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Introduction

• Preprocessing
– Occurs before program compiled

• Inclusion of external files
• Definition of symbolic constants
• Macros
• Conditional compilation
• Conditional execution

– All directives begin with #
• Can only have whitespace before directives

– Directives not C++ statements
• Do not end with ;
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The #include Preprocessor Directive

• #include directive
– Puts copy of file in place of directive
– Two forms

• #include <filename>
– For standard library header files
– Searches pre-designated directories

• #include "filename"
– Searches in current directory
– Normally used for programmer-defined files



 2003 Prentice Hall, Inc.  All rights reserved.

4

The #include Preprocessor Directive

• Usage
– Loading header files

• #include <iostream>

– Programs with multiple source files
– Header file

• Has common declarations and definitions
• Classes, structures, enumerations, function prototypes
• Extract commonality of multiple program files
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The #define Preprocessor Directive: Symbolic 
Constants

• #define
– Symbolic constants

• Constants represented as symbols
• When program compiled, all occurrences replaced

– Format
• #define identifier replacement-text
• #define PI 3.14159

– Everything to right of identifier replaces text
• #define PI=3.14159
• Replaces PI with "=3.14159"
• Probably an error

– Cannot redefine symbolic constants
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The #define Preprocessor Directive: Symbolic 
Constants

• Advantages
– Takes no memory

• Disadvantages
– Name not be seen by debugger (only replacement text)
– Do not have specific data type

• const variables preferred
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The #define Preprocessor Directive: Macros

• Macro
– Operation specified in #define
– Intended for legacy C programs
– Macro without arguments

• Treated like a symbolic constant
– Macro with arguments

• Arguments substituted for replacement text
• Macro expanded

– Performs a text substitution 
• No data type checking
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The #define Preprocessor Directive: Macros

• Example
#define CIRCLE_AREA( x ) ( PI * ( x ) * ( x ) ) 
area = CIRCLE_AREA( 4 );  

becomes
area = ( 3.14159 * ( 4 ) * ( 4 ) ); 

• Use parentheses
– Without them,
#define CIRCLE_AREA( x )  PI * x * x
area = CIRCLE_AREA( c + 2 );

becomes
area = 3.14159 * c + 2 * c + 2;

which evaluates incorrectly
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The #define Preprocessor Directive: Macros

• Multiple arguments
#define RECTANGLE_AREA( x, y )  ( ( x ) * ( y ) ) 
rectArea = RECTANGLE_AREA( a + 4, b + 7 );

becomes
rectArea = ( ( a + 4 ) * ( b + 7 ) );

• #undef
– Undefines symbolic constant or macro
– Can later be redefined
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Conditional Compilation

• Control preprocessor directives and compilation
– Cannot evaluate cast expressions, sizeof, enumeration 

constants

• Structure similar to if
#if !defined( NULL )
#define NULL 0

#endif
– Determines if symbolic constant NULL defined
– If NULL defined, 

• defined( NULL ) evaluates to 1
• #define statement skipped

– Otherwise
• #define statement used

– Every #if ends with #endif
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Conditional Compilation

• Can use else
– #else
– #elif is "else if"

• Abbreviations
– #ifdef short for 

• #if defined(name)
– #ifndef short for 

• #if !defined(name)
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Conditional Compilation

• "Comment out" code
– Cannot use /* ... */ with C-style comments

• Cannot nest /* */
– Instead, use

#if 0
code commented out

#endif
– To enable code, change 0 to 1
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Conditional Compilation

• Debugging 
#define DEBUG 1
#ifdef DEBUG
cerr << "Variable x = " << x << endl;

#endif
– Defining DEBUG enables code
– After code corrected

• Remove #define statement
• Debugging statements are now ignored
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The #error and #pragma Preprocessor 
Directives

• #error tokens
– Prints implementation-dependent message
– Tokens are groups of characters separated by spaces

• #error 1 - Out of range error has 6 tokens

– Compilation may stop (depends on compiler)

• #pragma tokens
– Actions depend on compiler
– May use compiler-specific options
– Unrecognized #pragmas are ignored
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The # and ## Operators

• # operator
– Replacement text token converted to string with quotes
#define HELLO( x ) cout << "Hello, " #x << endl;

– HELLO( JOHN ) becomes
• cout << "Hello, " "John" << endl;
• Same as cout << "Hello, John" << endl;

• ## operator
– Concatenates two tokens

#define TOKENCONCAT( x, y )  x ## y

– TOKENCONCAT( O, K ) becomes
• OK
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Line Numbers

• #line
– Renumbers subsequent code lines, starting with integer

• #line 100

– File name can be included
– #line 100 "file1.cpp"

• Next source code line is numbered 100
• For error purposes, file name is "file1.cpp"
• Can make syntax errors more meaningful
• Line numbers do not appear in source file
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Predefined Symbolic Constants

• Five predefined symbolic constants
– Cannot be used in #define or #undef

 

 Symbolic constant 
  Description 

__LINE__ The line number of the current source code line (an integer constant). 

__FILE__ The presumed name of the source file (a string). 

__DATE__ The date the source file is compiled (a string of the form "Mmm dd 
yyyy" such as "Jan 19 2001").  

__TIME__ The time the source file is compiled (a string literal of the form 
"hh:mm:ss").  
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Assertions

• assert is a macro 
– Header <cassert>
– Tests value of an expression

• If 0 (false) prints error message, calls abort
– Terminates program, prints line number and file
– Good for checking for illegal values

• If 1 (true), program continues as normal

– assert( x <= 10 );

• To remove assert statements
– No need to delete them manually
– #define NDEBUG

• All subsequent assert statements ignored
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Lecture 1

• Background; phases of compilation
• Arithmetic operations
• Control structure

– Sequential 
– Conditional
– repetition

• Misc: 
– Lvalues/Rvalues; logical operators; = ; = =

• Structured programming concept
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Lecture 2

• Functions
• Storage classes
• Scope rules
• Recursive functions
• References and parameters
• Arrays 
• Pointers
• Function pointers
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Lecture 3

• Structures and Classes
• Constructor and destructor

– Order of calls

• Class scope
• Returning reference to private data member (bad!)
• Object assignment (memberwise)
• const objects/functions
• Composition 
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Lecture 4

• Friend Functions
• this pointed

– Cascaded sequence 

• Dynamic memory management: new and 
delete

• static class member
• Data abstraction and information hiding

– Proxy classes etc.
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Lecture 6 (5) , 7

• Operator overloading
– Class members 

• Overloading binary operators
– Case studies: Array, string 

• Overloading ++ and --
– Case studies: Date class

• Standard library : String and Vector
• Today

– preprocessor
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Midterm Breakdown?


