
1 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Transaction Management 
and Concurrency Control 

(Refresher) 

2 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Transactions 
v  A user’s program may carry out many operations on 

the data retrieved from the database, but the DBMS is 
only concerned about what data is read/written 
from/to the database. 

v  A transaction is the DBMS’s abstract view of a user 
program:  a sequence of reads and writes. 

 
 

T1:    R(A);  A=A+100; W(A);  R(B); B=B-100;  W(B); Commit 



3 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

The ACID properties 

v A tomicity:  All actions in the Xact happen, or none 
happen. 

v C onsistency:  If each Xact is consistent, and the DB 
starts consistent, it ends up consistent. 

v  I solation:  Execution of one Xact is isolated from 
that of other Xacts. 

v D urability:  If a Xact commits, its effects persist. 
 

4 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Concurrency in a DBMS 
v  Users submit transactions, and can think of each 

transaction as executing by itself. 
v  Concurrency is achieved by the DBMS, which 

interleaves actions (reads/writes of DB objects) of 
various transactions. 

v  Each transaction must leave the database in a 
consistent state if the DB is consistent when the 
transaction begins. 



5 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Example 
v  Consider two transactions (Xacts): 

T1: A=A+100, B=B-100 
T2: A=1.06*A,   B=1.06*B 

v  Intuitively, the first transaction is transferring $100 from B’s 
account to A’s account.  The second is crediting both accounts 
with a 6% interest payment. 

v  There is no guarantee that T1 will execute before T2 or vice-
versa, if both are submitted together.  However, the net effect 
must be equivalent to these two transactions running serially in 
some order. 

T1: A=A+100, B=B-100 
T2:                                   A=1.06*A,   B=1.06*B 

T1:                                      A=A+100, B=B-100 
T2: A=1.06*A,   B=1.06*B 

6 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Example (Contd.) 

v  Consider a possible interleaving (schedule): 
T1:   A=A+100,          B=B-100    
T2:               A=1.06*A,     B=1.06*B 

v  This is OK.  But what about: 
T1:   A=A+100,            B=B-100    
T2:               A=1.06*A, B=1.06*B 

v  The DBMS’s view of the second schedule: 
T1:   R(A), W(A),                  R(B), W(B) 
T2:       R(A), W(A), R(B), W(B) 



7 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Scheduling Transactions 

v  Serial schedule: Schedule that does not interleave the 
actions of different transactions. 

v  Equivalent schedules:  For any database state, the effect 
(on the set of objects in the database) of executing the 
first schedule is identical to the effect of executing the 
second schedule. 

v  Serializable schedule:  A schedule that is equivalent to 
some serial execution of the transactions. 

(Note: If each transaction preserves consistency, every 
serializable schedule preserves consistency. ) 

 

8 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Lock-Based Concurrency Control 

§  Each Xact must obtain a S (shared) lock on object before 
reading, and an X (exclusive) lock on object before writing. 

 
§   If an Xact holds an X lock on an object, no other Xact can 

get a lock (S or X) on that object. 

T1:  S(A),          R(A),  unlock(A) 
T2:       X(A),                              R(A), W(A), unlock(A) 



9 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Two-Phase Locking (2PL) 

§  Each Xact must obtain a S (shared) lock on object 
before reading, and an X (exclusive) lock on object 
before writing. 

§  A transaction can not request additional locks 
once it releases any locks. 

§   If an Xact holds an X lock on an object, no other 
Xact can get a lock (S or X) on that object. 

10 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Strict 2PL 

§  Each Xact must obtain a S (shared) lock on object 
before reading, and an X (exclusive) lock on object 
before writing. 

§  All locks held by a transaction are released when 
the transaction completes 

§   If an Xact holds an X lock on an object, no other 
Xact can get a lock (S or X) on that object. 

Strict 2PL allows only serializable schedules  



11 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Deadlocks 

v  Deadlock: Cycle of transactions waiting for 
locks to be released by each other. 

12 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Deadlock Detection 

v  Create a waits-for graph: 
§  Nodes are transactions 
§  There is an edge from Ti to Tj if Ti is waiting for Tj 

to release a lock 

v  Periodically check for cycles in the waits-for 
graph 



13 Database Management Systems, R. Ramakrishnan and J. Gehrke        INFSCI2710        Instructor: Vladimir Zadorozhny 

Deadlock Detection (Continued) 

Example: 
 
T1:  S(A), R(A),           S(B) 
T2:         X(B),W(B)             X(C) 
T3:         S(C), R(C)       X(A) 
T4:              X(B) 
 
 T1 T2 

T4 T3 

T1 T2 

T3 T3 


