacher should be able to choose the systems which will be used together. A
real integration (as opposed to just an aggregation) of several Web-based systems would result in a
versatile virtual system which is "more than sum of its parts".

In our previous work [2; 21], we considered two aspects of real integration of ITS components.
First, one component should be able to use the capabilities of another component and exchange or
share data with it. Second, the results of students' work with any of the components during the
session should be taken into account by other components so that they can adapt their performance
to the knowledge level and personal features of the particular student. For example, if a student
learned something new while working with an information system, a related multimedia tutoring
system should take this into account and avoid re-teaching those already-learned concepts.

This paper address the integration problem in the context of the WWW, where each component
is a separate Web-based adaptive system. In the next section we present possible ways to organize
interaction and student model-sharing between different Web-based adaptive systems. The
remainder of the paper presents an example of an integrated tutoring system. This example
demonstrates a way to organize cooperation between two different adaptive tutoring systems, PAT
OnLine and InterBook [5], which use basic algebra as their target domain. The integrated system is
able to deliver conceptual information through InterBook and support interactive problem solving
using PAT Online (Figure 1). Two sections are devoted to describing the basic goals and
architectures of these two systems to the extent required to understand the problems of setting up an
interaction. Following that, we describe the modifications required to be made to the systems in
order to support interaction and the protocol that we chose for interaction.

Figure 1: The Pat Online/InterBook environment. The top left window shows the PAT Online problem-

solving interface in a situation where the student has to enter the worksheet label . The bottom left window is
the InterBook Help window suggesting a list of manual sections which explain how to enter the label. The

right window is the InterBook “Textbook window” showing one of these helpful sections.

Architectures for Distributed Adaptive Tutoring

Three different models of student model sharing between different Web-based adaptive systems
are master-slave, communicating peers, and a centralized architecture.

The master-slave model is the simplest model which could be applied if one of the cooperating
systems was not specially developed to support inter-system communication. If a system is adaptive
and has an open user model (i.e. the student could use a kind of form-based interface to see and
update the content of the user model), a specially designed master system will be able to use it as a
slave. In this architecture, the master system could pre-fetch information from the slave system and
show it in its own window or frame. Sharing student models in this system is simple, since the
master system can update the user model using the same form-based interface as a student would. A
disadvantage of this architecture is that it is asymmetrical. The student must always interact directly
with the master, since student model changes that result from direct interaction with the slave will
not be communicated to the master system.

A more promising architecture is communicating peers. Peers are systems which know about
each other and can use special protocols to communicate. They can request information from each
other, inform each other about changes in local user models, and ask each other to perform some
actions. Perhaps the simplest way for the peers to exchange information is using structured URLs,
since many toolkits for building Web-based systems provide facilities for generating and parsing
structured URLs. The problem with this architecture is that all peers communicate directly with
each other. As more peers are integrated into the system, it becomes harder to organize the
communication. When a new peer is added into the system, all other peers must be informed,
complicating the process.

A more flexible and open architecture which is able to integrate many independent components
is a centralized architecture. The centralized architecture is based on a special user-modeling server
which stores all information about a particular student. Any adaptive system working with the
student is expected to get up-to-date information about the student from the server and to inform the
server about any changes in its assessment of the student’s knowledge, goals, etc. One benefit of
this architecture is that a new system which understands the protocols of the user modeling server
could easily become a part of integrated system. None of the already-existing systems would need
to change their behavior because of the newly-added system.

A number of existing projects represent a good background for research on integration-oriented
architectures. Some aspects of inter-component communication were addressed by the work on
blackboard architectures for ITS [13] and more recently by the original work of members of the
French-speaking research community on multi-agent architectures for ITS [8; 9]. A multi-agent ITS
is a set of independent components, such as a problem-solver, environment, or instructional planer,
which may have local knowledge and which communicate by exchanging messages. The research
on multi-agent architectures also investigates the problems of generic agents and centralized student
modeling [17]. This research could be helpful for developing a "communicating peers" architecture.

Another group of projects [21; 22] provide background for research on a centralized
architecture. They suggest that flexible communication between components can be based on some
inter-application protocol such as Apple Events or DDE. Two aspects of this architecture are an
application-independent semantic-level communication language and a control center which
collects and delivers all inter-component messages. The topic of centralized student modeling is
addressed by research on student modeling architectures [1] and user modeling shells, such as
TAGUS [18; 19] and BGP-MS [10]. Central student models and user modeling shells are designed
to collect information about the user from different sources and to serve queries about the user from
different applications. The recent implementation of the BGP-MS user modeling shell can already
communicates with its clients using Internet and TCP/IP [7].

 The PAT Online Tutor

Learning Goals and Assessment

The PAT Online tutor is a variant of the PAT algebra 1 tutor described in [11]. The tutor assists
students in solving word problems described by one or two linear equations. Students solve these
problems by completing a spreadsheet and graph describing the problem situation and by solving
equations related to the problem situation. The PAT Online tutor currently implements the
spreadsheet and a portion of the graphing module.

As students work through a problem, the tutor provides help, identifies errors and updates its
assessment of the student’s progress. Each of the rules in the underlying production system
represents a skill that the student needs to master in order to solve the problem. As described in [6],
the tutor assumes a simple two-state model of skill learning. Each skill is either mastered or not, and
the tutor maintains, for each student, the probability that the student has mastered the skill. At each
opportunity to learn (that is, each time the student encounters a situation where that skill is needed),
there is some probability, pLearn, that the skill will transition from the unlearned to the learned
state. Two other parameters estimate the probability that the student will make an error even though
the skill has been mastered (i.e. the student "slips") and the probability that the student will give the
correct answer even though the skill has not been mastered (i.e. the student guesses correctly).
Equations 1 and 2 describe the method for updating skill probabilities based on student
performance.

If a student is successful:

(1a) knownAndSucceeded = pKnownT−1 * (1− pSlip)
pKnownT −1 * (1− pSlip) + pGuess* (1 − pKnownT−1)

(1b) pKnownT = knownAndSucceeded + pLearn* (1− knownAndSucceeded)

If a student is unsuccessful:

(2a) knownButFailed = pKnownT −1* pSlip
pKnownT−1 * pSlip + (1− pKnownT−1) * (1− pGuess)

(2b) pKnownT = knownButFailed + pLearn* (1− knownButFailed)

System Architecture

PAT Online differs architecturally from the tutor used in the classroom. It was designed in
accordance with the plug-in tutor agent architecture described in [20; 21]. The tutor agent
architecture separates the instructional knowledge from the "tools" that the student uses to interact
with the system. While the agent architecture was not designed the WWW in mind, the architecture
has proved to be easily adaptable to delivery over the web. The tutor agent used in PAT Online was
originally developed for use with a single-user, desktop system. Transforming the “translator” of
the plug-in architecture into a CGI program allowed us to use the tutor agent from the existing
system as the basis for PAT Online without modification. One small modification was added to the
tutor agent to facilitate interaction between PAT Online and Interbook.

Figure 2 illustrates the architecture of PAT Online. The tutor agent contains all of the tutoring
knowledge for the system. It is responsible for providing help, identifying errors and assessing
student performance on the component skills of the task. The student record server maintains all
information about students who have accessed the web site and acts as a CGI program, allowing
students to access (and change, if authorized) information contained in their student files. The
translator maps student actions into messages for the tutor agent and tutor agent messages into
output. The tutor CGI parses information that the student enters into an HTML form and re-
constructs a new form based on feedback from the tutor.

Figure 2: System architecture of PAT-Online.

 InterBook - A User-Adapted Textbook

InterBook is an authoring and delivery tool for user-adapted textbooks on the WWW [5].
InterBook strives to provide authors with a simple authoring tool for their educational hyper- and
multimedia material and to present that material in an efficient and easy-to-use user-adapted
interface on the WWW. To simplify the use of InterBook, it employs technologies like incremental,
user-adaptable and -adaptive knowledge tracking and adaptive navigation support [3].

User
Model Database Authored

Text

PreprocessorInformation Server

Inte rBook

Authoring ToolAdaptive Interface
User-adapted interaction Maintenance

USER AUTHOR

Figure 3: Structure of InterBook as an authoring and delivery tool.

The authored educational material is preprocessed by InterBook and transformed into a database.
Material from this database is adaptively presented to the user according to his or her user model.

The backbone of InterBook’s open architecture is its user model, which is able to store any

arbitrary data about a student that might support the system in teaching this particular student. The
main part stores the student’s current state of knowledge. InterBook uses an extended overlay
model, which is dynamically extensible to be suitable to any educational domain. Information about
the student is gained by tracking user actions like reading text, looking at examples or solving
multiple choice tests. This extends the simple approach of an overlay model to a multidimensional
space which describes the user’s current state of knowledge about a certain concept by a score on
any of these dimensions. These multiple scores are finally projected into a scalar value by a simple
linear expression:

know c() =
weightscore ⋅valuescore (c) − thresholdscore()

score| available
∑

#available scores

Equation 3: The scalar value of the supposed state of
knowledge of a concept c.

read about

example seen

problem solved

Figure 4: Extensible multidimensional overlay

model in InterBook with three scores.

The expression results in a score that can assume any arbitrary value from negative to positive

infinity. Each of these scores are used to estimate the educational state of any concept and teaching
operation. InterBook employs the user model for user-adapted interaction such as adaptive link
annotation, prerequisite-based help, and adaptive sorting [3]. This strong user-adapted interface
enables InterBook to support the student in choosing the next relevant teaching operation at any
point of his or her state of learning. The quality of this support is limited by the accuracy of user
tracking and the derived knowledge score. InterBook lacks any mechanism to track a student’s state
of knowledge during problem solving, which is often considered to be the most reliable source of
user modeling. The solution to this problem is to extend the system so that problem-solving systems
can communicate information about a student’s knowledge to InterBook.

Interaction between PAT Online and InterBook

PAT Online and InterBook are good examples of adaptive systems which could complement
each other when used in parallel for teaching the same subject (such as high-school algebra). PAT
Online can support problem solving activity and track the student’s procedural knowledge.
InterBook can support learning from an electronic textbook or manual and track the student’s
conceptual knowledge. Together PAT Online and InterBook could provide a complete adaptive
learning environment. It depends on an ability to communicate and to exchange their knowledge
about the student. PAT Online has to know what conceptual information the student has learned
with InterBook. InterBook has to know which knowledge concepts has been applied successfully
(or not) in the problem-solving activity. This section describes how PAT Online and InterBook
interact with each other when they are used together as an integrated environment.

Communicating updates

The interaction between PAT Online and InterBook is a peer-communication architecture that
supports two kinds of information sharing (see Figure 5). First, the tutor and interbook share
assessment information about students. When a student works with PAT Online, any changes in
PAT's assessment of the students skills are communicated to Interbook. Similarly, when a student
works with InterBook, information about the concepts explained on pages the student reads are sent
to the PAT Online tutor. In addition, when the student asks the PAT Online tutor for a hint (or when
PAT Online presents a bug message), the tutor includes a link to an InterBook page explaining the
underlying skill. Similarly, students using InterBook can follow a link directly to an appropriate
problem in PAT Online.

The design of the interaction between the two systems was influenced by two goals. First, we
wanted to make sure that nothing in the design of either system assumed that students had access to
the other. This is necessary because, unlike in a classroom version of the tutor, on the world-wide
web, we have little control over how students come into the tutoring environment. Thus, it is
important that we support students who come directly to PAT Online or directly to InterBook. Our

second design goal was to ensure that the communication protocol be generic enough that the
systems can interact with other environments. Neither system should depend the internal workings
of the other. At the same time, we were thinking more about designing a useful protocol to cover a
set of communication goals at hand rather than about establishing a comprehensive standard.

Within PAT Online, communication with InterBook is handled entirely through the student
record server. When a student record is created in InterBook, the InterBook site accesses PAT
Online’s student record server CGI, passing it the form information for the student’s name and
password along with several initialization parameters. In our system, for example, we use
returnURL, helpURL and helpWIN (see Figure 5). The returnURL parameter specifies a URL
which should receive skill update information. This URL is then stored with the student's record so
that, whenever the student uses PAT Online, the student record server knows to not only save the
skill update information but pass it along to the returnURL location (which, in this case, is
InterBook). The helpURL represents a URL that, when appended with a concept name, offers help
on the concept. The helpWIN parameter specifies the name of the window in which to display the
page associated with this link.

PAT

PAT

PAT

InterBook

InterBook

InterBook

CREATE

Confirmation

Confirmation

Confirmation

EDI T

EDI T

user=“Joe Doe”
password=“save”
returnURL=“...”

...

user=“Joe Doe”
password=“save”
skillName1=

“Enter Unit”
skillRead1=1

...

user=“Joe Doe”
password=“save”
skillName1=

“Enter Unit”
skillProb1=0.75

...

User
subscr i bes

as
Joe Doe

User r eads
page about
Enter Unit

User en ter s
cor r ect un i t

i n PAT
Enter Unit

Creates
n ew u ser

Creates
n ew u ser

In cremen ts
read

exper ien ce

Compu tes n ew
prababi l i ty

score

An alyzes
solu tion an d
u pdates UM

Updates
p robabi l i ty
score i n UM

Figure 5: Protocol for Exchanging User Model Data between InterBook and PAT Online.

Incorporating student model information

As described above, PAT Online’s student model records the tutor's estimate of the probability
that the student has mastered each skill. This is a complicated quantity and not easily mapped to
quantities stored in other student models (such as percent correct). One of the most difficult issues
involved in sharing student models is how to convert information from one format and unit of
measure to another [1; 19]. For this initial version of the tutor, we treat reading about a concept or
following an example in Interbook as being equivalent to a request for help and update the
probability according to Equation 4.

(4) pKnownT = pKnownT −1 + pLearn* (1− pKnownT −1)

This formula provides an increment in the tutor’s estimate of the user’s skill which is

intermediate between those updates caused by correct or erroneous performance in the tutor. This is
probably an inaccurate approximation, since the help offered by InterBook is more extensive than
that offered by PAT Online, and the equation does not account for any differences between reading

about a concept and viewing an example using the concept. We hope to collect data on students
using the combined system so that we can refine this estimate.

Since InterBook’s student model can accommodate different kinds of information about a single
concept, it was relatively straightforward to accommodate updates to the student model suggested
by PAT Online (or any other ITS following the communication protocol). When InterBook receives
student model information from an ITS, it integrates the information into its own knowledge
representation structure using Equation 3. This extension allows InterBook to be an information
server for any domain which might be covered by an ITS system on the WWW. This ability frees
ITS designers from many secondary duties, which can be taken over more efficiently by InterBook.

Conclusion

We have described an integrated Web-based learning environment consisting of two adaptive
tutoring systems. We see the work described here as providing an important first step towards a
flexible architecture for communicating between adaptive tutors on the world-wide web. While the
communications architecture in our environment is peer-to-peer, requiring the two systems to
communicate directly with each other, the protocol is general enough so that any ITS can
communicate with InterBook and any conceptual learning system can communicate with PAT
Online. This provides a necessary foundation for allowing the two systems to act as components of
a centralized architecture incorporating many different web-based educational systems. As the
number of adaptive systems capable of this kind of communication grows, we look forward to a day
when teachers will be able to integrate learning systems into a seamless and effective web-based
educational environment.

Our motivation was to show the potential of integrating several adaptive Web-based systems
into a coherent environment which is more than the sum of its parts. This paper addresses the
communication side of the integration problem. Further research is needed to address the conceptual
side of this problem, i.e. how systems with different domain and student models can find a common
semantics for the communication. A first step in defining a common vocabulary for different
knowledge-based educational systems can be found in [15].

References

1. Brusilovsky, P.: Student model centered architecture for intelligent learning environment.
In: Proc. of Fourth International Conference on User Modeling. MITRE (1994) 31-36
2. Brusilovsky, P.: Intelligent learning environments for programming: The case for
integration and adaptation. In: Greer, J. (ed.) Proc. of AI-ED'95, 7th World Conference on Artificial
Intelligence in Education. AACE (1995) 1-8
3. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling and User-
Adapted Interaction 6, 2-3 (1996) 87-129
4. Brusilovsky, P., Schwarz, E., Weber, G.: ELM-ART: An intelligent tutoring system on
World Wide Web. In: Frasson, C., Gauthier, G., Lesgold, A. (eds.) Proc. of Third International
Conference on Intelligent Tutoring Systems, ITS-96. Lecture Notes in Computer Science, Vol.
1086. Springer Verlag (1996) 261-269
5. Brusilovsky, P., Schwarz, E., Weber, G.: A tool for developing adaptive electronic
textbooks on WWW. In: Maurer, H. (ed.) Proc. of WebNet'96, World Conference of the Web
Society. AACE (1996) 64-69
6. Corbett, A.T., Anderson, J.R.: Student modeling and mastery learning in a computer-based
programming tutor. In: Frasson, C., Gauthier, G., McCalla, G. (eds.) Proc. of Second International
Conference on Intelligent Tutoring Systems, ITS'92. Lecture Notes in Computer Science, Vol. 608.
Springer-Verlag (1992) 413-420
7. Fink, J., Kobsa, A., Nill, A.: User-oriented adaptivity and adaptability in the AVANTI
project. In: Proc. of Conference "Designing for the Web: Empirical Studies". Microsoft Usability
Group (1996)

8. Frasson, C., Mengelle, T., Aïmeur, E., Gouardères, G.: An actor-based architecture for
intelligent tutoring systems. In: Frasson, C., Gauthier, G., Lesgold, A. (eds.) Proc. of Third
International Conference on Intelligent Tutoring Systems, ITS-96. Lecture Notes in Computer
Science, Vol. 1086. Springer Verlag (1996) 57-65
9. Futtersack, M., Labat, J.-M.: QUIZ, a distributed intelligent tutoring system. In: Tomek, I.
(ed.) Proc. of 4th International Conference, ICCAL'92. Springer-Verlag (1992) 225-237
10. Kobsa, A., Pohl, W.: The BGP-MS user modeling system. User Modeling and User-
Adapted Interaction 4, 2 (1995) 59-106
11. Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A.: Intelligent tutoring goes to
school in the big city. In: Greer, J. (ed.) Proc. of AI-ED'95, 7th World Conference on Artificial
Intelligence in Education. AACE (1995) 421-428
12. Lai, M.-C., Chen, B.-H., Yuan, S.-M.: Toward a new educational environment. In: Proc. of
4th International World Wide Web Conference. (1995)
13. McCalla, G.I., Greer, J.E., Scent, R.T.: SCENT-3: An architecture for intelligent advising
in problem-solving domains. In: Frasson, C., Gauthier, G. (eds.): Intelligent Tutoring Systems: At
the crossroads of artificial intelligence and education. Ablex Publishing, Norwood (1990) 140-161
14. Milosavljevic, M., Tulloch, A., Dale, R.: Text Generation in a Dynamic Hypertext
Environment. In: Proc. of Nineteenth Australasian Computer Science Conference (ACSC'96).
(1996) 417-426
15. Mizoguchi, R., Sinitsa, K., Ikeda, M.: Task ontology design for intelligent
educational/training systems. In: Proc. of Workshop "Architectures and Methods for designing
Cost-Effective and Reusable ITSs" at the Third International Conference on Intelligent Tutoring
Systems, ITS-96. (1996)
16. Nakabayashi, K., Maruyama, M., Koike, Y., Fukuhara, Y., Nakamura, Y.: An intelligent
tutoring system on the WWW supporting interactive simulation environments with a multimedia
viewer control mechanism. In: Maurer, H. (ed.) Proc. of WebNet'96, World Conference of the Web
Society. AACE (1996) 366-371
17. Néhémie, P.: A systemic approach for student modelling in a multi-agent aided learning
environment. In: Frasson, C., Gauthier, G., McCalla, G.I. (eds.) Proc. of Second International
Conference, ITS'92. Springer-Verlag (1992) 475-482
18. Paiva, A., Self, J.: TAGUS - a user and learner modeling workbench. User Modeling and
User-Adapted Interaction 4, 3 (1995) 197-226
19. Paiva, A., Self, J., Hartley, R.: Externalising learner models. In: Greer, J. (ed.) Proc. of AI-
ED'95, 7th World Conference on Artificial Intelligence in Education. AACE (1995) 509-516
20. Ritter, S.: Comminication, cooperation and competition among multiple tutor agents. In:
Boulay, B.d., Mizoguchi, R. (eds.) Proc. of AI-ED'97, 8th World Conference on Artificial
Intelligence in Education. IOS (1997)
21. Ritter, S., Koedinger, K.R.: Towards lightweight tutoring agents. In: Greer, J. (ed.) Proc. of
AI-ED'95, 7th World Conference on Artificial Intelligence in Education. AACE (1995) 91-98
22. van Rosmalen, P.: SAM, Simulation and Multimedia. In: de Jong, T., Sarti, L. (eds.):
Design and production of multimedia and simulation-based learning material. Kluwer Academic
Publishers, Dordrecht (1994) 167-187

