
 2003 Prentice Hall, Inc. All rights reserved.

1

IS 0020
Program Design and Software Tools

Preprocessor
Midterm Review

Lecture 7

Feb 17, 2004

 2003 Prentice Hall, Inc. All rights reserved.

2

Introduction

• Preprocessing
– Occurs before program compiled

• Inclusion of external files
• Definition of symbolic constants
• Macros
• Conditional compilation
• Conditional execution

– All directives begin with #
• Can only have whitespace before directives

– Directives not C++ statements
• Do not end with ;

 2003 Prentice Hall, Inc. All rights reserved.

3

The #include Preprocessor Directive

• #include directive
– Puts copy of file in place of directive
– Two forms

• #include <filename>
– For standard library header files
– Searches pre-designated directories

• #include "filename"
– Searches in current directory
– Normally used for programmer-defined files

 2003 Prentice Hall, Inc. All rights reserved.

4

The #include Preprocessor Directive

• Usage
– Loading header files

• #include <iostream>

– Programs with multiple source files
– Header file

• Has common declarations and definitions
• Classes, structures, enumerations, function prototypes
• Extract commonality of multiple program files

 2003 Prentice Hall, Inc. All rights reserved.

5

The #define Preprocessor Directive: Symbolic
Constants

• #define
– Symbolic constants

• Constants represented as symbols
• When program compiled, all occurrences replaced

– Format
• #define identifier replacement-text
• #define PI 3.14159

– Everything to right of identifier replaces text
• #define PI=3.14159
• Replaces PI with "=3.14159"
• Probably an error

– Cannot redefine symbolic constants

 2003 Prentice Hall, Inc. All rights reserved.

6

The #define Preprocessor Directive: Symbolic
Constants

• Advantages
– Takes no memory

• Disadvantages
– Name not be seen by debugger (only replacement text)
– Do not have specific data type

• const variables preferred

 2003 Prentice Hall, Inc. All rights reserved.

7

The #define Preprocessor Directive: Macros

• Macro
– Operation specified in #define
– Intended for legacy C programs
– Macro without arguments

• Treated like a symbolic constant
– Macro with arguments

• Arguments substituted for replacement text
• Macro expanded

– Performs a text substitution
• No data type checking

 2003 Prentice Hall, Inc. All rights reserved.

8

The #define Preprocessor Directive: Macros

• Example
#define CIRCLE_AREA(x) (PI * (x) * (x))
area = CIRCLE_AREA(4);

becomes
area = (3.14159 * (4) * (4));

• Use parentheses
– Without them,
#define CIRCLE_AREA(x) PI * x * x
area = CIRCLE_AREA(c + 2);

becomes
area = 3.14159 * c + 2 * c + 2;

which evaluates incorrectly

 2003 Prentice Hall, Inc. All rights reserved.

9

The #define Preprocessor Directive: Macros

• Multiple arguments
#define RECTANGLE_AREA(x, y) ((x) * (y))
rectArea = RECTANGLE_AREA(a + 4, b + 7);

becomes
rectArea = ((a + 4) * (b + 7));

• #undef
– Undefines symbolic constant or macro
– Can later be redefined

 2003 Prentice Hall, Inc. All rights reserved.

10

Conditional Compilation

• Control preprocessor directives and compilation
– Cannot evaluate cast expressions, sizeof, enumeration

constants

• Structure similar to if
#if !defined(NULL)
#define NULL 0

#endif
– Determines if symbolic constant NULL defined
– If NULL defined,

• defined(NULL) evaluates to 1
• #define statement skipped

– Otherwise
• #define statement used

– Every #if ends with #endif

 2003 Prentice Hall, Inc. All rights reserved.

11

Conditional Compilation

• Can use else
– #else
– #elif is "else if"

• Abbreviations
– #ifdef short for

• #if defined(name)
– #ifndef short for

• #if !defined(name)

 2003 Prentice Hall, Inc. All rights reserved.

12

Conditional Compilation

• "Comment out" code
– Cannot use /* ... */ with C-style comments

• Cannot nest /* */
– Instead, use

#if 0
code commented out

#endif
– To enable code, change 0 to 1

 2003 Prentice Hall, Inc. All rights reserved.

13

Conditional Compilation

• Debugging
#define DEBUG 1
#ifdef DEBUG
cerr << "Variable x = " << x << endl;

#endif
– Defining DEBUG enables code
– After code corrected

• Remove #define statement
• Debugging statements are now ignored

 2003 Prentice Hall, Inc. All rights reserved.

14

The #error and #pragma Preprocessor
Directives

• #error tokens
– Prints implementation-dependent message
– Tokens are groups of characters separated by spaces

• #error 1 - Out of range error has 6 tokens

– Compilation may stop (depends on compiler)

• #pragma tokens
– Actions depend on compiler
– May use compiler-specific options
– Unrecognized #pragmas are ignored

 2003 Prentice Hall, Inc. All rights reserved.

15

The # and ## Operators

• # operator
– Replacement text token converted to string with quotes
#define HELLO(x) cout << "Hello, " #x << endl;

– HELLO(JOHN) becomes
• cout << "Hello, " "John" << endl;
• Same as cout << "Hello, John" << endl;

• ## operator
– Concatenates two tokens

#define TOKENCONCAT(x, y) x ## y

– TOKENCONCAT(O, K) becomes
• OK

 2003 Prentice Hall, Inc. All rights reserved.

16

Line Numbers

• #line
– Renumbers subsequent code lines, starting with integer

• #line 100

– File name can be included
– #line 100 "file1.cpp"

• Next source code line is numbered 100
• For error purposes, file name is "file1.cpp"
• Can make syntax errors more meaningful
• Line numbers do not appear in source file

 2003 Prentice Hall, Inc. All rights reserved.

17

Predefined Symbolic Constants

• Five predefined symbolic constants
– Cannot be used in #define or #undef

 Symbolic constant
 Description

__LINE__ The line number of the current source code line (an integer constant).

__FILE__ The presumed name of the source file (a string).

__DATE__ The date the source file is compiled (a string of the form "Mmm dd
yyyy" such as "Jan 19 2001").

__TIME__ The time the source file is compiled (a string literal of the form
"hh:mm:ss").

 2003 Prentice Hall, Inc. All rights reserved.

18

Assertions

• assert is a macro
– Header <cassert>
– Tests value of an expression

• If 0 (false) prints error message, calls abort
– Terminates program, prints line number and file
– Good for checking for illegal values

• If 1 (true), program continues as normal

– assert(x <= 10);

• To remove assert statements
– No need to delete them manually
– #define NDEBUG

• All subsequent assert statements ignored

 2003 Prentice Hall, Inc. All rights reserved.

19

IS 0020
Program Design and Software Tools

Overview for Midterm

 2003 Prentice Hall, Inc. All rights reserved.

20

Lecture 1

• Background; phases of compilation
• Arithmetic operations
• Control structure

– Sequential
– Conditional
– repetition

• Misc:
– Lvalues/Rvalues; logical operators; = ; = =

• Structured programming concept

 2003 Prentice Hall, Inc. All rights reserved.

21

Lecture 2

• Functions
• Storage classes
• Scope rules
• Recursive functions
• References and parameters
• Arrays
• Pointers
• Function pointers

 2003 Prentice Hall, Inc. All rights reserved.

22

Lecture 3

• Structures and Classes
• Constructor and destructor

– Order of calls

• Class scope
• Returning reference to private data member (bad!)
• Object assignment (memberwise)
• const objects/functions
• Composition

 2003 Prentice Hall, Inc. All rights reserved.

23

Lecture 4

• Friend Functions
• this pointed

– Cascaded sequence

• Dynamic memory management: new and
delete

• static class member
• Data abstraction and information hiding

– Proxy classes etc.

 2003 Prentice Hall, Inc. All rights reserved.

24

Lecture 6 (5) , 7

• Operator overloading
– Class members

• Overloading binary operators
– Case studies: Array, string

• Overloading ++ and --
– Case studies: Date class

• Standard library : String and Vector
• Today

– preprocessor

 2003 Prentice Hall, Inc. All rights reserved.

25

Midterm Breakdown?

