
1

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have
been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the
image and then insert it again.

Database System Concepts, 6th Ed. !

Advanced Topics in Database Management (INFSCI 1022)!
Distributed Databases (TELCOM 2326)!

Textbook: Database System Concepts - 6th Edition, 2010!

Vladimir Zadorozhny, GIST, University of Pittsburgh!

Distributed Databases  
 

Part 1!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Distributed Database System!

  A distributed database system consists of loosely coupled sites that share
no physical component!

  Database systems that run on each site are independent of each other!
  Transactions may access data at one or more sites!

2

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Homogeneous Distributed Databases!

  In a homogeneous distributed database!
  All sites have identical software !
  Are aware of each other and agree to cooperate in processing user

requests.!
  Each site surrenders part of its autonomy in terms of right to change

schemas or software!
  Appears to user as a single system!

  In a heterogeneous distributed database!
  Different sites may use different schemas and software!

 Difference in schema is a major problem for query processing!
 Difference in software is a major problem for transaction

processing!
  Sites may not be aware of each other and may provide only  

limited facilities for cooperation in transaction processing!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Distributed Data Storage!

  Assume relational data model!
  Replication!

  System maintains multiple copies of data, stored in different sites,
for faster retrieval and fault tolerance.!

  Fragmentation!
  Relation is partitioned into several fragments stored in distinct sites!

  Replication and fragmentation can be combined!
  Relation is partitioned into several fragments: system maintains

several identical replicas of each such fragment.!

3

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Data Replication!

  A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites.!

  Full replication of a relation is the case where the relation is stored at all
sites.!

  Fully redundant databases are those in which every site contains a copy
of the entire database.!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Data Replication (Cont.)!

  Advantages of Replication!
  Availability: failure of site containing relation r does not result in

unavailability of r is replicas exist.!
  Parallelism: queries on r may be processed by several nodes in parallel.!
  Reduced data transfer: relation r is available locally at each site

containing a replica of r.!
  Disadvantages of Replication!

  Increased cost of updates: each replica of relation r must be updated.!
  Increased complexity of concurrency control: concurrent updates to

distinct replicas may lead to inconsistent data unless special
concurrency control mechanisms are implemented.!
 One solution: choose one copy as primary copy and apply

concurrency control operations on primary copy!

4

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Data Fragmentation!

  Division of relation r into fragments r1, r2, …, rn which contain sufficient
information to reconstruct relation r.!

  Horizontal fragmentation: each tuple of r is assigned to one or more
fragments!

  Vertical fragmentation: the schema for relation r is split into several
smaller schemas!
  All schemas must contain a common candidate key (or superkey) to

ensure lossless join property.!
  A special attribute, the tuple-id attribute may be added to each

schema to serve as a candidate key.!
  Example : relation account with following schema!
  Account = (branch_name, account_number, balance)!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Horizontal Fragmentation of account Relation!

branch_name! account_number! balance!

Hillside!
Hillside!
Hillside!

A-305!
A-226!
A-155!

500!
336!
62!

account1 = σbranch_name=“Hillside” (account)!

branch_name! account_number! balance!

Valleyview!
Valleyview!
Valleyview!
Valleyview!

A-177!
A-402!
A-408!
A-639!

205!
10000!
1123!
750!

account2 = σbranch_name=“Valleyview” (account)!
!

5

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Vertical Fragmentation of employee_info Relation!

branch_name! customer_name! tuple_id!

Hillside!
Hillside!
Valleyview!
Valleyview!
Hillside!
Valleyview!
Valleyview!

Lowman!
Camp!
Camp!
Kahn!
Kahn!
Kahn!
Green!

deposit1 = Πbranch_name, customer_name, tuple_id (employee_info)!

1!
2!
3!
4!
5!
6!
7!

account_number! balance! tuple_id!

500!
336!
205!
10000!
62!
1123!
750!

1!
2!
3!
4!
5!
6!
7!

A-305!
A-226!
A-177!
A-402!
A-155!
A-408!
A-639!

deposit2 = Πaccount_number, balance, tuple_id (employee_info)!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Advantages of Fragmentation!

  Horizontal:!
  allows parallel processing on fragments of a relation!
  allows a relation to be split so that tuples are located where they are

most frequently accessed!
  Vertical: !

  allows tuples to be split so that each part of the tuple is stored where
it is most frequently accessed!

  tuple-id attribute allows efficient joining of vertical fragments!
  allows parallel processing on a relation!

  Vertical and horizontal fragmentation can be mixed.!
  Fragments may be successively fragmented to an arbitrary depth.!

6

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Data Transparency!

  Data transparency: Degree to which system user may remain unaware
of the details of how and where the data items are stored in a distributed
system!

  Consider transparency issues in relation to:!
  Fragmentation transparency!
  Replication transparency!
  Location transparency!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Naming of Data Items - Criteria!

1. Every data item must have a system-wide unique name.!
2. It should be possible to find the location of data items efficiently.!
3. It should be possible to change the location of data items

transparently.!
4. Each site should be able to create new data items autonomously.!

7

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Centralized Scheme - Name Server!

  Structure:!
  name server assigns all names!
  each site maintains a record of local data items!
  sites ask name server to locate non-local data items!

  Advantages:!
  satisfies naming criteria 1-3!

  Disadvantages:!
  does not satisfy naming criterion 4!
  name server is a potential performance bottleneck!
  name server is a single point of failure!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Use of Aliases!

  Alternative to centralized scheme: each site prefixes its own site
identifier to any name that it generates i.e., site 17.account.!
  Fulfills having a unique identifier, and avoids problems associated

with central control.!
  However, fails to achieve network transparency.!

  Solution: Create a set of aliases for data items; Store the mapping of
aliases to the real names at each site.!

  The user can be unaware of the physical location of a data item, and
is unaffected if the data item is moved from one site to another.!

8

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Distributed Transactions!

  Transaction may access data at several sites.!
  Each site has a local transaction manager responsible for:!

  Maintaining a log for recovery purposes!
  Participating in coordinating the concurrent execution of the

transactions executing at that site.!
  Each site has a transaction coordinator, which is responsible for:!

  Starting the execution of transactions that originate at the site.!
  Distributing subtransactions at appropriate sites for execution.!
  Coordinating the termination of each transaction that originates at

the site, which may result in the transaction being committed at all
sites or aborted at all sites.!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Transaction System Architecture!

9

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

System Failure Modes!

  Failures unique to distributed systems:!
  Failure of a site.!
  Loss of massages!

 Handled by network transmission control protocols such as
TCP-IP!

  Failure of a communication link!
 Handled by network protocols, by routing messages via

alternative links!
  Network partition!

 A network is said to be partitioned when it has been split into
two or more subsystems that lack any connection between
them!
–  Note: a subsystem may consist of a single node !

  Network partitioning and site failures are generally indistinguishable.!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Commit Protocols!

  Commit protocols are used to ensure atomicity across sites!
  a transaction which executes at multiple sites must either be

committed at all the sites, or aborted at all the sites.!
  not acceptable to have a transaction committed at one site and

aborted at another!
  The two-phase commit (2PC) protocol is widely used !
  The three-phase commit (3PC) protocol is more complicated and more

expensive, but avoids some drawbacks of two-phase commit protocol.
This protocol is not used in practice.!

10

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Two Phase Commit Protocol (2PC)!

  Assumes fail-stop model – failed sites simply stop working, and do
not cause any other harm, such as sending incorrect messages to
other sites.!

  Execution of the protocol is initiated by the coordinator after the last
step of the transaction has been reached.!

  The protocol involves all the local sites at which the transaction
executed!

  Let T be a transaction initiated at site Si, and let the transaction
coordinator at Si be Ci!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Phase 1: Obtaining a Decision!

  Coordinator asks all participants to prepare to commit transaction Ti.!
  Ci adds the records <prepare T> to the log and forces log to

stable storage!
  sends prepare T messages to all sites at which T executed!

  Upon receiving message, transaction manager at site determines if it
can commit the transaction!
  if not, add a record <no T> to the log and send abort T message

to Ci!
  if the transaction can be committed, then:!
  add the record <ready T> to the log!
  force all records for T to stable storage!
  send ready T message to Ci!

11

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Phase 2: Recording the Decision!

  T can be committed of Ci received a ready T message from all the
participating sites: otherwise T must be aborted.!

  Coordinator adds a decision record, <commit T> or <abort T>, to the
log and forces record onto stable storage. Once the record stable
storage it is irrevocable (even if failures occur)!

  Coordinator sends a message to each participant informing it of the
decision (commit or abort)!

  Participants take appropriate action locally.!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Handling of Failures - Site Failure!

When site Si recovers, it examines its log to determine the fate of!
transactions active at the time of the failure.!
  Log contain <commit T> record: site executes redo (T)!
  Log contains <abort T> record: site executes undo (T)!
  Log contains <ready T> record: site must consult Ci to determine the

fate of T.!
  If T committed, redo (T)!
  If T aborted, undo (T)!

  The log contains no control records concerning T replies that Sk failed
before responding to the prepare T message from Ci !
  since the failure of Sk precludes the sending of such a  

response C1 must abort T!
  Sk must execute undo (T)!

12

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Handling of Failures- Coordinator Failure!

  If coordinator fails while the commit protocol for T is executing then
participating sites must decide on T’s fate:!
1.  If an active site contains a <commit T> record in its log, then T must

be committed.!
2.  If an active site contains an <abort T> record in its log, then T must

be aborted.!
3.  If some active participating site does not contain a <ready T> record

in its log, then the failed coordinator Ci cannot have decided to
commit T. Can therefore abort T.!

4.  If none of the above cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records (such
as <abort T> of <commit T>). In this case active sites must wait for
Ci to recover, to find decision.!

  Blocking problem : active sites may have to wait for failed coordinator to
recover.!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Handling of Failures - Network Partition!
  If the coordinator and all its participants remain in one partition, the

failure has no effect on the commit protocol.!
  If the coordinator and its participants belong to several partitions:!

  Sites that are not in the partition containing the coordinator think
the coordinator has failed, and execute the protocol to deal with
failure of the coordinator.!
 No harm results, but sites may still have to wait for decision

from coordinator.!
  The coordinator and the sites are in the same partition as the

coordinator think that the sites in the other partition have failed, and
follow the usual commit protocol.!

 Again, no harm results!

13

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Recovery and Concurrency Control!

  In-doubt transactions have a <ready T>, but neither a  
<commit T>, nor an <abort T> log record.!

  The recovering site must determine the commit-abort status of such
transactions by contacting other sites; this can slow and potentially
block recovery.!

  Recovery algorithms can note lock information in the log.!
  Instead of <ready T>, write out <ready T, L> L = list of locks held

by T when the log is written (read locks can be omitted).!
  For every in-doubt transaction T, all the locks noted in the  

<ready T, L> log record are reacquired.!
  After lock reacquisition, transaction processing can resume; the

commit or rollback of in-doubt transactions is performed concurrently
with the execution of new transactions.!

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Alternative Models of Transaction
Processing!

  Notion of a single transaction spanning multiple sites is inappropriate
for many applications!
  E.g. transaction crossing an organizational boundary!
  No organization would like to permit an externally initiated

transaction to block local transactions for an indeterminate period!
  Alternative models carry out transactions by sending messages!

  Code to handle messages must be carefully designed to ensure
atomicity and durability properties for updates!
  Isolation cannot be guaranteed, in that intermediate stages are

visible, but code must ensure no inconsistent states result due
to concurrency !

  Persistent messaging systems are systems that provide
transactional properties to messages !
 Messages are guaranteed to be delivered exactly once!
 Will discuss implementation techniques later!

14

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Alternative Models (Cont.)!
  Motivating example: funds transfer between two banks!

  Two phase commit would have the potential to block updates on the
accounts involved in funds transfer!

  Alternative solution:!
 Debit money from source account and send a message to other

site!
 Site receives message and credits destination account!

  Messaging has long been used for distributed transactions (even
before computers were invented!)!

  Atomicity issue!
  once transaction sending a message is committed, message must

guaranteed to be delivered!
 Guarantee as long as destination site is up and reachable, code to

handle undeliverable messages must also be available !
–  e.g. credit money back to source account. !

  If sending transaction aborts, message must not be sent !

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Error Conditions with Persistent
Messaging!

  Code to handle messages has to take care of variety of failure situations
(even assuming guaranteed message delivery)!
  E.g. if destination account does not exist, failure message must be

sent back to source site!
  When failure message is received from destination site, or

destination site itself does not exist, money must be deposited back
in source account!
 Problem if source account has been closed!

–  get humans to take care of problem!
  User code executing transaction processing using 2PC does not have to

deal with such failures!
  There are many situations where extra effort of error handling is worth

the benefit of absence of blocking!
  E.g. pretty much all transactions across organizations!

15

Database System Concepts - 5th Edition! V.Zadorozhny, INFSCI2711, TELCOM2326!

Persistent Messaging and Workflows!
  Workflows provide a general model of transactional processing

involving multiple sites and possibly human processing of certain
steps!
  E.g. when a bank receives a loan application, it may need to!

 Contact external credit-checking agencies!
 Get approvals of one or more managers!

 and then respond to the loan application!
  Persistent messaging forms the underlying infrastructure for

workflows in a distributed environment!
!

