
Supporting Adaptive Hypermedia Authors with 
Automated Content Indexing 

Sergey Sosnovsky, Peter Brusilovsky, Michael Yudelson 

University of Pittsburgh, School of Information Sciences 
135 North Bellefield Avenue, Pittsburgh, PA 15260, USA 

{sas15, peterb, mvy3}@pitt.edu 

Abstract. The main hindrance to expanded use of adaptive educational 
hypermedia systems is the need for content to be properly described in the terms 
of domain concepts. This requirement slows down the authoring process and 
creates an obstacle to the broader distribution of such systems. In the current 
paper, we propose an approach to providing automated content indexing for 
adaptive educational hypermedia systems. Both stages of automated content 
indexing (content parsing and prerequisite/outcome identification) are described 
here in detail. The approach we have developed has been implemented by 
indexing the content of the NavEx system and has proven itself by creating 
meaningful recourse for adaptive example navigation support. 

1 Introduction 

More and more adaptive hypermedia systems [2] are reaching the point where they 
can be used in the context of real education, an area that is now almost exclusively 
served by traditional non-adaptive web-based educational (WBE) systems [4]. Thanks 
to years of research, the problems of representing the domain model, knowledge about 
the student, as well as development of the interface can now be solved in a number of 
domains by relatively small research teams. The choice of the Web as an 
implementation platform can help a small team solve problems of delivery, 
installation, and maintenance, expanding the systems availability to hundreds and 
thousands of students. Yet, there “the last barrier” exists:  The traditional static, non-
adaptive WBE systems and courses have something that almost no intelligent system 
developed by small research teams can offer – large amounts of diverse educational 
material. A high-quality traditional WBE course may have thousands of presentation 
pages, and hundreds of other fragments of learning material – examples, explanations, 
animations, and objective questions created by a team of developers. In comparison, 
the number of presentation items in the best adaptive web-based educational systems 
is well under two hundred and the number of other fragments of learning material, 
such as problems or questions is usually no more than a few dozen. These numbers 
are certainly sufficient for a serious research study of the system in classroom use, but 
the number is still small for the needs of practical web-based education, i.e., the 
ability to support reasonable fragments of practical courses which can be taught to 
large numbers of students, semester after semester. 



We think that the key to solving this last problem is teacher-oriented authoring 
tools for providing the content for adaptive educational hypermedia systems. The 
pioneering paper (describing the PAT Algebra tutor [17]) provides a good analysis of 
problems and a set of design principles developed to use when authoring problems for 
a cognitive, rule-based tutoring system. The situation described in this paper is when 
the content to be created is really "intelligent content." The power of intelligent 
content is that knowledge is hidden behind every fragment of it. Even the simplest 
"presentation" fragments of external content should be connected to the proper 
elements of domain knowledge (concepts) so that an intelligent educational system 
(IES) can understand what it is about, when it is reasonable to present it, and when it 
is premature. More complicated content format, such as examples and problems, 
require additional coding in order to enable an IES to run the example or to support 
the student’s ongoing solution of a problem. 

There are very few domains where the knowledge behind a fragment of educational 
content can be deduced automatically by the system from the problem statement. For 
example, straightforward representations might be used in an IES which teaches 
derivation in calculus [6], expression evaluation in C [5], or equation-solving in 
algebra [16]. In these domains it is quite easy to identify rules or concepts behind a 
problem or an example and no other knowledge except core domain knowledge is 
required to support the problem solving process. In these "lucky" domains, authoring 
of additional problems or examples is easy; the author only needs to provide the 
problem statement in a traditional form. Yet, even in such simple domains, teacher 
involvement is required for the advanced hypermedia systems to distinguish multiple-
concept sequences, such as those including prerequisites or outcomes [3]. In less 
formalized domains, the knowledge behind a content fragment can't be easily 
extracted and has to be provided during the authoring process, such as in adaptive 
hypermedia systems like KBS-Hyperbook [12] or SIGUE [10]. 

In this paper, we present a collaborative approach to authoring intelligent content 
for adaptive hypermedia. In our approach the work is distributed between an 
intelligent authoring system and a teacher. The teacher informs the system about his 
or her preferred way of teaching by grouping prepared content into a sequence of 
topics or lecture sets. An intelligent authoring system extracts concepts from the 
provided fragments of content and classifies them as either prerequisite or outcome 
concepts on the basis of the teacher’s preferred method of teaching. We have applied 
this approach in our recent system, NavEx. 

2. Lack of Authoring Support in the Context of a Programming 
Course 

We have used a number of different web-based educational systems in the context of 
an undergraduate course "Introduction to Programming" being taught at the 
University of Pittsburgh’s School of Information Sciences. The results of every 
semester’s evaluation and students' feedback led us to assume that the pedagogocal 
value of at least two of them could be increased by providing a system with 



metaknowledge about its content, thus an implementation of adaptive hypermedia 
technologies. Two of these systems are briefly described below. 

The WebEx system serves out interactive, explained examples of programming 
solutions, via the Web. An author of an example or a later teacher can provide textual 
explanations for every line of the program code. The students can browse these 
comments at their own pace and order by selectively clicking on the commented lines 
(see Fig. 1). The first version of WebEx has been implemented and was reported on in 
2001 [9]. Since that time, WebEx has been heavily used. Each semester it has offered 
an incrementally larger subset of examples from the classroom lectures. The results of 
evaluation demonstrated that a solid fraction of students wanted to see more explained 
examples than just the examples from the lecture. Moreover, the proportion of 
students who wanted "more examples" was growing, even though we were 
incrementally making more and more lecture examples available each semester. 
Typically, our course has grown to about 60 examples. This is a relatively large 
amount, but students have no trouble finding the relevant examples because each 
example is linked to a specific lecture. In contrast, examples from another class or a 
digital library are a navigational burden to the student. With no clear guidelines as to 
which of these examples should be accessed and when, students may easily choose 
examples that are either too complicated or too simple for the student’s current 
progress. 

 

 
Fig. 1. Interactive example in WebEx. 

Another application is QuizPACK. This system authorizes and delivers 
parameterized web-based quizzes for C-programming courses. The detailed 
description of QuizPACK can be found in the example for [15]. Figure 2 
demonstrates the student interface of the system. QuizPACK evaluation and 
individual feedback, though positive, showed that students suffer from lack of 
guidance. Since QuizPACK is used mostly for self-assessment, students need to 
estimate what their weakest topics are and then decide what quiz is necessary to take, 
on their own. However, they often get lost "in space" containing about 50 quizzes, 
which was necessary to develop in order to cover all of the course material. To assist 
students system needs to provide a valuable feedback which helps them to locate 



themselves in the course-knowledge space. Need in adaptive navigation support leads 
to the necessity of creating "intelligent content." 

 

 
Fig. 2. Typical question in QuizPACK. 

3. Automated Content Indexing 

There are no universally-accepted recommendations as to which level is best to use 
when defining a concept in computer programming domains. Some authors suppose 
that it has to be done on the level of programming patterns or plans [13], other 
believe, that the concepts is to be closer to the elementary operators [1]. According to 
the first point of view, the notion of pattern is closer to the real goal of learning 
programming, since the patterns are what programmers really use. However, the 
second way is more straightforward and makes the burden of indexing more feasible. 
With the notable exception of ELM-PE [18], all adaptive sequencing systems known 
to us work with operator-level concepts. Current implementation of the proposed 
indexing algorithm also uses the operator-level approach. 

This algorithm has two main stages. In the first stage, it extracts concepts from the 
content elements (examples, questions, presentation pages) combined by the teacher 
into activity pool. For example, all WebEx examples form one pool; all QuizPACK 
quizzes belong to another pool. In the second stage, the prerequisite/outcome structure 
of the course is built in terms of concepts, describing content elements. This 
sequential structure, along with the indexed content, provides the basis for adaptation. 
The following two subsections explain both stages in detail. 



3.1. On-line Content Parsing 

Traditionally, the extraction of grammatically meaningful structures from textual 
content and the determination of concepts on that basis is a task for the special class 
of programs called parsers. In our case, we have developed the parsing component 
with the help of the well-known UNIX utilities: lex and yacc. This component 
processed source code of a C program and generates a list of concepts used in the 
program. Currently, fifty-one concepts have been determined for the subset of C 
language studied during our course. Each programming structure in the parsed content 
is indexed by one or more concepts, depending upon the amount of knowledge 
students need to have learned in order to understand the structure. For instance, the 
parser generates the following list of concepts for the program code in Fig. 1, the 
WebEx example: 
 

include, void, main_func, decl_var, long, decl_var, assign, 
ne_expr, pre_inc, while, compl_printf 

 
It is necessary to mention that each concept here represents not simply a keyword, 

found in the code, but a grammatically complete programming structure. For instance, 
concept while is recognized by the parser only after the whole while-loop, including 
the keyword while, the iteration condition and the loop body, is found. This is why the 
concept while in the index list above must come after the concepts ne_expr (not-equal 
expression: !=) and pre_inc (pre-increment: ++identifier). 

The parsed code is accessed through the http-protocol. It can be represented as a 
simple source file in text format or as a properly formatted HTML-file, which 
distinguishes the code samples from the rest of the HTML content with one of these 
commonly accepted tag pairs: <code> – </code>, <pre> – </pre>, or <tt> – </tt>. 
Usage of other HTML-tags, such as the nesting of <b>, <a>, <div>, etc. between the 
pair of code-tags does not influence the result of the parsing. These tags are simply 
ignored; at the same time an HTML escape-sequences (like &nbsp; &lt; &amp; etc.) 
are processed and converted into corresponding symbols or symbol sequences. For 
example, Table 1 demonstrates two code samples, which present alternative ways to 
format HTML code for the QuizPACK question showed in Fig. 2. The parsing 
component processes all three samples (including the pure C source code of 
QuizPACK question) in the same way and generates for them the same list of 
concepts: 

 
main_func, int, decl_var, decl_var, int, decl_array, init, assign, 
assign, derefer, assign, l_expr, post_inc, add_assign, for 

Hence, the web-parser we have developed could be used for indexing the great 
amount of created on-line C content, such as code libraries and web-based tutorials. 
Given the URL of the content resource it generates list of concepts, extracted from the 
C code used in this resource. 



Table 1. Two alternative html formats for a simple C program. 

<html> 
… 
<code> 
main() 
{ 
   <b>int</b> i, sum; 
   <b>int</b> ar[] = {1,2,3,4,5};
 
   sum = 0; 
   ar[1] = *ar; 
   <b>for</b> (i = 0; i < 5; i++)
      sum += ar[i]; 
} 
</code> 
… 
</html> 

<html> 
… 
<pre> 
main()<br> 
{<br>&nbsp;&nbsp; 
int i, sum; <br>&nbsp;&nbsp; 
int ar[] = {1,2,3,4,5}; 
<br><br>&nbsp;&nbsp; 
sum = 0; <br>&nbsp;&nbsp; 
ar[1] = *ar; <br>&nbsp;&nbsp; 
<a href = "for.html"> 
for</a>(i = 0; i &lt; 5; i++) 
<br>&nbsp;&nbsp;&nbsp;&nbsp; 
sum += ar[i]; <br> 
}<br> 
</pre> 
… 
</html> 

3.2. Prerequisite/Outcome Identification 

The outcomes of the parsing stage are index lists for all content elements. However, it 
is not enough for our purposes, since these lists are not yet connected to each other 
and the content still does not possess any structure on which we could base the 
adaptation process. In the next stage, all concepts related to each content element are 
divided into prerequisite and outcome concepts. Prerequisites are the concepts that the 
student needs to master before starting to work with the current element. Outcomes 
denote concepts that the element leads one toward learning, i.e. the learning goals of 
the element. 

We use an original algorithm for the automatic identification of outcome concepts 
(see Fig. 3). This algorithm is flexible enough to be influenced by an instructor-
specific way of teaching the course. The source of knowledge for this algorithm is a 
sequence of groups of content elements. Each group is formed by the elements 
introduced in the same lecture. Groups are ordered according to the order of lectures 
in the course, forming a sequential structure of the learning goals of the course. The 
prerequisite/outcome division algorithm is based on the following assumptions: 

− While analyzing content element from some lecture, concepts corresponding 
to this element and introduced in a preceding lecture are considered to be 
already learned. 

− In each content element, all concepts introduced in the previous lectures are 
considered as prerequisites, while the concepts first introduced in the current 
lecture are regarded as outcomes. 

− The set of new concepts found in all content elements associated with the 
lecture becomes the learning goal of the lecture. 

The direct outcome of this algorithm is a fully-indexed set of content elements 
belonging to each lecture and a sequence of learning goals associated with the 



lectures. This sequence represents the specific approach to teaching C-programming 
that is employed by this specific instructor [3]. Once the content elements are indexed 
and the goal sequence is constructed, any future additional element can be properly 
indexed by the algorithm and even associated with a specific lecture in the course. 
More precisely, an association with a specific lecture is the first step in this process. 
The element is associated with the last lecture that introduces its concepts (i.e., the 
latest lecture, whose learning goal contains least one concept belonging to this 
element's index). After that, the element is associated with this lecture. It is important 
to stress that the outcome identification is adapted to a specific way of teaching a 
course "mined" from the original sequence of content elements. It is known that 
different instructors teaching the same programming course may use a very different 
order for their concept presentation [14]. Naturally, content sequencing in a course is 
to be adapted to the instructor's way of teaching. 

 

 1  
{
     1 
    {
       
        

learnt_concepts
for i to no_of_chapters

for j to chapter[i].no_of_examples

 chapter[i].example[j].prereq learnt_concepts chapter[i].example[j].all_concepts
chapter[i].exampl

= ∅
=

=

= ∩
\

   }
    1  
        
}

e[j].outcome chapter[i].example[j].all_concepts learnt_concepts

for j to chapter[i].no_of_examples
learnt_concepts learnt_concepts chapter[i].example[j].all_concepts

=

=
= ∪

 
Fig. 3: Pseudo-code for prerequisite/outcome identification. 

Although, the described indexing approach, using a parsing component, is 
specifically for programming and for the learning content based on the programming 
code (questions, code examples), we believe that the proposed general idea is 
applicable for a broad class of domains and types of content. In less formalized 
conditions, where concepts do not have a salient grammatical structure, the classic 
information retrieval approach could be used instead of parsing. 

Currently, the described approach is implemented in the NavEx system, which 
provides adaptive annotations for programming code examples. The indexed content 
elements in NavEx are the same programming examples used in WebEx (see Fig. 1). 
Preliminary evaluation shows that implemented indexing algorithm along with the 
mechanism for building inter-concept hierarchies from the given, flat content provides 
meaningful recourse for adaptive example-navigation support in NavEx. The NavEx 
mechanism of adaptation as well as the system interface will be briefly described in 
the following section. 

4. Adaptive Navigational Support in NavEx 

The interactive window of the NavEx system is divided into 3 frames (see Fig. 4). The 
leftmost frame contains a list of links to all examples/dissections available to a student 



in the current course. The links are annotated with colored icons. A red bullet means 
that the student has not mastered enough prerequisite concepts to view the example. 
The link annotated with the red bullet is thus disabled. A green bullet means that the 
student has enough knowledge to view the example. A green check mark denotes that 
the example has already been seen by the student. A green “play” bullet means that 
this line of code in the example is currently being viewed. The order of links to 
examples is fixed, so that students can find them in the same place, no matter what the 
student’s progress through the course has been. 
 

 
Fig. 4: The interface of NavEx. 

The central frame displays the name of the current example. Underneath it are two 
links: one loads the source code of the example into the central frame (where it will be 
copied, compiled, and explored); the other link loads interactive example dissection 
(served directly by the WebEx system). Dissection means that one takes the original 
source code and comments on it. These comments address the meaning and purpose 
of this line of code and help the student to understand the example better. Extended 
comments are shown to the left of the code and can be activated by clicking on the 
bullet next to the line of the code. If the comment is available, the bullet is green; 
otherwise, it is white. 

NavEx is considered a value-added service of the KnowledgeTree architecture [8], 
and implements several common protocols including student modeling and 
transparent authentication. As a typical value-added service, NavEx stands between e-
Learning portals and reusable content elements and provides additional value for both 
teachers and students who use this content through the portal. 

Adaptive navigational support in NavEx is done on the basis of the overlay student 
model [11]. Student's knowledge is represented as a binary vector k, where ki = 1 
means that the student has successfully mastered concept i, and ki = 0 means the 
opposite. 



When the student logs into the system a new session is created and information 
about the current state of his/her knowledge is retrieved from the student model. This 
information contains concepts the student has mastered and a list of examples the 
student has reviewed.  

Knowing the student's knowledge of each domain concept and the prerequisite-
outcome profile of examples, the sequencing mechanism can dynamically compute 
the current educational status for each example, which is then presented to the student 
in the leftmost frame of the system window (Fig. 4) in the form of adaptive 
annotations with the colored icons. 

When the student clicks on an example link and reviews the example code, the 
outcome concepts of the example change their state to “learned” (ki = 1). The changes 
in the knowledge state of the student are then propagated to the student model. The 
availability of each new example is determined by checking whether any of the 
previously unavailable examples now have all of their prerequisite concepts mastered. 
As the student reviews examples, newer examples become available. The knowledge-
based adaptive annotation approach used in NavEx is a variation of a popular adaptive 
annotation approach introduced originally in the ISIS-Tutor system [7]. 

5. Summary and Future Work 

We have discussed the development of an approach for the automated indexing of 
content based on C programming code. The first stage of this approach is performed 
by the implemented parsing component, which is able to extract C concepts from on-
line content formatted as HTML or as pure C code. Hence, this tool could be used for 
indexing the great amount of created on-line C code which is contained in on-line 
libraries and web-based tutorials. 

The second stage is the prerequisite/outcome identification and, building on its 
base, the inter-concept hierarchical structure of the content. The outcome we receive 
is the instructor-adaptive structure of the course reflecting his/her way of teaching the 
course. 

The designed approach has been implemented for the NavEx system development. 
NavEx content being indexed consists of the programming code examples. 
Preliminary evaluation shows that the implemented indexing algorithm along with the 
mechanism of building inter-concept hierarchies of the content provide meaningful 
recourse for adaptive example navigation support in NavEx. 

Our next goal is to build-in this algorithm as part of the authoring interface for the 
next adaptive version of QuizPACK system. Since every QuizPACK question is 
simply a small C program, we expect our algorithm to work successfully for this 
application and considerably facilitate the authoring process in QuizPACK. 

References 

1. Barr A., Beard, M., & Atkinson, R. C.: The computer as tutorial laboratory: the Stanford 
BIP project. International Journal on the Man-Machine Studies 8, 5 (1976) 567-596. 



2. Brusilovsky, P.: Adaptive hypermedia. User Modeling and User Adapted Interaction 11, 
1/2 (2001) 87-110, available online at http://www.wkap.nl/oasis.htm/270983 

3. Brusilovsky, P.: Developing Adaptive Educational Hypermedia Systems: From Design 
Models to Authoring Tools. In: Murray, Blessing and Ainsworth (eds.): Authoring Tools 
for Advanced Technology Learning Environments: Toward cost-effective adaptive, 
interactive, and intelligent educational software. Ablex, Norwood (2003) 377-409 

4. Brusilovsky, P. and Miller, P.: Course Delivery Systems for the Virtual University. In: 
Tschang, T. and Della Senta, T. (eds.): Access to Knowledge: New Information 
Technologies and the Emergence of the Virtual University. Elsevier Science, Amsterdam 
(2001) 167-206. 

5. Brusilovsky, P. and Su, H.-D.: Adaptive Visualization Component of a Distributed Web-
based Adaptive Educational System. In: Intelligent Tutoring Systems. Vol. 2363. 
Springer-Verlag, Berlin (2002) 229-238 

6. Brusilovsky, V.: Task sequencing in an intelligent learning environment for calculus. In: 
Proc. of Seventh International PEG Conference, Edinburgh (1993) 57-62 

7. Brusilovsky, P. & Pesin, L.: Adaptive navigation support in educational hypermedia: An 
evaluation of the ISIS-Tutor. Journal of Computing and Information Technology 6, 1 
(1998) 27-38. 

8. Brusilovsky, P. & Nijhawan, H.: A Framework for Adaptive E-Learning Based on 
Distributed Re-usable Learning Activities. In: Driscoll, M. and Reeves, T. C. (eds.) Proc. 
of E-Learn 2002, Montreal, Canada, AACE (2002) 154-161. 

9. Brusilovsky, P.: WebEx: Learning from examples in a programming course. In: Fowler, 
W. and Hasebrook, J. (eds.) Proc. of WebNet'2001, World Conference of the WWW and 
Internet, Orlando, FL, AACE (2001) 124-129. 

10. Carmona, C., Bueno, D., Guzman, E., and Conejo, R.: SIGUE: Making Web Courses 
Adaptive. In: De Bra, P., Brusilovsky, P. and Conejo, R. (eds.) Proc. of Second 
International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems 
(AH'2002) Proceedings, Málaga, Spain (2002) 376-379 

11. Greer, J. & McCalla, G. (eds.):  Student modelling: the key to individualized knowledge-
based instruction. NATO ASI Series F, Vol. 125, Springer-Verlag, Berlin (1993). 

12. Henze, N. and Nejdl, W.: Adaptation in open corpus hypermedia. International Journal of 
Artificial Intelligence in Education 12, 4 (2001) 325-350, available online at 
http://cbl.leeds.ac.uk/ijaied/abstracts/Vol_12/henze.html 

13. Lutz, R.: Plan diagrams as the basis for understanding and debugging pascal programs. In: 
Eisenstadt, M., Keane, M. T. and Rajan, T. (eds.): Novice programming environments. 
Explorations in Human-Computer Interaction and Artificial Intelligence. Lawrence 
Erlbaum Associates, Hove (1992) 243-285. 

14. Moffatt, D. V. & Moffatt, P. B.: Eighteen pascal texts: An objective comparison. ACM 
SIGCSE bulletin 14, 2 (1982) 2-10. 

15. Pathak, S., Brusilovsky, P.: Assessing Student Programming Knowledge with Web-based 
Dynamic Parameterized Quizzes. In Proceedings of ED-MEDIA'2002, Denver, Colorado, 
USA: AACE, 1548-1553. 

16. Ritter, S. and Anderson, J. R.: Calculation and strategy in the equation solving tutor. In: 
Moore, J. D. and Lehman, J. F. (eds.) Proc. of the Seventeenth Annual Conference of the 
Cognitive Science Society, Hillsdale, NJ, Erlbaum (1995) 413-418 

17. Ritter, S., Anderson, J., Cytrynowicz, M., and Medvedeva, O.: Authoring Content in the 
PAT Algebra Tutor. Journal of Interactive Media in Education 98, 9 (1998), available 
online at http://www-jime.open.ac.uk/98/9/ 

18. Weber, G. & Bögelsack, A.: Representation of programming episodes in the ELM model. 
In: Wender, K. F., Schmalhofer, F. and Böcker, H.-D. (eds.): Cognition and Computer 
Programming. Ablex, Norwood, NJ (1995) 1-26. 


	1Introduction
	2.Lack of Authoring Support in the Context of a Programming Course
	Automated Content Indexing
	4.Adaptive Navigational Support in NavEx
	5.Summary and Future Work
	References

