
Secure
Software
Engineering

JULY 2005 Vol.8. No.2

Unclassified and Unlimited Distribution

The Challenge of Low Defect, Secure
Software ... 8

Enhancing Customer Security 11

Software Development Security 15

 User Comment .. 18

STN 8-2: Software Cost, Quality and Productivity Benchmarks2

Data & Analysis Center for Software (DACS) 3

Developing Secure Software
Noopur Davis, Software Engineering Institute

Abstract

Most security vulnerabilities result
from defects that are unintentionally
introduced in the software during design
and development. Therefore, to signifi-
cantly reduce software vulnerabilities,
the overall defect content of software
must be reduced. Defect reduction is a
pre-requisite for secure software devel-
opment, but it is not enough. Security
must also be deeply integrated into the
full software development life cycle
(SDLC).

Introduction

Most security vulnerabilities result
from defects that are unintentionally
introduced in the software during design
and development. Therefore, to signifi-
cantly reduce software vulnerabilities,
the overall defect content of software
must be reduced. Today’s common
software engineering practices lead to
a large number of defects in released
software. However, data from dozens
of real-world software projects that
have systematically applied improved
software development practices show
one to two orders of magnitude reduc-
tion in the number of defects in released
software. Applying these improved
practices should lead to a similar reduc-
tion in the defects that lead to vulner-
abilities. Furthermore, by focusing on
the specific types of defects that lead to
vulnerabilities, even greater reduction
in vulnerabilities could be achieved.
Organizations that have applied these
practices have realized additional ben-
efits of reduced cycle times and reduced
software development costs.

Along with defect reduction, Secu-
rity must be deeply integrated into the
full software development life cycle
(SDLC). Security must be “built-in”
while the product is being developed,
and not just “bolted-on” after the fact.

This article begins with a discussion
of why defective software is seldom
secure, why defective software is not
inevitable, and why reducing defects is
less costly than responding to released
vulnerabilities. Next, security through-
out the software development life cycle
will be discussed. The paper closes
with a brief description of the Software
Engineering Institute’s (SEI’s) Team
Software ProcessSM for Secure Software
Development (TSP-Secure).

Defective Software Is Seldom Secure

SEI analysis of thousands of
programs produced by thousands of
developers show that even experienced
developers inject numerous defects as
they perform activities for understand-
ing requirements, developing designs,
coding, and testing software. One defect
is injected for every 7 to 10 lines of new
and changed code produced. Even if
99% of these defects are removed before
the software is released, this leaves 1 to
1.5 defects in every thousand lines of
new and changed code produced. Soft-
ware benchmark studies conducted on
hundreds of software projects show that
the average defect content of released
software varies from about 1 to 7 defects
per thousand lines of new and changed
code [Jones].

According to preliminary analysis
done by the SEI’s CERT® group, over
90% of software security vulnerabilities
are caused by known software defect
types. The analysis also showed that
most software vulnerabilities arise from
common causes: the top ten causes
account for about 75% of all vulner-
abilities. Another analysis of forty-five
e-business applications showed that 70%
of the security defects were software de-
sign defects [Jacquith]. Some problems
are caused by sophisticated architectural
and design issues such as inadequate

authentication, invalid authorization,
incorrect use of cryptography, failure
to protect data, and failure to carefully
partition applications. But most are
caused by simple oversight that leads
to defect types such as declaration er-
rors, logic errors, loop control errors,
conditional expressions errors, failure
to validate input, interface specification
errors, configuration errors, and failure
to understand basic security issues. In
a recent interview, Alan Paller, direc-
tor of research at the SANS Institute,
“expressed frustration with the fact that
everything on the [SANS Institute Top
20 Internet Security] vulnerability list
is a result of poor coding, testing and
sloppy software engineering. These are
not ‘bleeding edge’ problems, as an in-
nocent bystander might easily assume.
Technical solutions exist to them all, but
they are simply not implemented.”

It is clear that software development
practices in common use today lead to
defective software, that software defects
are a principal cause of software secu-
rity vulnerabilities; therefore, to reduce
vulnerabilities the overall defect content
of software must be reduced.

Defective Software Is Not Inevitable

When presented with the security
problems caused by defective software,
a common response is that software
development is inherently prone to
defects, and that defective software
is somehow inevitable. Many people
believe that trying to figure out how
to build better software is “a no-win
situation and just beating a dead horse”
[Computer World]. However, data
from dozens of real-world projects have
shown that when developers follow de-
fined, measured, and quality controlled
practices, they produce products with
very few overall defects. A recent study

continues on page 4

STN 8-2: Software Cost, Quality and Productivity Benchmarks4

found that the defect content of such
products can be reduced to an average
of .06 defects per thousand lines of
new and changed code [Davis]. This
represents 10 to 100 times fewer defects
when compared to industry averages of
1 to 7 defects per thousand lines of new
and changed code.

The Cost of Reducing Defects

The next question usually asked
is “doesn’t it cost too much to reduce
defects in software”? The simple
answer is that software projects that
produce near defect-free software also
consistently meet their schedules (thus
avoiding costs associated with delayed
releases), and spend less time on soft-
ware repair (thus improving overall
productivity). For example, the average
schedule error for projects using best
practices was just 6%, the average time
spent on software repair was just 4%,
and the average increase in productivity
was 78% [Davis]. Another large scale
study showed a near perfect corelation
between schedule and quality: the fewer
the defects in the software, the lesser the
schedule error [Jones].

When discussing costs, it is also
fair to discuss the costs of releasing
software with vulnerabilities. Producers
of vulnerable software face the tangible
costs of fixing and releasing patches for
vulnerabilities, as well as the intangible
costs of bad press, customer dissatisfac-
tion, and threat of legal action. For
consumers, the costs are even higher.
A recent analysis conducted at a major
corporation determined that the cost to
deploy a single patch was close to half
a million dollars. This cost was incurred
just by the corporate infrastructure team:
it did not include costs incurred by other
teams such as the development teams.
When these costs are multiplied by hun-
dreds of patches that need to be applied
by thousands of corporations, the overall
costs to the consumers are enormous.

Secure Software Development

What can be done to reduce defects
in software, and thus reduce vulnerabili-
ties in software? Two things must be
done: defects must be managed through-
out the software development life cycle,
and security must be addressed through-
out the software development life cycle.

Managing Defects throughout the
Software Development Life Cycle

Defects delivered in released soft-
ware are a percentage of the total defects
introduced during the software devel-
opment life cycle. To reduce defects
in released software, defects must be
managed throughout the software devel-
opment life cycle. Defect management
includes both defect removal and defect
measurement.

There should be multiple defect
removal points in the software devel-
opment life cycle. The more defect
removal points there are, the closer one
is to finding problems right after they
are introduced. So the problems can be
more easily fixed, and the root cause
more easily determined and addressed.

Each time defects are removed,
they should be measured. Every defect
removal point becomes a measurement
point. Defect measurement leads to
something even more important than de-
fect removal and prevention: it tells you
where you stand against your goals now,
helps you decide whether to move to the
next step or to stop and take corrective
action, and indicates where to fix your
process to meet your goals.

The following questions must be
considered when managing defects:
where are the places in the software
development life cycle where defects
should be measured? What work prod-
ucts should be examined for defects?
What tools and methods should be used
to measure the defects? How many de-
fects can be removed at each step? How
many estimated defects remain after

each removal step?

Suppose an organization has
determined that it wants to produce
software with less than 1 vulnerability
per million lines of code. Also suppose
that 25% of all software defects can
lead to software vulnerabilities. Thus
the quality goal for the organization
is to release software with less than 4
defects per million lines of code. How
will the organization know it can deliver
an acceptably small number of defects
to meet its quality goals? Like most
organizations, suppose the first time this
organization measures defects in the
software development life cycle is dur-
ing test. If testing exposes 100 defects
per million lines of code, and like most
organizations, testing in this organiza-
tion is 50% effective, 100 defects per
million line of code would remain in
the software after testing, and would be
released with the software (200 defects
per million lines of code existed before
the software entered test, 50% of these
defects were found and fixed during
test, while another 50% remained un-
found and unfixed). Not only will the
organization not meet its quality goal,
but few options will be available for
corrective action at this late stage in the
development life cycle.

On the other hand, if this organiza-
tion had several defect removal points
in the software life cycle, each 50% ef-
fective, the defects in the released soft-
ware would be much fewer. Each de-
fect removal activity can be thought of
as a filter that removes some percentage
of defects that can lead to vulnerabilities
from the software product, while others
defects that can lead to vulnerabilities
escape the filter and remain in the soft-
ware (see Figure 1). The more defect
removal filters there are in the software
development life cycle, the fewer de-
fects that can lead to vulnerabilities will
remain in the software product when
it is released. More importantly, be-

Developing Secure Software
Continued from page 3.

continues on page 5

Data & Analysis Center for Software (DACS) 5

cause the defects were being measured
earlier, the organization would have
time to take corrective action early in
the software development life cycle.

Some examples of defect removal
and measurement points in the software
development life cycle are architectural
analysis, threat modeling, design verifi-
cation, design review, code review, static
code analysis, unit test, penetration test,
and system test.

Addressing Security throughout the
Software Development Life Cycle

Although defect reduction is the
key to vulnerability reduction, more is
needed to produce secure software.

First, common causes of security
vulnerabilities must be understood.
Some common causes include buf-
fer overflows, SQL injection, race
conditions, and cross-site scripting.
Understanding involves much more
than reading a laundry list of causes and

examples: some organizations have
700-page documents to teach developers
about common causes of vulnerabilities
and how to avoid them. No one should
expect developers to use such a volume
of information as they perform their
day to day software development activi-
ties. Although an overall knowledge of
security issues is important, eliminating
common causes of vulnerabilities re-
quires defining a set of operational best
practices that development teams can
use in their day to day work: scripts,
tools, checklists, and methods that focus
on the particular job the developer is do-
ing at a particular time.

For example, consider buffer over-
flows, the most common and arguably
the best understood cause of software
vulnerabilities. Teaching develop-
ers about buffer overflows, showing
them examples of code that leads to
overflows, and cataloging library calls
that are prone to buffer overflows are all
good ways to sensitize developers to this

problem. But what are some best prac-
tices that would address not only buffer
overflows, but other potential defects
as well? A specific design practice may
be input validation via custom typed
classes. A specific verification practice
may be state machine verification for
session management. A specific cod-
ing practice may be language specific,
checklist-based security code reviews.
A specific tool may be a static code ana-
lyzer that scans the code for potentially
unsafe library calls. A specific testing
method may be Fuzz testing. Just as
important as defining best practices is
deciding when in the secure software
development process these practices
should be used (process scripts), how
they should be measured (in-process as
well as predictive measures), and how
their use can be ensured.

Once the best practices have been
defined, they must be applied through-
out the software development life cycle.
Figure 2 shows some best practices
that address security through different
phases of a software development life
cycle. No life cycle model is implied.
For spiral, incremental, or iterative de-
velopment, best practices will be cycled
through more than once as the software
product evolves.

Examples of SDLC best practices
include security risk analysis, secure
design principles (such as defense in
depth, application partitioning, and least
privilege), threat modeling, static code
analysis, checklist based inspections
and reviews, and testing methods such
as Fuzz testing, Ballista, or penetration
testing.

Since schedule pressures and lack
of senior management sponsorship
can get in the way of implementing
best practices, organizational support
is needed for setting security policies,
providing management oversight for
security activities, and for providing
security training and resources. Project

Figure 1: Vulnerability Removal Filters

Requirements
Activities

Design
Activities

%

Implementation
Activities

%

Some % of vuls injected during

requirements activities are removed
during requirements analysis, threat

modeling, or developing abuse cases

Some % of vuls injected during
requirements and design activities are

removed during design reviews and
verification

Some % of vuls injected during

requirements, design, and coding
are removed during code reviews,

dynamic analysis, static analysis,
and testing

%

Some % of vuls escape all removal
filters and are released with the

software.

Developing Secure Software
Continued from page 4.

continues on page 6

STN 8-2: Software Cost, Quality and Productivity Benchmarks6

management is needed to ensure that
security activities are planned and
tracked. Risk management is needed
to ensure security risks are identified,
assessed, and managed.

Finally, the secure software devel-
opment process should be measured
to determine its effectiveness, and to
determine which measures are predictive
measures for latent vulnerabilities in
released software.

The Team Software Process for Secure
Software Development

The Software Engineering Institute
developed the Team Software Process
(TSP)SM as a set of defined and mea-
sured best practices for use by individual
software developers and software de-
velopment teams [Humphrey]. Teams
using the TSP:

1) use common sense software engi-
neering practices

2) manage defects throughout the

developed life cycle

3) control the process through mea-
surement

4) monitor the process

5) address defect prevention as well as
removal

6) use predictive measures for remain-
ing defects

Since schedule pressures and people
issues get in the way of implementing
best practices, the TSP helps build self-
directed development teams, and then
puts these teams in charge of their own
work. TSP teams:

1) develop their own plans

2) make their own commitments

3) track and manage their own work

4) take corrective action when needed

The TSP includes a systematic
way to train software developers and
managers, to introduce the methods into
an organization, and to involve manage-
ment at all levels.

The Team Software Process for
Secure Software Development (TSP-
Secure) augments the TSP with secu-
rity practices throughout the software
development life cycle. The research
objectives of TSP-Secure are to reduce
or eliminate software vulnerabilities
that result from software design and
implementation defects, and to provide
the capability to predict the likelihood
of latent vulnerabilities in delivered
software. Areas of exploration include
vulnerability analysis by defect type,
operational process for secure software
production, predictive process metrics
and checkpoints, quality management
practices for secure programming,
design patterns for common vulnerabili-
ties, verification techniques, and remov-
ing vulnerabilities in legacy software.

Teams using TSP-Secure are first
trained in fundamental software engi-
neering practices. They then attend a
workshop where they are introduced to

Developing Secure Software
Continued from page 5.

Organizational policies, management oversight, resources and training, project planning,
project tracking, risk management, measurement and feedback

Security specifications
Asset identification

Use cases
Abuse cases

Requirements

Figure 2: Addressing Security Throughout the Software Development Lifecycle

Threat modeling
Security design

principles
(defense in depth,

least privilege …)

Security feature design
(authentication,

authorization,

secure communication,

secure data storage,

configuration...)

Design review

Design

“Secure ” language
subsets

Coding standards
Code reviews

Static analysis tools
Dynamic analysis tools

Implementation

Security test plans
Black-box testing
White-box testing
Test-defect review

Testing

continues on page 7

Data & Analysis Center for Software (DACS) 7

common causes of vulnerabilities and
practices they should use to address
the common causes of vulnerabilities.
Next, the teams plan their product
development work. Along with busi-
ness and feature goals, teams define the
security goals for their product, and then
measure and track the security goals
throughout the product development
life cycle. At least one team member
assumes the role of Security Manager.
This role is responsible for ensuring that
the team is addressing security through
all their product development activities.

To date, the TSP has been used by
many organizations. A recent study
showed that teams using the TSP
produced software with an average
delivered defect level of 0.06 defects
per thousand lines of new and changed
code, with an average schedule error
of just 6%. The average productivity
improvement was 78%. TSP-Secure is
still under development, but an initial
proof-of-concept pilot produced near
defect free software with no security
defects found during security audits and
in several months of use.

Conclusion

Since common software defects
are a leading cause of vulnerabilities,
the overall defect content of software
must be reduced. Next, security must
be systematically addressed throughout
the software development life cycle.
There must be a shift in attitude from
“bolting security on” after the fact, to
“building security in” as the product
is being developed. This requires that
good software engineering practices are
followed while the software is being
developed, including multiple defect
removal activities.

Biography of Noopur Davis

Noopur Davis is a Visiting Scientist
at the Software Engineering Institute
of Carnegie Mellon University, where

she works with Watts Humphrey on his
Team Software Process initiative. She
is also Principal of Davis Systems, a
company that has been providing Soft-
ware Engineering Process Improvement
consulting and training services for over
twelve years. Noopur has been involved
in the software field for over twenty
years as a developer, a manager, and a
consultant. Her experience ranges from
real-time embedded systems software
to commercial desktop products. She
has launched and coached dozens of
teams at major industry and government
organizations.

She has authored several reports
and articles on software process and
software security.

Noopur has a Masters in Computer
Science and a Bachelors in Electrical
Engineering. She is an SEI-Authorized
Team Software Process coach, an SEI-
Authorized Personal Software Process
instructor, program committee member
for the 2003 XP/Agile Universe confer-
ence, program committee member for
International Symposium on Secure
Software Engineering, member of IEEE
working group for draft recommended
ractices for Establishing and Managing
Software Development Efforts Using
Agile Methods, and a member of the
IEEE and the ACM.

References

[Computer World] “Congress’ role
in IT security debated”, November 6,
2003.

http://www.computerworld.
com/securitytopics/security/sto-
ry/0,10801,86902,00.html?nas=PM-
86902

[Davis] Davis, Noopur and Mul-
laney, Julia, “The Team Software Pro-
cess in Practice: A Summary of Recent
Results.”, Technical Report CMU/SEI-
2003-TR-014, September 2003.

[Kirwan] Kirwan, Mary, “The Quest
For Secure Code”. Global Technol-

ogy, October 12, 2004. http://www.
globetechnology.com/servlet/story/RT-
GAM.20041001.gtkirwanoct1/BNStory/
Technology/

[Humphrey] Humphrey, Watts S.
Winning with Software: An Executive
Strategy. Reading, MA: Addison-Wes-
ley, 2002.

[Jacquith] Jacquith, Andrew. “The
Security of Applications: Not All Are
Created Equal.” At Stake Research.

http://www.atstake.com/research/re-
ports/acrobat/atstake_app_unequal.pdf

 [Jones] Jones, Capers. Software
Assessments, Benchmarks, and Best
Practices. Reading, MA: Addison-Wes-
ley, 2000.

[Viega] Viega, Jones and McGraw,
Gary Building Secure Software Build-
ing Secure Software: How to Avoid
Security Problems the Right Way,
Reading, MA: Addison Wesley, 2001.

SM Team Software Process and TSP
are service marks of Carnegie Mellon
University.
®CERT is a registered trademark of
Carnegie Mellon University.

Developing Secure Software
Continued from page 6.

STN 8-2: Software Cost, Quality and Productivity Benchmarks8

The software industry is in crisis.
A strong claim? The National Institute
of Standards and Technology (NIST)
reports that poor quality software costs
the US economy $60 Billion per year
[1]. According to the aptly named
Chaos report only a quarter of software
projects are judged a success [2].
Failures due to “computer glitches” are
commonplace, and seem to be viewed
by the public (if not by the software
industry itself) as inevitable. In any
other engineering discipline, or indeed
any field, engineering or otherwise,
this would be unacceptable. But in the
safety and security sector, where reli-
ance on correctly functioning software
is increasing, and where such software
is becoming ever larger and more com-
plex, this state of affairs is unsustain-
able.

The challenge for the software in-
dustry has been neatly summarized by
Martyn Thomas, visiting Professor of
Software Engineering at Oxford Uni-
versity in England, as follows: “The
only way to reduce costs and to keep
projects within plans is to dramatically
reduce the error rate at every stage in
the development. If you do that, the
product is not only cheaper, but higher
quality: more secure, more reliable, and
easier to maintain.”

Thomas’s emphasis on reducing
errors has been backed up by recent
work on behalf of the National Cyber
Security Partnership, formed in 2003 in
response to the White House National
Strategy to Secure Cyberspace [3]. The
Partnership’s Secure Software Task
Force reported that a primary cause
of security problems is software with
vulnerabilities caused by defects, or
errors in software [4], and that practices
which lead to low defect software are
therefore to be encouraged.

One such practice cited in the re-

The Challenge of Low Defect, Secure Software
– too difficult and too expensive?

By Martin Croxford, Praxis High Integrity Systems Limited

port, an approach known as Correctness
by Construction developed by Praxis
High Integrity Systems Limited in
England, has been used for over fifteen
years to produce very low defect soft-
ware in critical applications. As well
as being low defect, such software has
also proved to be highly cost-effective
to develop and maintain in operation.
Two examples are cited below, includ-
ing a zero defect security application.

However, given that Correct-
ness by Construction (and the other
best practice approaches cited in the
report) has been used successfully for a
number of years, some questions arise.
Why is there still so much poor qual-
ity software around? Why are these
approaches not in more widespread
use? Perhaps the real challenge for the
software industry is to find a way of
systematically applying known technol-
ogy?

Before exploring these questions, it
is worth summarizing the Correctness
by Construction software development
approach, and some examples of its
results. The underlying principles are
straightforward: firstly to make it diffi-
cult to introduce errors, and secondly to
remove any errors as soon as possible
after introduction. The key to achiev-
ing this is to introduce sufficient preci-
sion at each step of the development
of the software to enable reasoning
about the correctness of that step. The
correctness of the software can then be
demonstrated in terms of the manner
in which it has been produced (the “by
construction”) rather than just by ob-
serving operational behavior. An anal-
ogy may be drawn with aeronautical
engineering, where the demonstration
of correctness during the specification,
design and implementation phase is
such that it is rare for a new aircraft to
work incorrectly the first time opera-

tional behavior is observed!

It is the use of precision which dif-
ferentiates Correctness by Construction
from other approaches. While perhaps
relying only on good process, many
other software development approaches
endure a lack of precision which makes
it very easy to introduce errors, and
very hard to find those errors early.
Evidence for this may be found in the
common tendency for development
lifecycles to migrate to an often-repeat-
ing “code-test-debug” phase, which can
lead to severe cost and timescale over-
runs. So, what kind of precision does
Correctness by Construction use?

At the requirements step (a source
of half of project failures [2]) a clear
distinction is made between user re-
quirements, system specifications and
domain knowledge, and “satisfaction
arguments” are used to show that each
user requirement can be satisfied by
an appropriate combination of system
specification and domain knowledge.
The emphasis on domain knowledge is
key; half of all requirements errors are
related to domain [5], yet the vast ma-
jority of requirements processes do not
explicitly address issues in the domain.

At the specification and design
stages, mathematical (or formal) meth-
ods and notations are used to define
precisely the behavior of the software,
and to model its characteristics (for
example demonstrating that a multi-
process design cannot deadlock). Such
techniques can allow precise verifica-
tion of consistency and accuracy.

At the detailed design and imple-
mentation stages, information and
data flows are explicitly modeled and
statically analyzed (for example, to
demonstrate the separation of secure
state). Where applicable, the code is
written in a mathematically verifiable

continues on page 9

Data & Analysis Center for Software (DACS) 9

programming language and statically
analyzed (for example, to demonstrate
the absence of run-time errors, such as
buffer overflows, which are the bane of
secure systems).

Correctness by Construction
is cost-effective because errors are
eliminated early or not introduced in
the first place, dramatically reducing
the amount of rework needed later in
the development. The precision means
that the requirements are more likely to
be correct, and the system more likely
to be the correct system to meet the
requirements, and to work correctly in
operation. Software developed using
Correctness by Construction has also
proved to be very cost-effective to
maintain.

The results speak for themselves.
Correctness by Construction was used
by Praxis to develop the Certifica-
tion Authority system to support the
MULTOS multi-application smart
card operating system developed by
Mondex International (now part of
Mastercard) [6]. Developed to the
standards of the IT Security Evaluation
Criteria (ITSEC) [7] Level E6 (roughly
equivalent to Common Criteria [7]
Evaluation Assurance Level (EAL) 7),
the system had to meet both stringent
security requirements and demanding
availability requirements. The system
was delivered with a warranty against
defects, and had an operational defect
rate of 0.04 defects/kloc (thousand
lines of code), yet was developed at a
productivity of almost 30 loc/day (three
times typical industry figures).

In the US, Praxis used Correct-
ness by Construction to develop a
demonstrator biometrics system for
the National Security Agency (NSA),
aimed at showing that it is possible
to produce high-quality, low defect
software conforming to the Common
Criteria [6] requirements for Evaluation
Assurance Level (EAL) 5 and above
[8]. The software was subjected to

rigorous independent reliability testing
which identified zero defects, and was
developed at a productivity of well
over 30 loc/day.

More generally, Correctness by
Construction delivers software with
defect rates of 0.1 defects/kloc and
lower; this compares very favorably
with defect rates reported by Capabil-
ity Maturity Model (CMM) Level 5
organizations of 1 defect/kloc [9] (see
chart Figure 1).

So, given the apparent success of
best practice approaches such as Cor-
rectness by Construction, why is there
still so much poor quality software
around, and why is such best practice
not in more widespread use?

There seem to be two kinds of bar-
riers to the adoption of best practice.
Firstly, there is often a cultural mindset
or awareness barrier. Many individuals
and organizations do not, or do not
want to, recognize or believe that it is
possible to develop software that is low
defect, secure and cost-effective. This
may simply be an awareness issue, in
principle readily addressed by articles

such as this, or papers such as those
cited. Or there may be a view that such
best practice “could never work here”
for a combination of reasons. These
reasons are likely to include perceived
capability of the in-house staff, belief
about applicability to the organization’s
product or product development ap-
proach, prevalence of legacy software
which is viewed as inherently difficult
and therefore expensive to maintain, or
concern about the disruption and cost

of introducing new approaches.

Secondly, where the need for
improvement is acknowledged and
considered achievable there are usually
practical barriers to overcome, such as
how to acquire the necessary capability
or expertise, and how to introduce the
changes necessary to make the im-
provements. Introducing such change
may be challenging for a combina-
tion of technical, political and social
reasons.

These are reasonable, common,
but not insurmountable barriers, and

The Software Challenge
Continued from page 8.

�
Correctness by Construction defect rates compared to

Capability Maturity Model data

0
1
2
3
4
5
6
7
8

C
M

M
 L

ev
el

 1

C
M

M
 L

ev
el

 2

C
M

M
 L

ev
el

 3

C
M

M
 L

ev
el

 4

C
M

M
 L

ev
el

 5

C
or

re
ct

ne
ss

by
C

on
st

ru
ct

io
n

CMM data from Jones, Capers [9]

D
ef

ec
ts

/k
lo

c

continues on page 10

Figure 1

STN 8-2: Software Cost, Quality and Productivity Benchmarks10

The Software Challenge
Continued from page 9.

overcoming them requires effort from
suppliers, procurers and regulators and
involvement at the individual, project
and organizational level. Typically,
strong motivation and leadership will
be required at a senior management
level, where the costs to the business
of poor quality (high defects, low
productivity) are most likely to be
experienced.

At a supplier level, a typical way
forward is for organizations (and in-
dividuals within them) to take a fresh,
open-minded look at what is possible
by comparing current approaches to
best practice and, where appropri-
ate, adopting step-wise, prioritized
improvements based on assessments of
the Return On Investment. Engineer-
ing decisions on process, methods and
tools need to be premised on the basis
of logic and precision (for example by
asking “how does this choice help me
reason about my software?”), rather
than on silver bullets or fashion (char-
acterized by questions such as “how
many developers already know this
particular technology?”).

Procurers and regulators can help
by adopting an attitude of not settling
for less, by demanding a warranty, by
awarding contracts to organizations
with the capability to deliver low-de-
fect software, and by using contracting
arrangements such as gain-share that
encourage partnership and improve-
ment.

Fundamentally, however, the main
drivers for change will come from two
directions.

Regulation, such as in the form
of the Common Criteria [7], at least
at EAL 5 and above, already requires
the adoption of techniques that provide
demonstration of correctness through
the way software is developed. As
reliance on correctly functioning soft-
ware-intensive security applications
increases, and where such software is
becoming ever larger and more com-

plex, the prevalence of requirements
for EAL 5 and above will increase, and
the software industry will need to adapt
its development approaches in order to
meet these requirements. The situation
is analogous to the safety-critical sec-
tor, particularly in Europe, where the
key safety regulatory requirements now
require such approaches. This is the
“stick” incentive, and there is a view
that if the industry persists in producing
insecure software then regulation will
increase.

But there is also the “carrot” incen-
tive. There is plenty of evidence from
a range of sectors that shows that best
practice software engineering produces
high quality software cost-effectively.
When organizations recognize that
low defect software really can have
through-life cost benefit (even tak-
ing into account the costs of the time
and effort to acquire the capability to
deliver it) then the business driver will
take over – the $60 billion reported by
NIST [1] is a big prize!

Perhaps the real challenge for the
software industry is to recognize and
eat the “carrot” before being beaten by
the “stick”.

About the author

Martin is Associate Director for
security with Praxis High Integrity
Systems Limited, a UK-based systems
engineering company specializing
in mission-critical systems. Martin
Croxford is a chartered engineer with
15 years experience in the software in-
dustry. Martin has worked on software
development projects in a range of
organizations, and as a software devel-
opment manager has used Correctness
by Construction to successfully deliver
a multi-million pound security-critical
system.

Contact Details

Praxis High Integrity Systems Limited

20 Manvers Street, Bath BA1 1PX, UK
http://www.praxis-his.com/
+44 1225 466991 (switchboard)
+44 7881 516750 (cell)
martin.croxford@praxis-his.com

References

1 US NIST Report 7007.011, May
2002

2 The Chaos Report http://www.
standishgroup.com

3 http://www.cyberpartnership.org/
about-overview.html

4 Processes to Produce Secure
Software www.cyberpartnership.
org/SDLCFULL.pdf

5 Hooks and Farry, Customer Cen-
tred Products, Amacom, 2000

6 Correctness by Construction:
Developing a Commercial Secure
System, Anthony Hall and Roder-
ick Chapman. Published in IEEE
Software January/February 2002
pp 18-25. http://www.praxis-his.
com/pdfs/c_by_c_secure_system.
pdf

7 Information about ITSEC and the
Common Criteria may be refer-
enced from http://www.cesg.gov.
uk/site/iacs/index.cfm

8 Fourth Annual High Confidence
Software and Systems Conference
Proceedings, National Security
Agency, April 13-15 2004

9 Jones, Capers: Software Assess-
ments, Benchmarks, and Best
Practices. Reading, MA: Addison-
Wesley, 2000

Data & Analysis Center for Software (DACS) 11

Enhancing Customer Security:
Built-in versus Bolt-on

Glenn Schoonover CISSP MCSE, Microsoft Security Solutions Specialist

Introduction

Can you really bolt on security after
the fact? I don’t think so, at least not
effectively. That is a question that soft-
ware developers and security specialists
have been discussing for quite some
time and with the increasing number of
vulnerabilities and the reduction in num-
ber of days between vulnerability and
patch the best answer is to get it right the
first time. At Microsoft there have been
a number of significant changes in the
past 3 years to address the problem of
building software that is secure “out of
the box” and resistant to attack even if
unpatched.

What is the Problem?

One of the problems with building
secure software is spelling out the re-
quirements for the developers as early as
possible. “Programmers can be taught
to avoid creating buffer overflows and
other well-known vulnerabilities found
in commercial software,” said Lawrence
Hale, speaking at this year’s FOSE
conference on government technology.
The problem is that, historically, most
developers did not spend much time
worrying about buffer overruns nor did
they do threat modeling against applica-
tions except in very tightly controlled
government environments. If they did
consider the potential for a threat they
were often not trained in writing secure
code. An example I like to use is the
URL injection exploit where a hacker
can force a buffer overrun by inserting
an exceptionally long character string.
While I was not present those many
years ago when Mosaic, Netscape, and,
later, Internet Explorer were first being
coded, I’m pretty sure that none of the
developers ever stopped to consider
what would happen if someone did in-
sert an extra long string into their brows-
er forcing a buffer overrun. This was

new territory and people tended to trust
each other when conducting business on
the nascent Internet. The result was an
attack path that individuals with mali-
cious intent could use to run executable
code on an unsuspecting user’s machine.
Writing secure code is not a challenge
that is unique to Microsoft. All software
vendors are faced with the challenge of
building secure products, but as part of
their Trustworthy Computing and Secu-
rity Mobilization Initiatives Microsoft is
doing something about it. The goal of
our Security Mobilization is to address
five key issues: 1) Build Security into
our products, 2) Address Customer Pain,
3) Demonstrate Leadership, 4) Mobilize
the company, and 5) Provide Security
and Assurance for computer services
and products that are built on Microsoft
Products.

Security Philosophy: Past and Present

Until recently Microsoft’s philoso-
phy has been to build products that were
easy to use and that worked seamlessly
across the platform. This meant that
many services were enabled by default
when the operating system was installed.
For example, in Windows 2000 Server,
the Internet Information Services are
installed by default, set to start auto-
matically, with the Internet Printing
ISAPI filter enabled. Security was often
thought of in terms of “features” such
as IPSEC and EFS (Encrypting File
System). While this gave system admin-
istrators and home users alike the ability
to run a wide range of applications with
minimum intervention, it did nothing to
enhance security. In the Department of
Defense it took many hours of testing
and evaluation to develop configuration
templates that would allow organizations
to meet our Certification and Accredita-
tion requirements. System administra-
tors would lock themselves out of the

operating system because they did not
understand the impact that turning off a
service would have and many times the
only way to recover was to reinstall the
OS from scratch.

With the implementation of Trust-
worthy Computing, security has become
the number one priority. Default
installations aimed at ease of use are
now not always sufficiently secure, but,
going forward, security in Microsoft’s
products will take precedence over ease-
of-use.

For instance, in Windows Server
2003, IIS6 is turned off by default. It
will need to be specifically chosen for
installation, and when installed will
only serve up static HTML pages by
default. All other functionality (ISAPI
filters, Active Server pages capabilities)
must be turned on by the administra-
tor after installation. Also, the Outlook
Security Patch functionality, introduced
as a download for Outlook 2000, is now
built-in to Outlook XP and 2003. This
security patch blocks access to poten-
tially dangerous attachments, and warns
when programs try to send mail on the
users’ behalf.

Microsoft has committed unprec-
edented resources to achieving the
highest level of security possible in all
of our products. The goal is to become
the leader in the industry both in terms
of product security, and in response to
security issues that arise.

Trustworthy Computing

In 2002, Bill Gates announced the
Trustworthy Computing Initiative. This
was the first step in a 180 degree turn
in building secure products. Success
with Trustworthy Computing (TWC)
is not going to be an easy task. It will
take several years - perhaps a decade
or more, before technology is trusted.

continues on page 12

STN 8-2: Software Cost, Quality and Productivity Benchmarks12

The initiative is predicated on four key
pillars:

• Security: Operating systems and
applications must be resilient to
attack; confidentiality, integrity and
availability of data and systems are
protected, enabling customers to
safeguard critical information.

• Privacy: Products and online
services adhere to fair information
principles, while protecting the
individual’s right to be left alone.

• Reliability: Ensuring systems and
services work the way customers
expect; dependable, performing
and available when needed.

• Business Integrity: Open, transpar-
ent and responsive with customers,
with an internal focus on excel-
lence in our decision-making and
processes.

Goal: To be everyone’s trusted
supplier of secure, private, and reliable
computing.

Security is a core tenant and Micro-
soft is committed to building software
and services to help better protect our
customers and the industry.

Commitments

At the Worldwide Partner Confer-
ence in October 2003, Steve Ballmer
announced Microsoft’s commitment to
“Build software and services that will
help better protect our customers and the
industry.”

In developing and refining our
approach to security over the past few
years, the largest set of stakeholders
that have influenced us has been our
customers. Security sometimes seems
too simple a term for the many aspects
of business and information technol-
ogy that it touches. Even just looking
at security from an IT viewpoint, we
want to protect networks, systems, data,
processes and users. For each of those
areas, people, processes and technology

are necessary to manage the security
business risk.

The security of our customers’
computers and networks is a top priority
for Microsoft. Security is an industry-
wide issue and although there is no one
solution, our approach to security spans
across both technology and social as-
pects. In technology, we’re focused on:

• Building greater isolation and
resiliency into the computing plat-
form.

• Providing customers with the lat-
est and most effective advanced
updating methods.

• Enabling new business scenarios
through integrated authentica-
tion, authorization and access
control options.

• Improving quality by enabling
engineering excellence.

Progress

The first product to ship as part of
the Trustworthy Computing Initiative
was Windows Server 2003. We focused
on making the product secure by design,
by default, and in deployment. This
represents huge progress on security,
and the processes we use have begun
to win recognition in the industry and
even awards. In the area of “Secure by
Design,” we made a $200M Investment
in security engineering covering tools,
training, and the process of software
development. We instituted better
developer accountability - each line of
code is owned by a particular developer
who is responsible for ensuring security
compliance. We developed perva-
sive threat-modeling techniques and
automated code analysis to analyze the
design. Another key development is
shipping Windows Server 2003 in a
“Secure by Default” mode. The product
uses locked-down configurations so that
only the features you need are enabled,
reducing the attack surface to less than
half of what it was in NT 4.0. IIS 6.0 is

turned off by default. We implemented
a stronger security policy, access control
list defaults and new “low privilege” ser-
vice accounts. Windows Server 2003 is
also the first product to ship “Secure in
Deployment.” We improved the power
and simplicity of Security Management
Tools & Services, including software
restriction policies. Secure communica-
tions (VPN/Wireless) is now easier to
deploy with IEEE 802.1X protocol sup-
port, and integrated certificate services
with auto-enrollment. There is greater
breadth of Patch Management Solutions
within and outside of the product, in-
cluding Software Update Services (SUS)
2.0, and we offer much more extensive
Prescriptive Guidance so system admin-
istrators can easily get information on
how to deploy the product securely.

These security engineering practices
have been recognized by organizations
such as RSA and the SANS Institute
who have given Microsoft awards on
our training, tools, and product update
investments. In short, with the degree of
customer engagement, early production
deployments across all customer seg-
ments and workloads and the measures
of quality, especially security, Windows
Server 2003 is a product that can be
deployed today, without waiting for a
service pack.

RSA Industry Innovation Award

As members of Microsoft’s elite Se-
cure Windows Initiative team, Michael
Howard and David LeBlanc published
“Writing Secure Code” (now in its’
second edition) to provide software
developers with a better understanding
of the processes and practices needed to
produce sound software code. Howard
and LeBlanc’s book is the cornerstone of
the security training programs developed
during the implementation of the Trust-
worthy Computing initiative. During
the Windows security push, product
development halted for more than two

Enhancing Customer Security
Continued from page 11.

continues on page 13

Data & Analysis Center for Software (DACS) 13

months as Microsoft software develop-
ers attended, and then implemented,
mandatory security training, all based on
the “Writing Secure Code” book.

Thousands of product developers
and testers from across the company
have now been trained in writing
secure code as part of the Trustwor-
thy Computing Initiative. Since being
introduced internally at Microsoft,
“Writing Secure Code” has become the
definitive security resource for software
developers and engineers at Microsoft.
In addition, “Writing Secure Code” is
being adapted into textbook format for
university computer science courses
by Addison Wesley. The success of
Howard and LeBlanc’s book and cur-
riculum underscores the industry’s need
for secure coding guidelines and the
importance of educating developers
about the value of secure software in
today’s computing landscape.

SANS 2003 Information Security
Leadership Awards

Microsoft earned recognition in
three categories of SANS 2003 Informa-
tion Security Leadership Awards, includ-
ing automated patching and training
programmers to write safer code. Red
Hat also was recognized for automated
patch notification.

http://www.computerworld.
com/securitytopics/security/sto-
ry/0,10801,79164,00.html.

Microsoft won three of the awards
- demonstrating that its Trustworthy
Computing Initiative is beginning to
bear fruit:

• The Award for Leadership In Au-
tomated Updates for Microsoft’s
automated patching service (for
Windows XP and Windows 2000
SP3 and above) that helps protect
users who are not security experts
and for the Update Server that
allows security experts inside
organizations to test patches and
then release them for automated

patching of all systems managed
by the Update Server, both locally
and remote.

• The Award for Leadership in
Security Training of Software
Developers for Microsoft’s nascent
program of requiring all Microsoft
software developers to become fa-
miliar with common security errors
made by programmers and how to
avoid them.

• The Award for Leadership in Test-
ing Software for Security Vulner-
abilities for Microsoft’s extensive
automation of the software testing
process.

What are these changes? The Secu-
rity Development Lifecycle is the pro-
cess that is used internally at Microsoft
to build more secure software. This is a
sophisticated process, with threat model-
ing, audit, testing and signoff stages,
coupled with developer education and
tools. At Microsoft, we have trained
over 13,000 engineers in the rigorous
process. (See Figure 1)

Security review

Once the product design is under-
stood, the specs complete and the threat
models are done, it’s time to have the
design reviewed. The product group
should set aside a day or more for such
reviews. At this meeting (taking a day
at a minimum), component owners will
present their architecture and the securi-
ty implications, threats and countermea-
sures pertaining to their component. The
team will provide experienced feedback
and, if need be, the product group makes
adjustments to the product.

Develop and Test

The purpose of the Security Days
is simply to keep everyone on their
toes, and to provide updated educa-
tion and security analysis. In the past,
many groups held such “bugbashes,”
but the focus should not be simply on

finding bugs, it should be to educate,
and attempt new attack techniques and
methods on an ongoing basis. If you
give people the time to do this they will
find new issues.

Security Push

A security push occurs at beta time
and is a team-wide stand down to focus
on threat model updates, code review,
testing and documentation scrub. Note
that the push is not a quick fix for a
process that lacks security discipline;
it is simply a concerted effort to
eradicate bugs before ship. Note, in the
short-term, a security push is a length
milestone.

Security Audit

Once the end of the project draws
near, a very important question must
be asked, “from a security viewpoint,
are we ready to ship.” The only way to
answer this question is to have an end
of project security audit. The process
is well understood – the three main
analysis points are: (1) Have the threats
changed? (2) Perform a root cause
analysis of incoming security vulner-
abilities that require code modifications
in the current code base. Why were
they missed? What needs changing? (3)
Penetration work; The Secure Windows
Initiative (SWI) (and outside contrac-
tors and the product team) review
default settings, attempt to compromise
the system.

Security Response

You can only design, write and test
for the security issues you know today;
no matter how rigorous the process
security, issues will arise simply because
the threat landscape changes each week.
Because of this, each team needs a
group of people to handle security vul-
nerabilities as they are discovered after
the product has shipped. The team must

Enhancing Customer Security
Continued from page 12.

continues on page 14

STN 8-2: Software Cost, Quality and Productivity Benchmarks14

focus on addressing the vulnerabilities
found, and also on performing a root
cause analysis on each vulnerability so
as to find and modify potential vulnera-
bilities proactively – before they are also
found in the field. The team must meet
common standards for response time,
quality, patch packaging and release.

Challenges Ahead

At Microsoft, we are thinking
about the “big picture” of security, and
working to help customers in a variety
of ways. First and foremost, we remain
deeply committed to building software
and services that will help better
protect our customers and the industry.
Our goal is to build the most secure

software we can, while still building
products that customers will want and
be able to use. Beyond that, we are tak-
ing steps to help protect our customers
in a world where vulnerabilities are
inevitable and the threats are evolving.
This means investing in new technolo-
gies; investing in training, guidance and
communications to help our customers
get the expertise they need; and partner-
ing with industry leaders, customers,
governments, and law enforcement to
address the challenge.

Biography

Glenn Schoonover CISSP MCSE,
is currently a Security Specialist
with Microsoft. He is responsible

for developing and executing on the
Infrastructure and Security strategy
for the Federal District and spends
most of his time helping government
customers build a secure, connected
infrastructure. Prior to arriving at
Microsoft he was the Director of
Security for a global Internet Service
Provider and Chief of Network Se-
curity for the Army at the Pentagon.
A 1986 graduate of the United States
Military Academy at West Point, he
is an authority on network security
architecture, vulnerability assess-
ments and intrusion detection with
experience using a wide variety of
commercial and open source tools.

Enhancing Customer Security
Continued from page 13.

Figure 1. Security Development Life Cycle

Data & Analysis Center for Software (DACS) 15

A synopsis of the Government Ac-
countability Office (GAO), (formally
the Government Accounting Office)
report to congressional requesters titled
“Defense Acquisition: Knowledge of
Software Suppliers Needed to Manage
Risks”, (GAO-04-678), published in
May 2004.

The Department of Defense (DOD)
is concerned about the expansion of
opportunities for exploiting vulner-
abilities in defense weapon systems
software that may result from increased
reliance on prime contractors who, in
turn, are outsourcing the development,
implementing reuse, using COTS,
and acquiring software. Additionally,
contractors are growing through acqui-
sitions, mergers, and a general trend

toward globalization.

Concurrent with this software
development paradigm shift, we are
seeing increasing attempts by foreign
entities to access U.S. technology and
information, and countries and orga-
nizations hostile to the United States
focusing on information warfare.

Do we know who is actually devel-
oping the software used in our weapons
systems programs? Is there a signifi-
cant risk resulting from the expansion
of suppliers and the unknowns relating
to the origins and security of the actual
developers and the respective develop-
ment environment? DOD thinks there
is a risk that it needs to be identified
and managed at the program level and
that knowledge of all suppliers needs to

be available for use in source selection.

Figure 1 depicts how supplier
expansion is occurring and how it may
encompass foreign involvement in the
development process.

 The spider-like image also
conveys the complexity involved in
identifying and tracking all suppliers
and, specifically, sources of foreign
involvement. The shaded oval identi-
fies the current scope of control from
the perspective of the Program Office.
A solid, managed relationship exists
between the prime contractor and the
Program Office, but the remaining ac-
tivity and information, which is primar-
ily contractor driven, is essentially not
visible to the Program Office.

Software Development Security:
A Risk Management Perspective

By Ellen Walker, DACS Analyst

continues on page 16

Figure 1. Scope of Supplier Expansion and Foreign Involvement

STN 8-2: Software Cost, Quality and Productivity Benchmarks16

To address DOD concerns, Con-
gress asked the GAO to examine and
report on DOD’s efforts to identify
and manage the risks associated
with foreign involvement in software
development in individual weapon
systems programs.

For this study, conducted from
April 2003 to May 2004, GAO selected
16 weapon systems varying in age and
capability; reviewed relevant DOD
guidance, policies, regulations and
procedures; met with experts from
the SEI and the weapons engineering
community; and reviewed or solicited
information from the Program Offices
and their respective prime contractors.
Appendix I of the GAO report provides
further details of the scope and method-
ology of this study.

Summary of GAO Findings

GAO found that software security
issues in general, and the risk associ-
ated with foreign involvement in
particular, are taking a back seat to the
main topics of focus on weapon systems
programs – performance, cost and
schedule. Reasons for this tend to fit
into the following categories:

• Lack of policy to address the risk
of foreign involvement

• Lack of communication among
organizations who possess knowl-
edge of foreign suppliers

• Lack of prioritization of software
security relative to issues of cost,
schedule, and performance

• Lack of clear accountability for ad-
dressing software security related
risks

Figure 2 presents some of the
quantifiable key findings with respect
to the actions and viewpoints of the
program officials. In general, program
officials lacked awareness of foreign
involvement, in either COTS, or their
custom software. Consequently, they

did not view any risk associated with
foreign involvement as significant.

 They relied on the competence
of their prime contractors to ensure
quality and security and make good
decisions about subcontractors, but
few of the programs included specific
software security requirements in their
contractual agreements with the prime
contractor. In the absence of specific
requirements to address security risks
associated with foreign involvement,
the contractors are not dealing with it,
electing instead to focus on meeting the
specified contractual requirements.

Those programs that did identify
software security as a risk focused
on operational threats (e.g., limiting
foreign access to software development
facilities and denying foreign access to
software code), not insider threats that
might come from foreign involvement

in software development.

GAO found that DOD policy and
guidance is not currently addressing
the issues of software development
security and adopting a risk strategy for
foreign involvement. Security policies
for weapon systems software focus
primarily on operational threats, not
insider threats such as the insertion of
malicious code by software developers.
Additionally, security procedures that
are in place tend to be applied after the
software suppliers have been selected
and, thus, do not provide the manager
the opportunity to evaluate whether the
risks associated with using a supplier
are acceptable.

Some officials noted that acceptance
testing for reused and COTS software
limits its focus to proving functionality
and, thus, closes the door to supplier
information for those products.

Software Development Security
Continued from page 15.

Figure 2. GAO Key Findings
continues on page 17

Data & Analysis Center for Software (DACS) 17

GAO reported several situations in
which knowledge of foreign involve-
ment exists at some level, but is not
routinely shared with the Program Of-
fice, either because there is no require-
ment to do so, or because the knowl-
edge is acquired by other agencies
relative to other functions, such as the
export licensing process. Contractors
request approval from the State Depart-
ment, but the State Department does
not automatically refer the application
to DOD or the Program Office.

Some additional insights from the
study are as follows:

• Although we know that practices
like peer reviews and dedicated
software testing can uncover mali-
cious code and minimize defects,
50% of the programs made deci-
sions about what code to test based
on the risks and benefits to the
functionality of the system, not on
security. Experts agree that com-
prehensive testing (every line of
code) to ensure complete security is
perhaps physically impossible and
would require immense resources.

• 75% of the programs reported
using the Technology Assessment/
Control Plan and/or the Program
Protection Plan (documents that
address the release of information
to foreign governments through
cooperative programs and military
sales), but these documents do not
provide specific information on
suppliers who will be performing
the work.

• 69% of the programs reported us-
ing the Defense Information Tech-
nology Security Certification and
Accreditation Process (DITSCAP)
to address general software secu-
rity; however, this process does not
govern contractors in cases where
the requirements were not included
in the original contract. In addi-
tion, the DITSCAP process bases
its requirements on the program

manager’s assessment of risks.
Therefore, unless the program
manager has identified foreign
software development as a risk, the
process will not address it.

• Better software development
practices alone (such as those
represented by the SEI CMM levels
of maturity) may reduce defects and
improve overall software quality,
but cannot be expected to address
malicious software development ac-
tivities intended to breach security.

• Program managers are encouraged
(under the blanket of using sound
systems engineering practices) to
develop open software systems
architectures, use COTS products,
and make incremental improve-
ments through code reuse. How-
ever, all of these practices have
potential for introducing malicious
code from unknown software de-
velopment sources.

GAO Recommendations

The GAO concluded the DOD
needs to take steps to ensure that
software security is an integral element
in decision-making and that program
managers mitigate risks accordingly.
They recommended that the Secretary
of Defense take the following three
actions to address risks attributable to
software vulnerabilities and threats:

1. Require program managers (work-
ing with others as necessary) to
define software security require-
ments, including identifying and
managing software suppliers, and
then communicate the require-
ments through the prime develop-
ment contract to ensure that they
are used in selecting suppliers

2. Require program managers to
collect and maintain information
on software suppliers (including
software from foreign suppliers)
and use the information to assess

changes in supplier status and to ad-
just program security requirements

3. Require the Office of the Assistant
Secretary of Defense for Networks
and Information Integration
(OASD-NII) and the Office of the
Undersecretary of Defense for
Acquisition Technology and Lo-
gistics (OUSD-ATL) to work with
other organizations to ensure that
weapons program risk assessments
include attention to software devel-
opment risks and threats.

DOD’s concerns, in response to
this report, are that the recommenda-
tions place too much responsibility on
the program managers, and that insider
threats are not limited to foreign suppli-
ers. DOD believes that program man-
agers should be able to rely on external
resources to gain threat information
on suppliers, and that formulation and
oversight of security practices should
be a collaborative function among
several offices. Furthermore, a central-
ized information repository on software
suppliers (including but not limited to
foreign suppliers) is necessary because
the cost of collecting and maintaining
this information would require re-
sources and assets beyond the scope of
individual program managers. Perhaps
identifying, tracking, and maintaining
intelligence on security risks of soft-
ware suppliers is best done at the DOD
level so that it can be shared among
the programs. Threat analysis, which
drives the development of security
requirements, should be carried out at
the subsystem, system, and system-of-
systems levels and not be limited to the
scope, expertise, and resources of the
individual program managers. [Source:
GAO Report Appendix II, DOD Com-
ments to the Recommendations]

Reading the actual report begs
questions such as the following:

• Is the issue of malicious code
potentially being inserted into a

Software Development Security
Continued from page 16.

continues on page 18

STN 8-2: Software Cost, Quality and Productivity Benchmarks18

software component really a threat
here and now?

• How far could someone get with
this before it is discovered?

• Are foreigners the only people who
could do this?

• What would it take to test for
malicious code insertions (insider
threats)?

• Whose job is it to verify that all the
software used in a weapon system
does not represent a security risk?

• What level of risk is acceptable (if
any)? And at what cost?

• What do we need to know about
software suppliers, or the software
development environment, in order
to be able to thwart such threats?

• How could we be sure that the
information we collect on suppliers
is, in fact, valid?

These and many more questions,
collectively, hint at the complexity of
the issue and its proposed solutions. Are
GAO’s recommendations simplistic
given the realities of the issue? If imple-
menting software security measures re-
quires continuous tracking of all suppli-
ers of all software products and results
in enormous costs, who decides what
the priority of security should be relative
to overall cost, schedule and software
capability requirements? Perhaps these
questions have wetted your appetite for
reading the report in its entirety. It is
available for download at http://www.
gao.gov/new.items/d04678.pdf

Author Contact Information

Ellen Walker

Data and Analysis Center for
Software (DACS)

Ph: 315-334-4936

E-mail: ellen.walker@itt.com

Software
Development
Security
Continued from page 17.

I was reading part of the July 2004
Software Tech News. I noted your criti-
cism of “software testing as an art.” I
do understand why you would say that
-- that certain people claim they are art-
ists as a way of saying they do not care
to have a disciplined process.

I claim that nearly every artist
does have a disciplined process. I have
observed my wife doing watercolor
painting. Whenever she changes paper,
brush or paint, she does some number
of test drawings. She has to have a
detailed understanding of how the
materials work together and master the
techniques she will use. It is important
to understand the mistakes that are
inherent in the process. Then it is pos-
sible to execute so that the mistakes do
not compromise the end product.

If she happens to be in a rush and
skips the test drawing, she inevitably
has to throw away the first version --
usually before it is finished.

Michelangelo and Leonardo Da
Vinci were famous for making many
detailed sketches in preparation. They
mixed and tested materials they would
use in their frescos. I also know a
couple of sculptors who like to work
with new and different materials. They
spend a great deal of time learning how
to work with the new material before
attempting a product.

Let’s not demean artists by
claiming we can be creative without
a process. We should realize that true
artists do follow a disciplined process
and calibrate their work. Good testers
would do likewise.

Bob Ferguson
Sr. Member of the Technical Staff
Software Engineering Institute
Carnegie Mellon University

User Comment
By Bob Ferguson,

 Carnegie Mellon University

Data & Analysis Center for Software (DACS) 19

The four articles in this issue of
Software Tech News have provided
excellent guidance and a wealth of
information about “Secure Software
Engineering” from a development,
management, supplier, and acquisition
perspective. Being a software
engineer myself and given the
increased importance now of security
and trustworthiness of software
intensive systems, my perspective in
reading these articles is to understand
how what I perceive as “best”
practices in software engineering are
impacted by security issues. Here are
the highlights of what I learned:

• From a development and lifecycle
perspective:

- Need to significantly reduce
defects induced and improve
methods for detecting software
defects throughout the lifecycle.
Correctness by Construction
is a rigorous methodology
which results in very low defect
software (<0.1 defects/ksloc).
TSP-Secure provides a set of
defined and measured best
practices for low-defect Secure
software development.1, 2

- Need to understand common
causes of vulnerabilities and
focus on defect reduction
techniques for defects that lead
to or cause vulnerabilities.1, 3

- Security must be built-in to the
software development lifecycle
with appropriate checkpoints
and reviews.1, 2, 3

- Need to define a set of best
practices that development
teams can use. Correctness
by Construction and TSP-
Secure provides best practice
approaches.1, 2

- Need to sensitize designers,
developers and testers to security
issues through training.1, 3

- Tools are available to detect
some security vulnerabilities.1, 3

- Best practices for developers and
testers includes threat modeling,
Fuzz testing, Ballista, penetration
analysis static code analysis.1, 3

- Developer accountability helps
to ensure security compliance.3

- Correctness by Construction
achieves significant defect
reduction through rigorous
requirements analysis, use of
formal design methods and
information flow models for
design, and verifiable code
development (when needed).2

• From a management perspective:
- >90% of all vulnerabilities are

caused by defects resulting from
inadequate, normal software
engineering methods.1

- In building a business case for
secure software engineering,
need to consider (add) costs
of fixing and releasing patches
from a supplier, acquirer, and
consumer perspective. Not
addressing security from a
supplier perspective could
impact customer satisfaction and
result in lawsuits.1, 2

- Need senior management
vision, leadership, support, and
oversight of implementation
of security policies and best
practices.1, 2, 3

- Security measures need to be
planned, measured, and tracked.1

- Program managers should
collect and maintain information
on suppliers used to perform
software development.4

• From a supplier perspective:
- Suppliers need to ship software

where default settings are
secure.3

- Perform a security audit prior to
release.3

• From an acquirer’s perspective:
- Acquirers, suppliers, and

program managers need to
identify and manage risks
associated with foreign
involvement in development of
software (including COTS) for
weapon system programs.4

- Acquirers need to communicate
security requirements through
prime development contracts.3, 4

- Acquirers should demand
software warranties, award
contracts to organizations that
deliver low defect software, and
provide contract incentives for
partnership and improvement.2

- Change, in reality, will come
from regulations and financial
incentives.2

1 See “Developing Secure Software”
by Noopur Davis

2 See “The Challenge of Low
Defect, Secure Software” by
Martin Croxford

3 See “Enhancing Customer
Security: Built-in versus Bolt-on”
by Glenn Schoonover

4 See “Software Development
Security: A Risk Management
Perspective” by Ellen Walker

Lessons Learned
By Thomas McGibbon, DACS Director

STN 8-2: Software Cost, Quality and Productivity Benchmarks20

Data & Analysis Center for Software (DACS) 21

The first 50 people to send in a completed
survey will receive a FREE DoD/IT Acronym
CD from the DACS.
This valuable CD-ROM contains over 9,000 Department of

Defense and Information Technology acronyms. There are hun-
dreds of acronym lists available but none are as well done as this
CD AND specifically targeted towards DoD and Information Tech-
nology. This unique-shaped CD-ROM plays in your computer’s
regular, hub-mounted, CD drive. You’ll use this great resource
over and over again. It’s FREE, just for filling out our brief survey
on the next page!

� Fold Here �

� Fold Here �

http://iac.dtic.mil/dacs/

Data & Analysis Center for Software (DACS)

STN 8-2: Software Cost, Quality and Productivity Benchmarks22

Software Tech News Subscriber Survey

1. Which volume of the Software Tech News did you receive? ___

2. When did you receive the newsletter? (month/year) _____________________________

3. How satisfied were you with the CONTENT of the newsletter? (Article Quality)

� Very Satisfied � Satisfied � Neither Satisfied nor Dissatisfied � Dissatisfied � Very Dissatisfied

4. How satisfied were you with the APPEARANCE of the newsletter?

� Very Satisfied � Satisfied � Neither Satisfied nor Dissatisfied � Dissatisfied � Very Dissatisfied

5. How satisfied were you with the OVERALL QUALITY of the newsletter?

� Very Satisfied � Satisfied � Neither Satisfied nor Dissatisfied � Dissatisfied � Very Dissatisfied

6. How satisfied were you with the ACCURACY of the address on the newsletter?

� Very Satisfied � Satisfied � Neither Satisfied nor Dissatisfied � Dissatisfied � Very Dissatisfied

7. Approximately how much of the newsletter do you read?

� The entire issue � Most of the content � About half the content � Briefly Skimmed � Didn’t Read

8. Would you read this newsletter in an E-mail newsletter format?

� Definitely � Probably � Not Sure � Probably Not � Definitely Not

9. How did you request the product or service?

� Phone Call � E-mail � DACS Website � Subscription Form Other ___________________________

10. Would you recommend the DoD Software Tech News to a colleague?

� Definitely � Probably � Not Sure � Probably Not � Definitely Not

11. What topics would you like to see this newsletter devoted to?

Comments (Optional)

Contact Information (Optional*)

Name: Position/Title:

Organization: Office Symbol:

Address:

City: State: Zip Code:

Country: E-mail:

Telephone: Fax:

Functional Role:

Organization Type: � Air Force � Army � Navy � Other DoD _____________________________

� Commercial � Non-Profit � Non-US � US Government � FFR&D � Other _______________

*Note: You must give us your address to receive the CD.

STN 8:2 Secure Software

Data & Analysis Center for Software (DACS) 23

About the DoD Software Tech News

Article Reproduction
Images and information presented
in these articles may be repro-
duced as long as the following
message is noted:

“This article was originally printed
in the DoD Software Tech News,
Vol. 8, No. 2. Requests for copies
of the referenced newsletter may be
submitted to the following address:

Philip King, Editor
Data & Analysis Center for Soft-
ware
P.O. Box 1400
Rome, NY 13442-1400

 Phone: 800-214-7921
 Fax: 315-334-4964
 E-mail: news-editor@dacs.dtic.mil

An archive of past newsletters is
available at www.SoftwareTech-
News.com.

In addition to this print message,
we ask that you send us three cop-
ies of any document that refer-
ences any article appearing in the
DoD Software Tech News.

About This Publication:
The DoD Software Tech News is
published quarterly by the Data
& Analysis Center for Software
(DACS). The DACS is a DoD
sponsored Information Analysis
Center (IAC), administratively
managed by the Defense Technical
Information Center (DTIC). The
DACS is technically managed by
Air Force Research Laboratory,
Rome, NY and operated by ITT
Industries, Advanced Engineering
and Sciences Division.

To Subscribe to this
Publication Contact:

 Phone: 800-214-7921
 Fax: 315-334-4964

 E-mail: news-editor@dacs.dtic.mil
 Web: www.dacs.dtic.mil

DACS
P.O. Box 1400

Rome, NY 13442-1400

 Phone: 800-214-7921
 Fax: 315-334-4964
 E-mail: dacs@dtic.mil
 URL: http://iac.dtic.mil/dacs/

Philip King
Editor

ITT Industries, DACS

Paul Engelhart
DACS COTR

Air Force Research Lab (IFEA)

Morton A. Hirschberg
Editorial Board Chairman

Army Research Lab (retired)

Ellen Walker
ITT Industries, DACS

Thomas McGibbon
DACS Director

ITT Industries, DACS

David Nicholls
DACS Deputy Director

ITT Industries, DACS

Distribution Statement:
Unclassified and Unlimited

Cover Design by Joseph Barbaccia,
ITT Industries

STN Editorial Board

STN 8-2: Software Cost, Quality and Productivity Benchmarks24

Developing Secure Software 3

The Challenge of Low Defect, Secure
Software ...8

Enhancing Customer Security 11

Software Development Security 15

Data & Analysis Center for Software
P.O. Box 1400
Rome, NY 13442-1400

PRSRT STD
U.S. Postage

P A I D
Permit #566
UTICA, NY

Return Service Requested

Advertisement
The DoD Software Tech News is now ac-

cepting advertisements for future newsletters.
In addition to being seen by the thousands of
people who subscribe to the DoD Software
Tech News in paper copy, the Tech News will
also be placed on the Data & Analysis Center
for Software’s website
(http://iac.dtic.mil/dacs/), exposing your prod-
uct, organization, or service to hundreds of
thousands of additional eyes.

Interested in learning more? For rates, lay-
out information, and requirements contact:

Philip King, STN Editor
Data & Analysis Center for Software
P.O. Box 1400
Rome, NY 13442-1400

 Phone: (800) 214-7921
 Fax: (315) 334-4964
 E-mail: news-editor@dacs.dtic.mil

STN Vol. 8, No. 2

In This Issue

