
> 0164-SIP-2007-PIEEE <

1

Abstract— This paper reviews our work on providing students

interactive access to annotated program examples. We review
our experience with WebEx, the system that allows students to
explore examples line by line. After that we present NavEx, an
adaptive environment for accessing interactive programming
examples. NavEx enhances WebEx with a specific kind of
adaptive navigation support known as adaptive annotation. The
classroom study of NavEx discovered that adaptive navigation
support can visibly increase student motivation to work with
non-mandatory educational content. NavEx boosted the overall
amount of work done and the average length of a session. In
addition, various features of NavEx were highly regarded by the
students.

Index Terms— Adaptive systems, Computer science education,
Educational technology, Hypertext systems, Programming, User
modeling

I. INTRODUCTION
ROBLEM-solving examples play an important role in
teaching many engineering disciplines. In the area of

teaching programming, program examples in the form of small
meaningful programs help students to understand syntax,
semantics and the pragmatics of programming languages, as
well as to provide useful problem-solving cases. Experienced
teachers of programming-related courses prepare several
program examples for every lecture and spend a reasonable
fraction of lecture time analyzing these examples. To let the
students further explore these examples and use them as
models for solving assigned problems, teachers often include
the code from these examples in their handouts and may even
make it accessible online. Unfortunately, these study tools are
not a substitute for an interactive example presented during the
lecture. While the example code is still there, the explanations
are not. For the students who failed to understand the example
in class or who missed the class, the power of the example is
lost.

The project presented in this paper attempted to solve this
problem by offering the students an opportunity to explore
programming examples as well as their explanations by using

Manuscript received November 11, 2007. This work was supported in part
by the University of Pittsburgh Innovation in Education Grant and by National
Science Foundation under Grants OCI-0426021 and IIS-0447083.

P. Brusilovsky is with the School of Information Sciences, University of
Pittsburgh, PA 15260 USA (phone: 412-624-9404; fax: 412-624-2788; e-mail:
peterb @ pitt.edi).

M. Yudelson is with the School of Information Sciences, University of
Pittsburgh, PA 15260 USA (e-mail: mvy3 @ pitt.edu).

Web-based interactive tools outside of class. Over the course
of the project we developed and evaluated two systems for
Web-based access to examples – WebEx and NavEx. WebEx
provided basic access to explained examples, while NavEx
extended the power of WebEx by providing personalized
guidance. This paper presents an account of our project.
Sections II and III introduce WebEx and NavEx and review
the students subjective feedback about the systems. Section IV
compares these systems and examines the nature of the
increased impact of NavEx. At the end we summarize the
results and discuss our future research plans.

II. WEBEX: EXPLORING ANNOTATED PROGRAM EXAMPLES

A. The Motivation
The goal of WebEx, a Web-based tool for exploring

programming examples, was to turn explained examples into
first class educational material that the students can explore
anytime, anywhere and at their own pace. To achieve this
goal, WebEx replaced the bare code of programming
examples offered on the course Web site with interactive
explained examples. This idea of explained examples was
motivated by an approach to example explanations used in
several programming textbooks and sometimes referred to as
"dissections" [1]. In this approach, an author of an example
supplies textual explanations for each important line in the
example program. The explanations serve at least two
different purposes. First, they explain the meaning of each
program line and its role of in the overall solution of a
programming problem. Second, the comments on a particular
way of using language constructs in every line of code thus
bridge the gap between student general knowledge about
programming language constructs and the practical skills of
their use for solving programming problems.

In a typical programming textbook a dissected example is
provided in a format where each line of code is followed by
explanations (which can vary from a line or two to several
paragraphs of text). This format has a clear problem: even in
textbooks that use some special font and color for the lines of
code, the code is hard to comprehend since the lines of code
are spread over the explanations. The explanations are not
easy to comprehend either. Usually, a student has a problem
with just a few lines of code in a program and need
explanations for just these lines. Presenting all explanations at
once distracts the student from concentrating on the most
needed explanations. Finally, reading through a large
“dissection” is a rather passive kind of learning.

From WebEx to NavEx: Interactive Access to
Annotated Program Examples

Peter Brusilovsky and Michael Yudelson

P

> 0164-SIP-2007-PIEEE <

2

B. The WebEx Interface
WebEx, a Web-based tool for interactive exploration of

programming examples, was designed to overcome the
problems listed above. A program example in WebEx appears
to be just the same as it looked in a program editor (Figure 1).
The only visible difference is the presence of green or white
navigation bullets to the left of each line. A green bullet
indicates the availability of explanations for this line of code.
A white bullet marks that there are no explanations for that
line. Clicking on a green bullet opens an explanations note for
the selected line. In the spirit of good hypertext, the WebEx
interface lets the user use his or her preferred browsing
strategy. Some users may choose to browse the example line
by line. Other students may concentrate on the most hard-to-
understand lines and selectively read explanations for these
lines. When exploring an example, such students can go
straight to a troublesome line while ignoring other
unnecessary explanations.

Fig. 1. In WebEx example explanations are shown one at a time next to the
line being explained (the bullet and the font for this line is changed to provide
the context)

WebEx approach offers several benefits over the traditional

book format. First, the code of the example is shown as an
easy-to-grasp single chunk, instead of being distributed among
the comments. Second, explanations are shown one by one,
helping the student to concentrate on one thing. Third, instead
of being a passive reading activity, student work becomes an
interactive exploration with every example. As an extra
benefit, every action of the student in this environment can be
recorded, thus providing a teacher with the opportunity to
monitor student activity, which gives educational researchers a
powerful tool to explore student work-with-examples in the
programming domain.

C. WebEx Implementation
Over the course of the project we have developed several

versions of WebEx using different technologies. The first
version was implemented using Microsoft Access and
Microsoft Active Server Pages. It featured standalone
authoring tools, also based on Access. We used this version to
check the feasibility of our approach in a formative classroom
study. This version was presented at the WebNet'01
conference [2] and received enthusiastic feedback. The second
and third versions were developed completely in Java, using
Java Servlets for the student and author interfaces, while a
MySQL database stored the examples. Altogether, these
components formed a WebEx server.

All versions provided transparent Web-based access to
examples. Every annotated example stored on a WebEx server
was accessible by a unique URL. This provided for flexible
use of the examples. A teacher may decide to place links to
examples directly on a course Web page, send them by E-
mail, or add them to a Course Management System (CMS)
such as Blackboard. The system also supports the individual
logging of user actions, but to switch on this logging, an
example must be called with logging parameters, such as user
name, user group, and user modeling server. Unfortunately,
commercial CMS such as Blackboard were not able at that
time to pass user parameters to interactive learning resources.
To support the use of WebEx with full logging (which was
critical for our user studies) we implemented a learning portal
[3] and a communication architecture [4] called
KnowledgeTree. With KnowledgeTree, a teacher is able to
structure the course as a sequence of lectures (topics). For
every lecture he or she can specify the objectives and add links
to relevant learning activities. When a student selects such a
link in KnowledgeTree, the portal requests the selected object
from the corresponding content server (for example, WebEx
server) and passes on the student parameters that enable the
server to trace the student's work. The server immediately
displays the requested example in a separate window, as
shown on Figure 1.

D. Classroom Studies of WebEx
An educational system such as WebEx is typically

evaluated from three different prospects: student performance,
system usage, and subjective feedback. However, our main
goal was to evaluate the system in a real full-semester
classroom study. In this context, the classic performance
evaluation approach (form two groups of students with and
without access to WebEx and evaluate increase in their
knowledge) would have found it difficult to provide reliable
data: In the classroom, WebEx provides a good chance for the
student to increase their knowledge, but does not guarantee it.
In addition, we can't control the amount of work done with
WebEx and other sources of learning the students may use in
the context of a regular course. As a result, it is hard, in the
context of the classroom, to expect a reliable correlation
between the presence of WebEx and knowledge increase.

In contrast, the remaining two evaluation prospects were
quite appropriate to use in the classroom. The goal of WebEx
has been to encourage students to explore examples and to
help them selectively access annotations provided by the

> 0164-SIP-2007-PIEEE <

3

teacher. The usage analysis, discovered by examining the log
of student actions, can show how much and how frequently
the students use the system. In addition, a comparison of
system usage by different categories of students (i.e., gender,
grade) or with different versions of the system, allows us to
discover which student category appreciates the system most
and which version is more attractive. A subjective evaluation
can measure student opinion about the system as a whole as
well as to distinguish between its different parts. If opinion is
positive, we may derive from this that the students are
benefiting from the system. This is not ultimate proof, but it is
good evidence of success. In addition, subjective
questionnaires provide a great amount of data for improving
the system. Naturally, we used a combination of subjective
feedback and usage analysis to evaluate WebEx. In this paper,
the results of the subjective evaluation of WebEx are
presented below, while the results of usage analysis are
presented in section 4 (as mentioned above, usage analysis is
most interesting in the context of comparing several versions
of the system).

 We ran several classroom studies of WebEx (Spring 2002,
Fall 2002, and Spring 2003) in the context of two different
undergraduate programming courses taught at the University
of Pittsburgh. The first study used the first version of WebEx
and the three other studies used the second full-featured
version of the system. All studies had about the same format.
The students were encouraged to work with WebEx examples
for a few days and then answer a brief questionnaire. We
considered the first study to be a formative one. The
questionnaire was quite short and administered anonymously.
The second and third studies were mostly comprehensive; we
considered them to be a combination of formative and
summative evaluations. The original set of questions was
extended, the students had more time to work with the system,
and we preserved the student identities, in order to be able to
analyze the profile of student answers in conjunction with
their performance and demographic data.

All subjects in our studies were students of undergraduate
courses on Introductory Programming. The use of the system
was voluntary and not rewarded by grades directly, however
students who used the system were able to receive 3 extra
credit points for filling in the questionnaire. In total, 18
students filled in the questionnaire in Fall 2002 and 28 in
Spring 2003.

The remaining part of this section provides the analysis of
four multiple-choice questions that were the most relevant to
the focus of this paper, including student choices and their
free-form feedback, which was also solicited by the
questionnaire. The questions and the answer options are listed
in Table 1. The questions were designed in a Likert 4-point
style where answer 4 always corresponded to a very positive
opinion, answer 3 to a positive, answer 2 to neutral, and
answer 1 to negative. Note that instead of the Likert
homogeneous scale, we choose to provide a separate set of
four answers for each question, which we considered as more
meaningful, when collecting student feedback.

Figure 2 provides an overview of the student answers for

the four selected multiple-choice questions. It is easy to notice
that the overall student opinion of the system was very
positive. For every evaluated aspect, more than 70% of the
students have chosen either very high or high options. No
negative options were selected. We consider this to be very
strong evidence that the system was successful. Note that we
conducted a similar study in the same classroom evaluating
another course support tool, Knowledge Sea [5]. We
considered the results of the Knowledge Sea study to show
reasonable success as well, however, the student feedback
about Knowledge Sea was quite below their feedback about
WebEx, with the percentage of positive answers just a bit over
60% and the percentage of strongly positive answers under
10%. WebEx was clearly a champion with our students.

Table 1: Four questions relevant to our discussion with their answers. Answer
option 1 corresponds to a negative opinion, answer option 2 to a neutral,
answer option 3 to a positive, and answer option 4 to a very positive

 Question

1.
 V

al
ue

 o
f

Ex
am

pl
es

 I think that annotated examples:
4. can significantly improve my understanding
3. can help me in understanding
2. can sometimes be of help
1. can sometimes be of help

2.
 In

te
rf

ac
e

Considering the interface for the annotated
examples I think that it:
4. is very good
3. is good
2. have some problems
1. have some major problems

3.
 C

on
te

nt
 The content of annotations in the examples was:

4. very good and helpful
3. quite helpful overall
2. sometimes helpful, but useless most of the time
1. not helpful

4.
 V

al
ue

 o
f

In
te

ra
ct

iv
ity

The interactive functionality of the dissections (an
ability to click on a selected line and to see the
attached comment) was:
4. very useful
3. useful
2. useful only in a few cases
1. useless (no value over dissections in a textbook)

Note that Help in Understanding was clearly the highest

rated feature of the system. Almost 1/3 of the students selected
a highly positive answer, stating that the system was able to
significantly improve their understanding. Speaking about
their understanding, some students commented: "I was pleased
with this tool since it gave me a chance to view material I
never had a chance to understand;" "I think that the dissections
are almost necessary and very helpful as they can explain an
example or problem and make you really understand the point
of each line or part of the program.” They were also clearly
able to appreciate the difference between static examples and
annotated interactive WebEx format: "Very good tool, helps

> 0164-SIP-2007-PIEEE <

4

grasp reasoning that sample programs just don't do." Finally,
the students also commented on the value of the system in re-
capturing explanations missed in class: "this was a very good
idea to help catch up on a missed class or a topic that was not
very clear in class!"

Fig. 2. The percentage of different answers for the questions from Table 1.

III. NAVEX: PERSONALIZED ACCESS TO EXAMPLES

A. The Motivation
In the course of classroom studies of WebEx, the system

proved itself as an important course tool. Students rated the
system highly, with its ability to support interactive
exploration of examples. Many students actively used the
system through the course, exploring many examples from
different lectures. Yet, a sizeable fraction of students used the
system on only a few occasions. Knowing this pattern from
our past work on adaptive hypermedia [6], we hypothesized
that the students might need some personalized navigation
support to guide them to the most relevant examples at any
given time. Indeed, with dozens of interactive examples
available at the same time, it’s not easy to select one to
explore. Moreover, WebEx examples were scattered over the

course portal with several examples assigned to every lecture.
While this organization supported example exploration after a
lecture, the abundance of examples made the search for the
“right” example harder.

Our experience with ELM-ART [7] demonstrated that the
proper adaptive navigation support can significantly increase
the amount of student work with non-mandatory educational
content. To gain additional evidence in favor of adaptive
navigation support in our context, we solicited student
feedback about the need for adaptation, in the Spring 2003
study of WebEx. One of the questions in our WebEx
questionnaire explained the potential of adaptive navigation
support functionality and asked the students whether this
functionality would be useful. Almost 70% of the respondents
(out of 28) rated adaptive navigation support as at least a
useful feature and almost 30% among them rated it as very
useful.

This data encouraged us to enhance the original WebEx
system with adaptive navigation support. The work on NavEx
(Navigation to Examples), an adaptive version of WebEx
started in the Fall of 2003. The pilot version [8] was
completed and evaluated in Spring 2004. The second, more
elaborated production version [9] was completed and
evaluated in a classroom study in the Fall 2004 semester. The
following sections present the interface of NavEx, explain
how its adaptive functionality is implemented, and report the
results of the classroom studies.

B. The NavEx Interface
As mentioned above, the goal of NavEx was to provide

adaptive navigation support for a relatively large set (over 60)
of interactive programming examples. Capitalizing on our
positive experience with ISIS-Tutor [10], ELM-ART [8] and
InterBook [11] we decided to apply a specific kind of adaptive
navigation support known as adaptive annotation. With
adaptive annotation, a system provides adaptive visual cues
for every link to educational content. These visual cues (for

Fig. 3. The interface of the pilot version of NavEx

> 0164-SIP-2007-PIEEE <

5

example, a special icon or a special font color for a linked
anchor) provide additional information about the content
behind the links, thus helping a student to choose the most
relevant link to follow. One important kind of adaptive
annotation, pioneered in ISIS-Tutor, is zone-based annotation,
which divides all educational content into three zones: 1)
sufficiently known, 2) new and ready for exploration, and 3)
new, but not-yet-ready. This kind of annotation was later
applied in ELM-ART [7], InterBook [11], KBS-HyperBook
[12], and many other systems. Another kind of adaptive
annotation pioneered in InterBook [11] is progress-based
annotation, which shows current progress achieved while
working with an educational object. This kind of annotation is
currently less popular and is only used in a few systems such
as INSPIRE [13].

NavEx went through two design stages: pilot and
production. The pilot version of NavEx [8] used only zone-
based annotation. The second, production version [9],
attempted to combine zone-based and performance-based
annotation in a single adaptive icon.

The interface of the pilot version is shown in Figure 3. The
left side displays a list of annotated links to all the code
examples available for a student in the current course. The
right side displays the name of the current example and the
annotated code example. Students click on links in the left
frame to select an example. Once an example is selected, they
click on colored bullets in the right frame next to example
lines to selectively explore the teacher’s comments.

Navigation support is provided in the left frame, in the form
of adaptive icons. Check mark annotations denote
“sufficiently known” examples, green bullet annotations –
examples user is advised to work on, and red bullets
discourage user from working with these annotated examples.
The fact that the example is ‘not recommended’ doesn’t
prevent the user from actually browsing it. All of the

annotated examples are available for exploration and it is up to
a student as to whether to follow the suggestions expressed by
annotations or not.

In the production version of the NavEx interface (Figure 4)
we changed the annotation schema. The green bullet, which
denoted “ready to be learned” examples was replaced with a
fillable circle. Depending on the student’s progress, the circle
is empty, partially or wholly filled. There are 5 discrete
progress measures from 0% to 100%, with 25% increments
(Figure 5). An empty green bullet denotes examples that are
available, yet not browsed by the student. The relevance of the
example is marked by the font style. If the example is relevant,
its link is displayed in bold font, otherwise - in regular font.

The red bullet was changed to a more explicit red X mark.
In addition menu buttons were added to the top of the interface
window (such as ‘reload’, ‘hide left frame’, and ‘help').

Not ready to be explored

Ready to be explored

Fig. 5. Annotation of the examples

C. NavEx Implementation
NavEx is implemented as a value-added service. It

aggregates WebEx examples and serves as a single point to
access them. The interaction of NavEx and WebEx is shown
in Figure 6. The main content frame of NavEx presents the
original WebEx interface. The adaptive guidance component
of NavEx takes care of the left navigation frame and the top
menu frame.

The guidance component employs a concept-based
navigation support mechanism [9], which takes into account
the list of programming concepts presented by each example.
To generate this list of each example, we developed the

Fig. 4. The interface of the production version of NavEx

> 0164-SIP-2007-PIEEE <

6

automatic concept parser and an algorithm, which separates
the list of concepts associated with each example into
prerequisite concepts and outcome concepts. The process of
separation is defined by the structure of a specific course,
which is defined by having the teacher assign examples to the
ordered sequence of lectures. For the examples associated with
the first lecture, all of the concepts are considered outcome
concepts. For each next lecture, the example concepts that do
overlap with example concepts of the previous lectures are
considered prerequisites, while the remaining concepts are
considered outcome concepts. The algorithm advances
through lectures sequentially until all example concepts are
effectively split. The indexing and concept separation
algorithms are discussed in more detail in [14].

Fig. 6. NavEx and WebEx interaction

The prerequisites and outcome concepts and the current

state of the individual user model determine which icon is
shown next to the example link. Since the user model is
constantly updated, the icon is selected dynamically.

When a user explores examples by opening teacher
comments, WebEx sends events to the user model, one event
for each line explored. Once an example is sufficiently
explored, all of the example concepts are considered known.
Sufficiency of exploration is defined by the relative amount of
not-yet-known concepts (number of not known over the
number of all concepts in the example) and also calculated
dynamically. The smaller is the fraction of not known
concepts, the fewer lines have to be explored to reach the
sufficiency threshold. The exact formulas for user modeling
and icon selection can be found in [9].

As more and more concepts become known, more and more
examples become available for browsing. If all the
prerequisite concepts of an example are known, the red X icon
is replaced by a green bullet. The filling level of the bullet
denotes the percentage of lines explored by the user. In the

beginning there are very few examples available for browsing.
In our case there was one “hello world” example. The more
examples the user browses, the more concepts are learned, and
thus more new examples are uncovered. However, the red X
icon does not prevent user from actually accessing the
example. The user is free to make own choice even if it is
against the system’s recommendation.

D. A Classroom Study of NavEx
A classroom study of both NavEx interfaces was performed

in the context of an undergraduate programming course in the
Spring 2004 and Fall 2004 semester in the School of
Information Sciences at the University of Pittsburgh. In Spring
2004, NavEx was made available to students taking this
course during the last weeks of the semester. In the Fall 2004
semester, it was made available after the midterm exam.

There were 23 active students working with NavEx in the
first and 11 active students working in the second study.
Before the introduction of NavEx the students were able to
explore code examples with the original WebEx (i.e., without
adaptive guidance) directly through the Knowledge Tree
portal. After the introduction, they were able to use both
methods of access – with adaptive navigation support through
NavEx and without it through the portal using the original
WebEx. Student work with both WebEx and NavEx was
considered equally for the purposes of user modeling.

As in the WebEx studies, we collected subjective user
feedback in the form of questionnaires. The questionnaires
designed for WebEx were extended with additional questions
about the NavEx component. In the Spring 2004 semester, we
added two additional questions (#5 and #6, Table 2) and in
Fall 2004 two more on top of that (#7 and #8, Table 2).

The summary of the answers for the questionnaire about the
pilot version is shown in Figure 7. As we can see, the
students’ attitude to the core of the questions overlapping with
WebEx questionnaires remains quite positive. The newly
added feature of pilot NavEx – the “readiness” annotation –
seems to be reasonably well received as well: positive
responses were given by 75%-80% of students, although the
percentage of strongly positive answers about these features is
rather low.

The summary of questionnaire answers about the
production version is shown in Figure 8. Feedback here, in
general, is even more positive. Very positive responses to the
questions about the value of the examples in general and their
interactivity went up to 40% and 50%, respectively. Very
positive responses to the interface and the content both crossed
the previously unmatched 20% boundary line. Students were
unanimous in voting on the positive side for having all
examples together (100% of positive and very positive
responses). About 80% of them liked the fact that their
progress was now explicitly stated.

Table 2: Four additional questions added to questionnaire from Table 1

 Question

> 0164-SIP-2007-PIEEE <

7

5.
 V

al
ue

 o
f C

om
pl

ex
ity

 M
ar

k NavEx estimated whether you were ready to
understand a specific example and warned you
about not ready to be explored examples using
a red X icon. Regardless of the correctness of
this estimation in the current version of NavEx,
I think that it is useful to see "not ready"
warning next to too complicated examples.
4. Strongly Agree
3. Agree
2. Neutral
1. Disagree

6.
 Q

ua
lit

y
of

 C
om

pl
ex

ity

Es
tim

at
io

n

NavEx estimated whether you were ready to
understand a specific example and warned you
about not ready to be explored examples using
a red X icon. I think that NavEx estimation was
mostly correct:
4. Strongly Agree
3. Agree
2. Neutral
1. Disagree

7.
 V

al
ue

 o
f H

av
in

g
Ex

am
pl

es
 T

og
et

he
r The ability to access all dissections from all the

lectures using the joint list of dissection on the
left side of NavEx interface was helpful.
4. Strongly Agree
3. Agree
2. Neutral
1. Disagree

8.
 V

al
ue

 o
f P

ro
gr

es
s

M
et

er

The ability to see my own progress in NavEx
(the percentage of each example that I have
already analyzed that was shown using fillable
green bullets) was helpful.
4. Strongly Agree
3. Agree
2. Neutral
1. Disagree

Fig. 7. Subjective evaluation of the pilot version of NavEx in Spring 2004

Fig. 8. Subjective student evaluation of different features of the production
version of NavEx in the Fall 2004

The “readiness” indicator was appreciated less than other

aspects with over 20% negative answers and less than 60%
positive ones . We hypothesize that this could be attributed to
the fact that NavEx was introduced in the middle of the Fall
2004 semester, when the students had already made good
progress. NavEx was not aware of that progress, and students
saw discouraging red X’s telling them that they were not ready
to explore certain examples, while their actual mastery of the
material was already beyond this.

IV. NAVEX VS. WEBEX: THE MOTIVATIONAL VALUE OF
NAVIGATION SUPPORT

With two versions of example access being explored over 3
years, it was most interesting for us to compare NavEx and
WebEx. We started with the subjective data. Comparison of
questionnaire answers to four main questions (Table 1), which
were used in all studies, is shown in Figure 9. Data covers the
four semesters when the questionnaires were collected,
namely, Fall 2002 and Fall 2003, when only WebEx was used,
Spring 2004, when WebEx and the pilot version of NavEx
were used, and Fall 2004, when WebEx and the production
version of NavEx were used. Height of bars represents the
amount of positive feedback given to a question.

Figure 9 shows that user feedback about the pilot version of
NavEx was quite comparable with the feedback about WebEx;
however feedback about the production version of NavEx is
visibly more positive. Over 90% of students positively
evaluated system’s help in understanding the subject (question
1). Opinion about the interface and the interactive nature of
example exploration reached the 100% positive level. The
only place where the difference between the systems is
negligible is on the question about content, which is not
surprising, since the content did not change.

It is hard to say why the pilot version of NavEx was not
received very enthusiastically. It could be the very late
introduction of the system or the lack of progress-based
support (or both). However, it is apparent that the production
version, which was available for half of the course’s duration,
made an impressive impact.

To examine the nature of this impact, we decided to
examine possible differences in user interaction between the
original WebEx and the production version of NavEx. Our

> 0164-SIP-2007-PIEEE <

8

main sources of interaction data were the user activity logs.
The logs recorded every user click (i.e., every examined line).
For each click, the log contained information about user
identity, course, time of access, example accessed, and code
line examined. The log record also indicated whether a student
accessed a specific example through NavEx or through
WebEx, during semesters when both NavEx and WebEx were
available to the students.

Fig. 9. Comparison of positive feedback in Fall 2002, Spring 2003 (WebEx),

Spring 2004 (WebEx and pilot NavEx), and Fall 2004 (WebEx and production
NavEx) semesters for the “overlapping” questions 1 through 4.

The comparative analysis of the WebEx and NavEx system

usage covered three semesters worth of log data (Fall 2003,
Spring 2004, and Fall 2004). We examined system usage with
respect to 3 variables: number of clicks (lines explored),
number of examples explored, and number of lectures covered
(since each example belonged to one of the course lectures).
We have looked at these variables from two perspectives:
overall per-user average and per-user per-session average.

Table 3: Analysis of the means of the variables for semesters when WebEx
and NavEx were used.
 WebEx NavEx+

WebEx
p-value

Clicks 34.76±6.66 171.90±65.56 <.001***
Examples 5.66±0.87 18.10±4.32 <.001*** Overall

statistics
Lectures 3.52±0.42 8.20±1.23 <.001***
Clicks 7.85±0.87 9.49±1.28 .122
Examples 1.56±0.12 2.03±0.22 .013*

Average
session
statistics Lectures 1.20±0.05 1.37±0.10 .020*

* p-value <.05, *** p-value <.001

The analysis (Table 3) has shown an impressive growth of

system usage. During the semester when NavEx was made
available, students explored nearly 5 times more code lines
(≈35 vs. ≈170), and accessed 3 times more examples (≈6 vs.
≈18), which covered twice as many lectures (≈4 vs. ≈8). All of
the differences are significant. Although an average session of
NavEx usage is not significantly longer than the average

session of WebEx in terms of clicks, the students tend to come
back to NavEx three times more often then they do to WebEx.
In a sense NavEx becomes “addictive,” once students are
exposed to it. As for the number of examples explored and
lectures covered, NavEx significantly surpasses WebEx even
within a single session.

We have also investigated whether the increase in the
number of lines and examples explored happened mainly due
to the growth of activity with the examples associated with the
current lecture or because the navigation support of NavEx
encouraged students to access under-explored examples
associated with previous lectures. Results show that the
amount of user clicks on examples of past lectures that were
not in the current focus of the class were only 25% percent of
the total number of clicks for WebEx. The same value for
NavEx is significantly higher – 51% (Table 4). Also the
backtracking distance – how far in terms of lectures students
go back – is approximately twice as large for NavEx (≈18 vs.
≈9).

Table 4: Summary of WebEx and NavEx usage logs.
 WebEx NavEx+

WebEx p-value

Back-track
ratio 0.24±0.05 0.51±0.08 .005**

Back-track
distance 8.73±1.90 17.64±2.51 .002**

** p-value <.01

V. SUMMARY AND FUTURE WORK
This paper gives an overview and the evaluation results of

our 5-year project focused on a new kind of educational
content: interactive explained program examples. We argue in
favor of the importance of this kind of content and present our
attempts to deliver this content to students of regular
introductory programming courses, using two systems:
WebEx and NavEx. WebEx provided a Web-based interface
to interactively explore explained examples. NavEx extended
WebEx with adaptive guidance, provided by adaptive link
annotation. This technology was applied to guide students to
the most appropriate examples and to encourage students to
explore code examples more frequently.

The classroom studies of WebEx and NavEx, also
summarized in this paper, demonstrated that interactive
program examples are highly praised by students for helping
them understand programming concepts. The students also
very positively rated the system interface, interactive nature,
and specific interface features. The introduction of NavEx
further increased student satisfaction with the system,
confirming that adaptive navigation support is a valuable
feature in the context of example exploration.

We also discovered that the provision of adaptive guidance,
in the form of adaptive link annotation, significantly increases
student motivation to work with interactive examples. With
NavEx, students accessed nearly 5 times more example lines
and explored 3 times more examples. This finding provides

> 0164-SIP-2007-PIEEE <

9

further evidence that adaptive guidance can significantly
increase the amount of student work with non-mandatory
educational content. Originally discovered in the context of
student work with self-assessment questions [15] this
phenomenon can be now generalized to other types of Web-
based interactive content. This finding is very important for
practitioners interested in using rich interactive educational
content, since the lack of student motivation to explore and
use new content is considered to be one of the major
stumbling points to using modern technology within education
[16].

We plan to continue our exploration of interactive
examples. Currently, we plan to expand the work presented in
this paper in three directions. First, we want to test the value
of this technology in other domains, beyond its original scope
of introductory programming. This semester, we are running a
study of WebEx in the context of a database course where it is
used to deliver explained-examples of SQL queries.

Second, we plan to investigate whether social navigation
support mechanisms [17] could to some extent replace the
concept-based navigation support mechanisms explored in
NavEx. In a situation where concept extraction from examples
is not possible, simple social mechanisms, such as footprints-
based navigation support [18] could provide much needed
guidance.

Finally, we are expanding our authoring system to allow the
student authoring of annotated examples and peer review. Our
early exploration [19] demonstrated that a properly engineered
peer review process enables a community of students to
produce good explanations for program examples. We
consider this direction of research as important, since student
involvement in the authoring process can resolve a potential
bottleneck of having an insufficient number of examples.

REFERENCES
[1] A. Kelley and I. Pohl, C by Dissection : The Essentials of C

Programming. New York: Addison-Wesley, 1995.
[2] P. Brusilovsky, "WebEx: Learning from examples in a programming

course," in Proc WebNet'2001, World Conference of the WWW and
Internet, Orlando, FL, 2001, pp. 124-129.

[3] P. Brusilovsky and H. Nijhawan, "A Framework for Adaptive E-
Learning Based on Distributed Re-usable Learning Activities," in Proc
World Conference on E-Learning, E-Learn 2002, Montreal, Canada,
2002, pp. 154-161.

[4] P. Brusilovsky, "KnowledgeTree: A distributed architecture for adaptive
e-learning," in Proc 13th International World Wide Web Conference,
WWW 2004 (Alternate track papers and posters), New York, NY, 2004,
pp. 104-113.

[5] P. Brusilovsky and R. Rizzo (2002). Map-based horizontal navigation in
educational hypertext. Journal of Digital Information [Online], vol. 3,
 Available: http://jodi.ecs.soton.ac.uk/Articles/v03/i01/Brusilovsky/

[6] P. Brusilovsky, "Adaptive hypermedia," User Modeling and User
Adapted Interaction, vol. 11, pp. 87-110, 2001.

[7] G. Weber and P. Brusilovsky, "ELM-ART: An adaptive versatile system
for Web-based instruction," International Journal of Artificial
Intelligence in Education, vol. 12, pp. 351-384, 2001.

[8] P. Brusilovsky, M. Yudelson, and S. Sosnovsky, "An adaptive E-
learning service for accessing Interactive examples," in Proc World
Conference on E-Learning, E-Learn 2004, Washington, DC, 2004, pp.
2556-2561.

[9] M. Yudelson and P. Brusilovsky, "NavEx: Providing Navigation
Support for Adaptive Browsing of Annotated Code Examples," in Proc

12th International Conference on Artificial Intelligence in Education,
AI-Ed'2005, Amsterdam, the Netherlands, 2005, pp. 710-717.

[10] P. Brusilovsky and L. Pesin, "An intelligent learning environment for
CDS/ISIS users," in Proc The interdisciplinary workshop on complex
learning in computer environments (CLCE94), Joensuu, Finland, 1994,
pp. 29-33. Available:
http://cs.joensuu.fi/~mtuki/www_clce.270296/Brusilov.html.

[11] P. Brusilovsky, J. Eklund, and E. Schwarz, "Web-based education for
all: A tool for developing adaptive courseware," in Proc Seventh
International World Wide Web Conference, Brisbane, Australia, 1998,
pp. 291-300.

[12] N. Henze and W. Nejdl, "Adaptation in open corpus hypermedia,"
International Journal of Artificial Intelligence in Education, vol. 12, pp.
325-350, 2001.

[13] K. A. Papanikolaou, M. Grigoriadou, H. Kornilakis, and G. D.
Magoulas, "Personalising the interaction in a Web-based Educational
Hypermedia System: the case of INSPIRE," User Modeling and User
Adapted Interaction, vol. 13, pp. 213-267, 2003.

[14] S. Sosnovsky, P. Brusilovsky, and M. Yudelson, "Supporting Adaptive
Hypermedia Authors with Automated Content Indexing," in Proc
Second International Workshop on Authoring of Adaptive and
Adaptable Educational Hypermedia at the Third International
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems
(AH'2004), Eindhoven, the Netherlands, 2004

[15] P. Brusilovsky and S. Sosnovsky, "Engaging students to work with self-
assessment questions: A study of two approaches," in Proc 10th Annual
Conference on Innovation and Technology in Computer Science
Education, ITiCSE'2005, Monte de Caparica, Portugal, 2005, pp. 251-
255.

[16] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C.
Hundhausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J. Á.
Velázquez-Iturbide, "Exploring the role of visualization and engagement
in computer science education," ACM SIGCSE bulletin, vol. 35, pp.
131–152, 2003.

[17] A. Dieberger, P. Dourish, K. Höök, P. Resnick, and A. Wexelblat,
"Social navigation: Techniques for building more usable systems,"
interactions, vol. 7, pp. 36-45, 2000.

[18] P. Brusilovsky, G. Chavan, and R. Farzan, "Social adaptive navigation
support for open corpus electronic textbooks," in Proc Third
International Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems (AH'2004), Eindhoven, the Netherlands, 2004, pp. 24-
33.

[19] I.-H. Hsiao and P. Brusilovsky, "Collaborative Example Authoring
System: The Value of Re-annotation based on Community Feedback," in
Proc World Conference on E-Learning, E-Learn 2007, Quebec City,
Canada, 2007, pp. 7122-7131.

Peter Brusilovsky received an M.S. degree in applied mathematics from the
Moscow State University in 1983 and a Ph.D. in computer science from the
same university in 1987.
 He is currently an Associate Professor of Information Science and
Intelligent Systems at the University of Pittsburgh, where he also heads the
Personalized and Adaptive Web Systems Lab. In the past, he held various
appointments at the Moscow State University, Sussex University, Tokyo
Denki University, the University of Trier, Free University of Bolzano, the
National College of Ireland, and Carnegie Mellon University.
 Dr. Brusilovsky is a member of ACM and AACE. He is also the current
President of User Modeling Inc., a professional organization of user modeling
researchers. He is a recipient of the Alexander von Humboldt Fellowship, the
NSF CAREER award, and the E.T.S. Walton award.

Michael V. Yudelson was born in December 1978 in Smolensk, Russia. He
received his M.S. degree in computer-aided design from Ivanovo State Power
University, Ivanovo, Russia in 2001. He defended his Candidate of Science
dissertation in computer-aided design at the same university in 2004.
 In 2004, he joined the Ph.D. program at the School of Information Science,
University of Pittsburgh, where he also works as a graduate student researcher
at the Personalized Adaptive Web Systems Lab.
 Mr. Yudelson is a student member of ACM. He has received the James
Chen Student Paper Award at the International Conference on User Modeling
2007, and the Best Young Researcher Paper award at the International
Conference on AI in Education 2007.

