
26

	

Errs 29,1

Intelligent Tutor, Environment and Manual for
Introductory Programming
P.L. Brusilovsky, International Centre for Scientific and Technical Information, Moscow

INTRODUCTION

Ec(ACA4~or, & TttA~N~r,, TeC6tvo1O-3y 11A6.~rinA+.onAI

Programming is perhaps the most computerized of
all academic disciplines. Special computer systems
help teachers and students in all kinds of
programming activity. Computer-assisted
instruction (CAI) systems -`coachers' and `tutors'
- help teachers in explaining new material,
presenting examples, and giving and checking
various tests. Students can independently design
and debug programs with the help of student-
oriented programming environments. Efficient
access to the previously learned information can
be accomplished with the help of computer
manuals and online help systems.

Special attention is needed while creating
integrated systems which support the learning and
tutoring of programming. By an integrated system
we mean a system that is made up of several
specialized components. Good examples of
integrated systems are office integrated systems
which are capable of doing work of text
processors, spreadsheets, database management
systems, etc. The advantages of integrated systems
in the field of studying programming are quite
obvious. The number of different systems that a
student simultaneously needs decreases, thereby
making it comparatively easy to study and use
them. As a result the student's learning energy is
spent in learning the material (the technology and
language of programming), not learning how to
use these systems.

Combining a tutoring system, learning
environment and electronic manual is not enough
to create an effective integrated system to study
programming. An integrated system ought to be
more than just the sum total of a number of
specialized components. Thus, for instance, the

history of a student's work with any of the
components should be analysed and stored by the
system in a special student model. This model can
then be used by all the components in adapting to
the knowledge level and style of work of the
particular student.
The use of the artificial intelligence (AI)
techniques is quite successful in designing effective
integrated systems. According to McCalla and
Greer (1987), intelligent computer-assisted
instruction (ICAI) attempts to bridge the gap
between traditional CAI systems and microworld
environments. There exist a few intelligent
tutoring systems in the field of programming that
are able to work as tutoring or coaching systems as
well as to create a friendly environment for novice
programmers; namely: BIP (Barr, Beard and
Atkinson, 1976), Lisp-Tutor (Anderson and
Reiser,1985), ReGIS (Heines and O'Shea,1985),
Bridge (Bonar and Cunningham, 1988), IPTS
(Cheng, Hu and Yang, 1988), GEL (Reiser,
Ranney, Lovett and Kimberg, 1989), and Ugo
(Innocenti, Massucco, Persico and Sarti, 1991).
One of the possible ways of constructing such an
integrated intelligent system for programming is
suggested in (Brusilovsky, 1987). In this article we
shall describe an integrated Intelligent Tutor,
Environment and Manual for Introductory
Programming (ITEM/IP), its design based on this
approach. ITEM/IP supports a course on
introductory programming based on the mini-
language Turingal. The mini-language serves as a
tool in mastering the main concepts of
programming, programming languages' structures
and skills in programs design and debugging. The
method of learning introductory programming
with the aid of mini-languages is quite well
developed in the USSR now. The language



Turingal is similar from this point of view to such
mini-languages as Logo Turtle (Papert, 1980),
Karel (Pattis,1981), and Josef (Tomek,1982).

DESIGN OF THE SYSTEM

The philosophy of ITEM/IP design

ITEM/IP was specially designed as a combination
of close interacting components, supporting the
needs of a user during the the learning process.
The student can use the system in the following
modes:

1. Instruction. To the inquiries of the student,
ITEM/IP offers the optimal teaching
operation: explains concepts, demonstrates
semantics of Turingal constructions and checks
out comprehension, presents various
programming tasks as examples or gives them
out as problems to be solved. The optimal
operation is selected using a built-in strategy
that takes into consideration all the knowledge
that ITEM/IP has about its domain and
student. If the student is not satisfied with the
embedded strategy he can also choose from a
list of relevant teaching operations.

2. Programming laboratory. In order to solve
various problems and also to work with
personal programs the student can make use of
a complete set of tools for program design and
debugging known as the programming
laboratory. One of the laboratory's functions is
to display visualizations of the student's
programs. With the help of the laboratory the
student can observe the programs `at work',
experiment with them and gradually learn from
his observations and mistakes.

3. Online Manual. A student can demand at any
time a re-explanation of past material or a
second analysis of problems. The extent to
which material is explained by ITEM/IP is
inversely proportional to the current student
knowledge about the material. Therefore a
repeated explanation is usually more concise
than the original one. This mode offers a
reference access to the learned material of the
course.

ITEN1/IP ensures the continuity of the student's
work during various modes. The student's results
obtained while working with each of the

Intdligent Tutor, Environment and Manual for introductory Programming

	

27

environment's various components are stored and
used by other components in order to adapt their
working to his knowledge level. Artificial
intelligence techniques are used in order to reach
this goal.

Overview

The main components of ITEM/IP (see Figure 1)
are the pedagogical module, which enhances the
choice and realization of teaching operations, the
programming laboratory, which enables the
student to work independently, and the
information kernel (Brusilovsky, 1989) including
all factual knowledge and information existing in
the environment. The programming laboratory
includes an editor and interpreter for the mini-
language. The information kernel includes
Domain model, Student model and Base of
teaching operations.

The conceptual architecture of ITEM/IP
resembles that of intelligent tutoring systems
(ITS). A typical ITS has four major components:
pedagogical module, domain expert module,
student model and user interface (Wenger, 1987).
The programming laboratory takes the place of
the domain expert module in the ITEM/11?
architecture. This reflects the state of things: in
ITEM/IP the domain expert is replaced by the
interpreter of the mini-language with the same
abilities as the expert. The same technique was
used successfully in BIP (Barr, Beard and
Atkinson, 1976), QUADBASE (Hudson and
Self, 1982), and ReGIS (Heines and O'Shea,
1985) systems. The structure and functions of
ITEM/IP components are given below.

Information kernel of ITEM/IP

The Domain model (Domain structure) is a
network of concepts. Three types of concept have
been singled out to represent the programming
knowledge in the model: the programming
concept, mini-language construction and the skill
to use any construction in the language. Every
concept is described within a frame whose slots
contain special information about the given
concept, the procedures of its presentation, and an
indication of its relations with other Domain
model concepts.
Certain types of directed relationships are used in
the Domain model. General-specific relations



28

	

Ern 29,1

represent a hierarchy of concepts with a varying
degree of generality. `Utilize' relations link the
constructions and skills of its usage. Predecession
relations describe relative order of concepts'
presentation. The network obtained reflects the
structure of the domain studied. Therefore we
shall name this type of Domain model structural-
network type (Figure 2).

The Student model, a kind of overlay model, is
based on the Domain model. For every Domain
model concept the Student model contains several
integer counters for the purpose of indicating the
extent to which the student has mastered a
concept. Besides a set of counters the Student
model includes optimal difficulties for various
kinds of teaching operation. The Student model is
always kept up-to-date and supports adaptive
work of all the environment modules. This form of
Student model helps to define, at any moment of
the learning process, what and to what extent the
student has acquired (or not acquired) the
material, and to accurately tune in to his level of
knowledge and requirements.

The Base of teaching operations is a set of frames
of three kinds: concept frames mentioned earlier,
example frames and task frames. The pedagogical
module uses these frames to build teaching

Figure 1. The structure of ITEM1IP

operations of five kinds. Every frame of the Base is
adapted to the organization of presentation type
and test type, teaching operations and to the
repetition of previously learned material.
Independence of frames makes it possible to
expand the Base with ease.

Example frames and task frames are the two main
kinds of Base frame. An example frame includes
the text of the example (the language
construction) and a set of input data `tests' by
which this construction can comprehensively be
demonstrated. Using this data the pedagogical
module organizes a visual demonstration of the
construction's semantics and `mental execution'
tests checking the acquisition of semantics.

A task frame includes a title, a problem text, a set
of test data, a variant of the plan, a model solution
and the task complexity. A problem can be
analysed as an example or given to the student to
be solved. A special slot is used to link the Base
frames with the Domain model. This slot lists all
Domain model concepts related to the given
frame. This list is called the spectrum of the frame.
The spectra change a set of independent frames
into a set of exact instruments for the directed
process of learning. According to information
from the Student model the pedagogical module

Pedagogical Information Programming
module: kernel laboratory:

query Base of tasks and tests
mode, teaching evaluation,

operations
choice of
teaching structural

operations, Domain editor,
model

performance (structure)

analysis,

Student visualizing
realization model interpreter
of teaching
operations



<statement> <loop>

<command> <while>-4

print right

"while <condition> right"

_~ general/specific relation
other relations

<concept>, construction, "skill"

determines (a) which of the concepts have already
been mastered, (b) which need to be worked on,
(c) which new concepts are ready to be studied and
(d) which concepts are not ready to be studied.
The presence of frames spectra makes it possible
to compile a list of teaching operations relevant at
the time (with spectra of (a)-(c) type concepts)
and then choose from it the optimal one with a
special strategy.

Programming laboratory

One of possible ways to study introductory
programming is to design, debug and investigate
real programs with special mini-languages. The
mini-language Turingal was specially designed for
academic use (Turingal = Turing automata +
Pascal, as Turingol (Pratt, 1975)). This language is
a way to control the well-known system of
algorithmic theory-Turing automata which works
with a tape of symbols. The elementary operations
of the mini-language are simple and visual: the
movement of automata left and right along the
tape and typing the symbols on the tape. To

Intelligent Tutor, Environment and Manual for Introductory Programming

	

29

letter <complex>

"while A <statemenb"

Figure 2. A fragment of structural-network Domain model

<condition>

<posdlve> <negative>

control the automata Turingal offers a wide range
of control structures (conditional statement,
loops, case, sub-routines) with syntax and
semantics similar to the structures of Pascal. One
of the main reasons for learning the mini-language
is to master the semantics of these well-known
structures.

The programming laboratory is a set of special
,software tools'. The tools support the design,
debugging and investigation of Turingal programs
by the student. The laboratory includes a
structured editor which makes it easier to enter
and correct a program, and a visual interpreter
which enables the student to run the program step
by step and observe its work. The interpreter
visually displays all automata moves and symbol
typing on the tape and also marks the current
operator. Figure 3 shows the screen while working
in the environment.

The ITEM/IP programming laboratory, like the
BIP (Barr, Beard and Atkinson, 1976), and the
ReGIS (Heines and O'Shea, 1985) laboratories,
supports `the experiment style' of working: design



30 Em 29,1

V

the program - experiment (interpret the program)
- observe - change the program - experiment
again, etc. This style of work enables the student
to learn from experience the concepts and
constructions of the Domain model, to `discover'
their features, and to get an idea of programming
technology.

The student uses the programming laboratory in
an independent mode for individual work and for
solving tasks presented by the pedagogical
module. The pedagogical module itself uses the
laboratory in the controlled mode for domain
expertise. The interpreter is used, in particular,
for visual demonstration of construction
semantics, control of `mental execution' tests,
presentation of problem conditions, testing and
analysing their solutions. In both these modes, the
programming laboratory components adapt their
work to a specific student using the student model.
It is on the basis of the student model, in
particular, that the extent to which various
language constructions must be visualized is
determined: the less studied the construction is,
the more detailed the visualization.

comment-_%

automata

Figure 3. Turingal environment: tape, automata and programs. Program `stars' is executed

Pedagogical module and teaching operations

The pedagogical module controls the process of
learning at the macro and micro levels. On the
macro level the pedagogical module compiles a list
of teaching operations relevant at the given
moment and chooses the optimal teaching
operation. On the micro level the pedagogical
module manages a dialogue with the student
during the realization of the teaching operation,
chosen at the macro level or by the student
himself.

Besides this, the pedagogical module evaluates
(with the help of the programming laboratory) the
student's results while working with each teaching
operation and then accordingly changes the
student model. More exactly the pedagogical
module changes (to a different extent) the
counters of all concepts of the teaching operation
spectrum. To determine the extent of change, the
pedagogical module takes into consideration the
Domain model's relations and previous values of
counters, thus limiting the `noise' in the Student
model.

* q q g g g g Q tape

right-end: >while q right first program
(right-end)

stars : left * >right-end second program
(stars)

What? stars Prompt (bottom line
of the screen)

'>' is marker of
statement executing



The pedagogical module deals with the five main
kinds of teaching operation: presentation,
demonstration, test, task analysis and task to
solve.

Presentation of Domain model concepts is given
right at the beginning of the student's
acquaintance with the concepts and also if
repetition is asked for. While introducing a
concept, its description as well as information
about its relations with other concepts is given.
The description of each concept is stored in the
concept's frame. The text of the description can be
broken up into fragments. Each fragment is
connected with the threshold value of one of the
student model counters. The fragment is not
presented if the counter for the concept exceeds
this threshold. According to the method given
above, during a re-presentation (presentation as
repetition) of concepts, descriptions are usually
more laconic. Information about the relations of a
given concept is not stored but generated by the
system corresponding to the type of relation.
While presenting a concept, information is
generated only about relations with previously
studied concepts. During the re-presentation,
more complete information about relations is
usually given, since by this time a greater number
of concepts have been studied.

Demonstration of language construction semantics
is carried out with the help of the visualizing
interpreter using example frames stored in the
Base of teaching operations. The behaviour of the
chosen construction is first demonstrated on a set
of tests, and then the student has a chance of
experimenting (substituting his own data and
editing the construction).

Tests that check out the extent to which a
construction's semantics has been acquired are
organized on the base of frames similar to that of
the demonstration. In a test, the student is given
the initial state of the tape (test), and then, having
mentally executed the construction tested, can
enter the result. The answer is then compared with
the result of the domain expert interpretation. In
case of a mistake. the correct `behaviour' of the
construction is immediately shown to the student.

Programming tasks are important kinds of
teaching operation. It is during the process of
solving these tasks that a student can thoroughly
understand various concepts and constructions
and learn to use them properly in order to achieve

Intelligent Tutor, Environment and Manual for introductory Programming

	

31

the goals placed before him. The pedagogical
module places a task before the student, helps him
in solving it and then checks out the resulting
program. Text of the given problem is displayed
and then explained in the form of the 'test-result'
pairs. Help can be asked for and is given in the
form of additional explanations. A rough plan for
solving problems and hints as to how the program
works (visualization of model program actions
without viewing the text of the actual program) is
also given. Solutions are checked out by the
interpreter which consecutively compares the
student's program results on the given set of tests
with that of the model program. Should the results
of any of the tests not coincide, the mistake is
pointed out. This mistake is `explained' by a visual
demonstration of the wrong behaviour of the
student's program. Our experience has shown that
this is a very effective remedial method.

An analysis of solutions for programming tasks
gives the student a practical idea as to how to use the
skills he has learned. During the analysis the student
is consecutively given the text of the problem,
offered a plan of action and, finally, given a model
solution whose working is demonstrated on tests.
Next the model program is passed on to the student
for experimentation. Any previously analysed or
solved problem can be re-analysed on demand.

A GENERAL VIEW OF THE LEARNING
PROCESS

Students spend most of the time in ITEM/IP work-
ing in the programming laboratory. With the help of
the main menu, the student can at any time call the
teaching component for a new teaching operation,
information, help, or for checking the task solution.

Choosing an item `Teach me' from the menu, the
student asks for the next optimal (from the
pedagogical module point of view) teaching
operation. The optimal operation is chosen using
the Student model and built-in teaching strategy
(Brusilovsky, 1987). The human teacher can tune
the teaching strategy to match his way of tutoring.
He specifies the goal for a particular learning stage
in the form of a set of Domain model concepts to
be learnt at this stage. He can also specify an
,order' in the teaching course in the form of goal
sequences of various stages. Each student can
have his personal order of learning.



32

	

ETn 29,1

Thus, the pedagogical module has at its disposal all
the components needed, according to the `Hartley
framework' (Hartley, 1973), for adaptive
teaching: domain representation network, on the
basis of which learning goals are specified, the
teaching operations, the student model and the
learning strategy - 'means-ends' guidance rules,
which make it possible to choose the best means
(teaching operations), corresponding to the
learning goal and to the knowledge level reflected
in the student model. The learning strategy, as we
have already mentioned, is built into the
pedagogical module (ie it is represented in a form
of a program and then compiled).

If the student is not satisfied by the strategy of
ITEM/IP, he can choose a teaching operation
himself. By selecting an item `What next' on the
main menu he can get a list of all teaching
operations relevant at that stage and then choose
one of them. Selecting the item `Repeat' on the
main menu the student can demand a replay of
previously learned material. By using the bottom-
level menu, he can obtain a list of all previously
studied concepts, presented examples, solved and
analysed tasks. He can choose any of these
teaching operations and it will be presented again
according to the type of operation chosen. In case
of concepts which have not been learnt well or
understood, a complete analysis will be repeated.
In the case of well-learnt concepts only a short
description will be given.

Selecting one of the main menu items, the student
starts a new step of learning. At each step any
teaching operation is chosen and then realized.
During the realization process the student has
access to the programming laboratory to
experiment with examples or to solve tasks. While
solving a task the student can also use the `Repeat'
menu item and invoke the pedagogical module for
help or to check out the solution prepared (items
` Help' and `Check' on the main menu). After
completing the step of learning the student returns
to the programming laboratory and works
independently until he invokes the pedagogical
module the next time (see Figure 4).

Thus ITEM/IP allows the student to learn under
the guidance of `an intelligent tutor', to repeat all
the material learnt and to solve his `own' task. The
student himself determines the time for learning
and independent work, and the proportion between
guided and `free' learning. Thus ITEM/IP supplies

the student with an intelligent, friendly
environment for work and study.

SOME EXPERIENCE WITH THE SYSTEM

The version of ITEM/IP described in this paper was
designed and implemented for the Soviet
mainframe computer BESM-6. We have tested
ITEM/IP for a year in the learning process among
first-year students of the Moscow State University
and 14-year-old students of Moscow schools. Our
specific plan was not to make a `quantitative'
classroom investigation of ITEM/IP; rather, we
were planning to make qualitative comparison of
the performance of students who used ITEM/IP,
with the performance of students who were taught
according to the traditional approach to
introductory programming study.

Our experimental groups (three groups of about 15
students each) started their introductory
programming course with Turingal (5-7 lessons
with Turingal and rMM/IP). Traditional groups
usually started directly with Pascal and used a
computer environment similar to Turbo Pascal (first
lesson with computer follows four introductory
` blackboard' lessons).

It was easy to notice without any special
measurements the increase of interest in the study of
introductory programming in experimental groups.
Another visible difference was a decrease in the
number of `weak' students -from 4-5 in traditional
groups to 2-3 in experimental ones.

One of the goals in ITEMIIP design was to decrease
the amount of non-creative classroom work of a
teacher in the course of introductory programming.
We supposed that the designed environment could
perform the non-creative part of the teacher's work:
individualized choice of the best appropriate task
for each student, evaluation of task solution, etc. A
teacher was supposed to have more time for creative
work with most weak and most strong students. for
identification and remediation of bugs in student
programs. Ideally, the latter kind of teacher activity
could be performed by a PROUST-like (Soloway,
1985) intelligent program debugger, but it was too
complicated to design such a power system.

The work with ITEM/IP has fulfilled our
expectations. Moreover, we have found that a
ITEM/IP visual interpreter could greatly help to



solve the problem of debugging student programs.
In about four-fifths of all cases of identifying the
bug it was quite enough for a student to run the
wrong program visually with test data suggested by
the system. Only in one-fifth of cases did the student
(usually weak) need the teacher to help to under-
stand the bug. Thus, the programming environment
with the visualization of program execution could be
regarded as the reasonable alternative to an intelli-
gent program debugger (Eisenstadt, 1989).

CONCLUSION

Intelligent Tutor, Environment and Manual for introductory Programming

	

33

Figure 4. The teaching operations (TO) in the learning process

The approach described in this paper has enabled
us to design the intelligent environment for intro-
ductory programming which integrates the capa-
bilities of electronic manual, intelligent tutor and
programming environment. ITEM/IP supports the
major part of student needs and performs the non-
creative part of the teacher's work in the classroom.

The approach described could be applied not only
to the study of the Turingal-based introductory
program but also to support the first steps of
studying any programming language: Pascal, Lisp,
Prolog. It should be noticed that the design of an
ITEM-like environment for the `real' language is a
difficult task. For example, we estimate the
number of nodes in the Domain structural-
network model for Pascal to be more than 200.

At present the second version of ITEM/1P, with
enlarged capabilities for adaptation, is being
developed for personal computers. At first, it will
be possible for ITEM/1P II to update the student
model while observing a student's activity in
designing and debugging programs. Later the built-
in strategy for directed learning will be replaced by
expert knowledge of the human teacher, directly
presented in the form of rules. We hope that such
expert strategy will allow ITEM/IP II to adapt its
work not only to the knowledge level but also to the
individual features of a student.



34

	

EM 29,1

ACKNOWLEDGEMENT

I would like to thank Jim Greer, KSR Anjaneyulu
and Luigi Sarti for their fruitful comments to an
earlier version of the paper.

REFERENCES

Anderson, J.R. and Reiser, B. (1985) The LISP
tutor. Byte, 10, 4, 159-175.
Barr, A., Beard, M. and Atkinson, R.C. (1976)
The computer as tutorial laboratory: the Stanford
BIP project. International Journal on Man-
Machine Studies, 8, 5, 567-596.
Bonar, J. and Cunningham, R. (1988) Bridge: an
intelligent tutor for thinking about programming.
In Self, J. (ed.) Artificial intelligence and human
learning. Intelligent computer-aided instruction.
London: Chapman and Hall.
Brusilovsky, P.L. (1987) The analysis and design
of the computer environments for studying
programming. PhD thesis (in Russian).
Department of Applied Mathematics and
Cybernetics, Moscow State University, Moscow.

Brusilovsky, P.L. (1989) Information Kernel of
Expert/Teaching systems. In Development and
Application of Expert/Teaching Systems. (in
Russian). Moscow: Institute for Higher
Education.
Cheng, Y., Hu, Q. and Yang, J. (1988) An expert
system for education: IPTS. In Proceedings of the
1988 IEEE International Conference on Systems,
Man and Cybernetics. New York.
Eisenstadt, M. (1989) (AI in (Education in AI)):
What does `domain visualisation' have to offer
ITS? In Bierman, D., Breuker, J. and Sandberg,
J. (eds) Artificial Intelligence and Education.
Proceedings of the 4th International Conference
on AI and Education. Amsterdam: IOS.
Hartley, J.R. (1973) The design and evaluation of
an adaptive teaching system. International Journal
on Man-Machine Studies, 5, 421-436.
Heines, J. and O'Shea, T. (1985) The design of a
rule-based CAI tutorial. International Journal on
Man-Machine Studies, 23, 1, 1-25.
Hudson, P.V. and Self, J.A. (1982) A dialogue
system to teach database concepts. The Computer
Journal, 25, 1, 135-139.
Innocenti, C., Massucco, C., Persico, D. and

Sarti, L. (1991) Ugo: An intelligent tutoring
system for Prolog. In PEG'91- Proceedings of the
Sixth International PEG Conference `Knowledge
Based Environments for Teaching and Learning',
Rapallo (Genova), Italy, 31 May-2 June, pp. 322-
330.
McCalla, G.F. and Greer, J.E. (1987) The
practical use of artificial intelligence in automated
tutoring: current status and impediments to
progress. Research report No. 87-12. Saskatoon:
Department of Computational Science,
University of Saskatchewan.
Papert, S. (1980) Mindstorms, Children,
Computers and Powerful Ideas. New York: Basic
Books.
Pattis, R.E. (1981) Karel - the Robot, a Gentle
Introduction to the Art of Programming. London:
Wiley.
Pratt, T.W. (1975) Programming Languages.
Design and Implementation. Englewood Cliffs,
NJ: Prentice Hall.
Reiser, B.J., Ranney, M., Lovett, M.C. and
Kimberg, D.Y. (1989) Facilitating student's
reasoning with causal explanations and visual
representations. In Bierman, D., Breuker, J. and
Sandberg, J. (eds) Artificial Intelligence and
Education. Proceedings of the 4th International
Conference on AI and Education. Amsterdam:
IOS.
Soloway, E. (1985) PROUST. Byte, 10, 4, 179-
190.

Tomek, I. (1982) Josef, the robot. Computers and
Education, 6, 3, 287-293.

Wenger, E. (1987) Artificial Intelligence and
Tutoring Systems. Computational Approaches to
the Communication of Knowledge. Los Altos:
Morgan Kaufmann.

BIOGRAPHICAL NOTES

Dr Brusilovsky is a Senior Scientist at the ICSTI
and is also an invited student supervisor and
lecturer on Intelligent Tutoring Systems at
Moscow State University.

Address for correspondence: Dr Peter Brusilovsky,
International Centre for Scientific and Technical
Information (ICSTI), Kuusinen str, 21b, Moscow
125252, USSR.


